This presentation is intended to provide client with:

• information on 7R/E - the announcement in general & the specific 7R/E Cable Solution.
• Reaffirm Lucent’s commitment to the Cable industry - tease regarding the Lucent Cable Business Unit and our involvement w/CableLabs & PacketCable.
• While also stressing our eagerness & willingness to work w/them to provide the the client w/a solution that they find valuable, while gathering & soliciting additional requirements that they may have to ensure this happens.
HFC Network Reliability for Today’s & Tomorrow’s Services

Overview

• Network Requirements of HFC Services
• Network Reliability and Availability History
• Causes of Network Outages and Weapons against
• Network Monitoring
• Summary
Network reliability should also take “degraded services into account and not focus on complete failure of a service.

Network reliability should should focus on delivering a quality service
HFC Network Reliability for Today’s & Tomorrow’s Services

Overview

• Network Requirements of HFC Services
• Network Reliability and Availability History
• Causes of Network Outages and Weapons against
• Network Monitoring
• Summary
Different industries use different measures of service integrity

Telephony Industry

- Availability objective 99.99% (53 min/yr.)
- Bellcore “goal” chosen arbitrarily, not mandated by government regulation
- Not the same as end user service availability!
- Applies to network between local switch and network interface
- Excludes local switch, customer premise equipment, in-home wiring and loss of primary and backup power
- Some customers may have consistently poor service but still meet objective
- Clock starts when outage reported, not when it begins

In home wiring is largest single cause of service outage for catv industry
Different industries use different measures of service integrity

Cable Industry/Broadcast Video

- Availability objective 99.7% (26.3 hr/yr.)
- 2 outages within 3 months for single customer

- CableLabs “goal” based on outages exceeding this rate become a major factor in customers perception of service quality
- 10 minute outage perceived as bad as an all day outage
- “Outage” is 2 or more customers losing 1 or more channels, “Loss” is interruption not degradation.
- Includes power outages!
- Does not count single outages, so drop and in-house wiring not included
- Outage not count if repaired before being reported

In home wiring is largest single cause of service outage for catv industry

99.7=.6 outages/month and 4 hours MTTR
HFC Network Reliability for Today’s & Tomorrow’s Services

Network Reliability and Availability History

Does Cable industry require 99.99% availability?

- Traditional HFC Plants: 99+% (3.7 days/yr.)
- Broadcast Video (Analog/Digital): 99.7% (26 hours/yr.)
- Cable Modem: 99.8% (13 hr/yr.)
- Primary Line Telephony: 99.99% (53 min/yr.)
- Secondary Line Telephony: 99.7% (26 hours/yr.)

Note: 11/28/00 CableLabs document recommends an end-to-end availability objective of 99.94% (5.256 hrs.)

Depends on:
- What are customers willing to put up with for these services
- Business Model entering market

In home wiring is largest single cause of service outage for catv industry
Customer Expectations of Network Availability

100% Available
- 99.99% (53 minutes available)
- 99.98% (106 minutes available)
- 99.97% (159 minutes available)
- 99.96% (212 minutes available)

99.95% (265 minutes available)
99.94% (318 minutes available)
99.93% (371 minutes available)

Good Service
- Requires Maintenance

Primary Line
- Designed by Bellcore Spec

Secondary Line
- VoIP Set Top Box MTA
- No Backup Power
- No Carrier Grade CMTS, MTA, SW

Secondary Line
- Requires Maintenance

Primary Line
- Designed by Bellcore Spec

Good Service
- Requires Maintenance
Unavailability Related to Concentration of Revenue

Revenue per minute of Network Element drives reliability!
Network Availability “Primary Line”
Engineering the End to End Telephony Solution

Local Access (99.99% = 53 min) Switching (99.999% = 5.3 min)

<table>
<thead>
<tr>
<th>Unavailability in Minutes</th>
<th>MTTR</th>
<th>10</th>
<th>1</th>
<th>36</th>
<th>5</th>
<th>1</th>
<th>5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Wire</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cable Modem Termination System</td>
<td>53 minutes</td>
<td>Redundant</td>
<td>Redundant</td>
<td>Redundant</td>
<td>Redundant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SONET Transport</td>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5.3</td>
</tr>
<tr>
<td>PSTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Unavailability is calculated from MTBF historical data or FIT Rate/Part Count

Assumption is Power is always up
Network Availability “Second Line”
Engineering the End to End Telephony Solution

