

Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 104 2023

Automation System to Compression System
Communications Applications Program Interface (API)

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 2

NOTICE
The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices
(hereafter called “documents”) are intended to serve the public interest by providing specifications, test
methods and procedures that promote uniformity of product, interoperability, interchangeability, best
practices, and the long term reliability of broadband communications facilities. These documents shall not
in any way preclude any member or non-member of SCTE from manufacturing or selling products not
conforming to such documents, nor shall the existence of such standards preclude their voluntary use by
those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such
adopting party assumes all risks associated with adoption of these documents and accepts full
responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require
the use of an invention covered by patent rights. By publication of this document, no position is taken
with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent
holder has filed a statement of willingness to grant a license under these rights on reasonable and
nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may
be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which
a license may be required or for conducting inquiries into the legal validity or scope of those patents that
are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this
document have been requested to provide information about those patents and any related licensing terms
and conditions. Any such declarations made before or after publication of this document are available on
the SCTE web site at https://scte.org.

All Rights Reserved

© 2023 Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 3

Document Tags

☒ Specification ☐ Checklist ☒ Facility

☐ Test or Measurement ☐ Metric ☐ Access Network

☐ Architecture or Framework ☒ Cloud ☐ Customer Premises

☒ Procedure, Process or Method

Document Release History
Release Date

SCTE 104 2004 12/24/2004
SCTE 104 2011 8/22/2011
SCTE 104 2012 8/22/2012
SCTE 104 2013 12/6/2013
SCTE 104 2014 8/7/2014
SCTE 104 2015 11/30/2015
SCTE 104 2017 7/10/2017
SCTE 104 2018 9/24/2018
SCTE 104 2019 6/3/2019
SCTE 104 2019a 12/2/2019
SCTE 104 2022 2022
SCTE 104 2022r1 3/7/2023
SCTE 104 2023 11/30/2023

Note: Standards that are released multiple times in the same year use: a, b, c, etc. to indicate normative
balloted updates and/or r1, r2, r3, etc. to indicate editorial changes to a released document after the year.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 4

 Table of Contents
Title Page Number
NOTICE ... 2
Document Tags ... 3

Document Release History ... 3
1. Introduction .. 10

1.1. Executive Summary ... 10
1.2. Scope ... 10
1.3. Benefits .. 10

2. Normative References .. 10
2.1. SCTE References .. 10
2.2. Standards from Other Organizations ... 10
2.3. Published Materials .. 11

3. Informative References ... 11
3.1. SCTE References .. 11
3.2. Standards from Other Organizations ... 11
3.3. Published Materials .. 13

4. Compliance Notation ... 13
5. Abbreviations and Definitions .. 13

5.1. Abbreviations.. 13
5.2. Definitions ... 16

6. Overview ... 19
7. Data Communications ... 22

7.1. Concerning Data Communications (Informative) ... 22
7.2. Data Communications Requirements for this API (Normative) .. 22
7.3. Conveyance Quality-of-Service Considerations (Informative) ... 23
7.4. Uni-directional System Considerations (Informative) ... 23
7.5. Proxy Devices (Normative) .. 23

8. Message Formats.. 24
8.1. Terminology (Informative) .. 24
8.2. Message Structures (Normative) ... 24

8.2.1. Addressing of Particular Items within a System ... 25
8.2.2. Single Operation Message ... 26
8.2.3. Multiple Operation Message .. 27

8.3. Operation Types (Normative) .. 31
8.3.1. Meaning of the Usage Field in Table 8-3 and Table 8-4 36

8.4. Conventions and Requirements ... 36
9. Automation System to Injector Communication .. 37

9.1. Initialization ... 37
9.1.1. init_request AS ==> IJ.. 37
9.1.2. init_response IJ ==> AS .. 38

9.2. Alive (“Heartbeat”) Communications .. 38
9.2.1. alive_request AS ==> IJ .. 39
9.2.2. alive_response IJ ==> AS .. 39

9.3. Splice Requests ... 40
9.3.1. splice request AS ==> IJ .. 40
9.3.2. Mapping of splice_request fields into SCTE 35 [SCTE35] splice_insert()

fields (Informative).. 43
9.4. Encryption Support (Normative) ... 45

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 5

9.4.1. Encryption Control Word Support .. 45
9.4.2. The encrypted DPI request .. 45
9.4.3. update_ControlWord request AS ==> IJ .. 46
9.4.4. delete_ControlWord request AS ==> IJ ... 47

9.5. Component Mode Support ... 48
9.5.1. component mode DPI request ... 48

9.6. Response Messages .. 49
9.6.1. general_response message IJ ==> AS .. 49
9.6.2. inject_response message IJ ==> AS ... 49
9.6.3. inject_complete response IJ ==> AS .. 50