Local Access (99.96-99.93% = 172-346 min) Switching (99.999% = 5.3 min)

Unavailability in Minutes
MTTR

60 6 20 20 45 5.3
24 24 4 4 4 4

172-346 minutes 5.3

NOTE: Unavailability is calculated from MTBF historical data or FIT Rate/Part Count
HFC Network Reliability for Today’s & Tomorrow’s Services

Overview

• Network Requirements of HFC Services
• Network Reliability and Availability History
• Causes of Network Outages and Weapons Against
• Network Monitoring
• Summary
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions

- Signal Quality
- Commercial power problems
- Equipment failure
- Interfering signals
- Network Capacity
- Customer misuse
Signal Quality Effects on Services

- Analog Video
- Digital Video
- Cable Modem
- Telephony
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions-Signal Quality/Analog Video

Expectation grows with Consumer Product Improvements

- 10 years ago, consumer products not capable of displaying full resolution of NTSC signal
 - BETA
 - VHS
- Today’s consumer equipment has greater resolution than broadcast NTSC
 - Super VHS
 - Hi-8
 - Laser Disc
 - DVD
- Future
 - HDTV
 - Next generation High Definition consumer products
- Trend to larger screen sizes also make video impairments more evident and customers less tolerant
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions-Signal Quality/Analog Video

- Customers’ expectations are continually increasing

<table>
<thead>
<tr>
<th>Year</th>
<th>TASO 1958</th>
<th>CBS, NASA 1983</th>
<th>Cable Labs 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N</td>
<td>Perceptible/Annoying</td>
<td>Perceptible/Slightly Annoying</td>
<td>Perceptible/Not Annoying</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>85</td>
<td>80</td>
</tr>
</tbody>
</table>

TASO—Television Allocations Study Organization
CRC-Canadian Research Council

CONCLUSION:
Subscribers have become more critical and are likely to become even more so as they see more images delivered with digital video.

Annoying levels will continue to approach imperceptible.
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions—Signal Quality

- Digital Video
 - Blocking and freeze frames
 - Loss of detail with heavy compression
 - Advances like HDTV will also increase expectations of Standard Digital Video

- Cable Modem
 - Availability of cable modem service is already important to MANY Customers
 - Home users will demand higher availability as “reliable” service providers offer alternative technologies at similar prices (xDSL, Satellite)

- Telephony
 - Hard for many people to leave existing reliable phone service
 - Decide to market as Lifeline or Secondary Services
 - However, proliferation of cell phones and Internet telephony (not VoIP!) have gotten people used to lesser quality phone service
HFC Network Reliability for Today’s & Tomorrow’s Services

Weapons against Service Interruptions - Signal Quality

- Dealing with Signal Quality
 - Proactive plant maintenance
 - RF Monitoring Test Equipment
 - Make use of intelligent agents deployed in network (STB, CM’s)
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions - Commercial Power

- Commercial power problems
 - Commercial Power Outage
 - Lightning Strikes
 - Equipment Failure
Dealing with Commercial power problems

- Power Back-up (Battery, generators, mobile generators)
- Added maintenance issues (oil, batteries)
- Network Powering, NIUs, MTA’s, EMTA’s & CPE
Line powering a BIG issue. BELLCORE guidelines look for 53 minute total non-availability. Commercial power with 12 hour batteries will not achieve this.

Additionally, if NIUs or CM, MTA’s not line powered then they service will go down.
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions - Equipment Failures

<table>
<thead>
<tr>
<th>Component</th>
<th>Failure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supplies</td>
<td>3%</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>.15% to 10%</td>
</tr>
<tr>
<td>Optical Transmitters</td>
<td>2.3%</td>
</tr>
<tr>
<td>Optical Receivers</td>
<td>.7% to 1.7%</td>
</tr>
<tr>
<td>Passive Devices</td>
<td>.07% to 1%</td>
</tr>
<tr>
<td>Coaxial Connectors</td>
<td>.01% to .25%</td>
</tr>
<tr>
<td>Fiber-optic Cable</td>
<td>.3% to 3%</td>
</tr>
<tr>
<td>Coaxial Cable</td>
<td>.23% to 3%</td>
</tr>
<tr>
<td>Customer Premise Equipment</td>
<td>7%?</td>
</tr>
<tr>
<td>Network Interface Devices</td>
<td>5.4%</td>
</tr>
<tr>
<td>Headend Equipment</td>
<td>5% to 30%</td>
</tr>
</tbody>
</table>

Regional differences such as lightning strikes and underground construction laws have major effects on outages.

from a variety of sources: Network Reliability Council, Werner & Gates, Merk and Stude, Hamilton-Piercy and Baldon, Bellcore
HFC Network Reliability for Today’s & Tomorrow’s Services

Weapons against Service Interruptions - Equipment Failures

- Dealing with Equipment failure
 - Start with high quality, reliable equipment
 - Network Architecture minimizing subs affected by single point of failure
 - Monitoring equipment to isolate failure, decreasing repair time
 - Redundant Hardware
 - Self healing rings
 - Spares
Causes of Service Interruptions - Interfering Signals

- Interfering Signal Problems
 - Ingress
 - CB Radios
 - Automobile Ignition
 - Consumer Electronics
 - Internally generated signals
 - CSO
 - CTB
 - XMOD
 - CIN
 - Common Path Distortion
 - Improperly balanced plant
 - Equipment failures (active and passive)
HFC Network Reliability for Today’s & Tomorrow’s Services

Weapons against Service Interruptions - Interfering Signals

◆ Dealing with Interfering signals
 ▶ Cut-off switches (Located in taps, nodes or amplifiers)
 ▶ Ingress monitoring test equipment
 ▶ Use intelligent agents (STB’s, CM’s) distributed in network
 ▶ Frequency Agility
 ▶ Highly trained techs
 ▶ Develop ingress mitigation techniques
 ▶ NID rather than CPE
 ▶ Pre-test of equipment and signal loading to verify margins in system engineering calculations and manufacturers specs
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions - Network Capacity

- Network Capacity Problems
 - Internet Hogs
 - Slow POP to Internet
 - No dial tone, Voice call blocking
 - Back haul congestion
HFC Network Reliability for Today’s & Tomorrow’s Services

Weapons against Service Interruptions—Network Capacity

◆ Dealing with Network Capacity

► Traffic engineering for HFC access portion on network
► Traffic engineering for backhaul network
► Traffic Monitoring
► Headend lashups to facilitate redistributing service
► Service contracts—Charge “Internet hogs”
► Network/Traffic Audits
► “Future Proof” Network minimize rebuilds
HFC Network Reliability for Today’s & Tomorrow’s Services

Causes of Service Interruptions - Customer Misuse

- Customer misuse problems
 - Power off to CM or STB
 - PC’s not configured properly
 - Not connected properly
HFC Network Reliability for Today’s & Tomorrow’s Services

Weapons against Service Interruptions - Customer Misuse

- Dealing with Customer misuse
 - Improved customer training
 - Trained customer call center technical support
 - Literature
 - On-line self assistance
HFC Network Reliability for Today’s & Tomorrow’s Services

Overview

- Network Requirements of HFC Services
- Network Reliability and Availability History
- Causes of Network Outages and Weapons against
- Network Monitoring
- Summary
HFC Network Reliability for Today’s & Tomorrow’s Services

Network Monitoring

Today’s Architecture

Multiservice Architecture

Services being Integrated

H. D. Dowdy, Jr.

Network Operations
HFC Network Reliability for Today’s & Tomorrow’s Services
Network Monitoring - Monitor all Intelligent Agents

HFC Plant and End-user Terminals

Distribution Hub(s)
- Fiber Transport & Distribution
- High Speed Data CMTS
- Channel Insertion
- Telephony Termination

Headend
- Video Channel Equipment and Ad Insertion
- Optical Transport
- Optical Fault Manager
- Circuit Fault Manager
- Cable Fault Manager
- Circuit Switch / Trunks
- High Speed Data Routers, Servers, and CMTS
- Telephony over Internet (VoIP)

Facility, Powering, and Environment

Cedar Point Communications
HFC Network Reliability for Today’s & Tomorrow’s Services

Overview

• Network Requirements of HFC Services
• Network Reliability and Availability History
• Causes of Network Outages and Weapons against
• Network Monitoring
• Summary
HFC Network Reliability for Today’s & Tomorrow’s Services

Summary

- Decide on Services to be offered
- Design/Build to needs of highest availability service offered
- Decide on Business Plan - Do you need to be “highest quality service provider”
- Develop appropriate architecture
- Work with high quality equipment vendors
- Perform availability/reliability/failure rate studies
- Integration/Reliability Testing before deployment
- Select high quality construction and Project Management firms
- Partner with experts in Network Monitoring
- Invest in Training!
- Lost revenues when service unavailable or significantly degraded