9.7. SCTE 35 splice_schedule() Support Requests .. 52
9.7.1. start schedule download request AS ==> IJ .. 52
9.7.2. schedule definition request AS ==> IJ ... 53
9.7.3. The schedule component mode request AS ==> IJ .. 55
9.7.4. transmit_schedule request ... 56

9.8. Miscellaneous Requests .. 56
9.8.1. time signal request AS ==> IJ .. 56
9.8.2. splice null request .. 57
9.8.3. inject section data request AS ==> IJ .. 57
9.8.4. insert_avail_descriptor request AS ==> IJ ... 58
9.8.5. insert_descriptor request AS ==> IJ .. 59
9.8.6. insert_DTMF_descriptor request AS ==> IJ .. 60
9.8.7. insert_segmentation_descriptor request AS ==> IJ ... 61
9.8.8. proprietary_command request AS ==> IJ ... 64
9.8.9. insert_tier_data request AS ==> IJ .. 65
9.8.10. insert_time_descriptor request AS ==> IJ.. 65
9.8.11. insert_audio_descriptor request AS ==> IJ.. 66
9.8.12. insert_audio_provisioning request AS ==> IJ .. 67
9.8.13. insert_alternate_break_duration_request AS ==> IJ ... 69

10. PAMS to the Automation System Communications .. 69
10.1. System Design Philosophy .. 70

10.1.1. TCP/IP Data Communications ... 70
10.1.2. Bi-directional Serial Data Communications ... 71

10.2. PAMS Functionality .. 71
10.2.1. System Initialization and Service Discovery .. 71
10.2.2. Data Communications Channel Maintenance ... 71
10.2.3. System Restart from Maintenance or Redundancy Change 71
10.2.4. Injector Provisioning and de-provisioning in real-time ... 71
10.2.5. Service Addition and Subtraction in real-time .. 71
10.2.6. Failure Reporting.. 71
10.2.7. Appropriate Reaction to Failures ... 72
10.2.8. System Initialization ... 72

10.3. Service Continuity .. 72
10.4. System Initialization Messages .. 72

10.4.1. config_request message AS ==> PAMS .. 72
10.4.2. config_response message PAMS ==> AS... 74

10.5. Injector Service Notification .. 74
10.5.1. provisioning_request message PAMS ==> AS .. 75
10.5.2. provisioning_response message AS ==> PAMS ... 77

10.6. Failure Notification Messages (Device or Communications) ... 77
10.6.1. fault_request message AS ==> PAMS .. 78
10.6.2. fault_response message PAMS ==> AS ... 79

10.7. PAMS to AS permanent “link alive” messages .. 79
10.7.1. AS_alive_request PAMS ==> AS ... 79
10.7.2. AS_alive_response AS ==> PAMS .. 79

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 6

10.8. PAMS to AS Common Elements.. 80
10.8.1. injector_component_list() Definition ... 80

11. PAMS to Injector Communications (Informative) ... 81
11.1. The PAMS Implementation .. 81
11.2. Injector Provisioning ... 82
11.3. PAMS Structure.. 82
11.4. Support of multiple DPI PIDs ... 82

12. Common Elements .. 82
12.1. Values of splice_event_id used in this Interface .. 83
12.2. Values of unique_program_id used in this Interface .. 83
12.3. Minimum Pre-roll Time Supported by this Interface ... 83
12.4. time() Definition .. 83

12.4.1. Semantic definition of fields in time() ... 84
12.5. timestamp() Definition .. 84

12.5.1. Semantic definition of fields in timestamp() ... 85
12.5.2. Use cases and discussion (Informative) ... 85

13. System Architecture and Provisioning (Informative) ... 86
13.1. One Way Protocol – Automation System to Injector .. 86

13.1.1. System Architecture Summary .. 86
13.1.2. Automation System Provisioning Requirements .. 88
13.1.3. Automation System  Injector Messages ... 90

13.2. Two Way Protocol – Automation System to Injector Only ... 95
13.2.1. System Architecture Summary .. 95
13.2.2. Automation System Provisioning Requirements .. 97
13.2.3. Service Definition and DPI_PID_index .. 98
13.2.4. Multiple Injector Instance ... 99
13.2.5. Automation Index (AS_index field)... 99
13.2.6. Time ... 100
13.2.7. Encryption in the Automation System .. 100
13.2.8. DTMF Descriptors .. 101
13.2.9. Automation System  Injector Messages ... 101
13.2.10. Flow Diagrams ... 104

13.3. Two Way Protocol – Automation System to Injector with PAMS 111
13.3.1. System Architecture Summary .. 111
13.3.2. Automation System Provisioning Requirements .. 113
13.3.3. PAMS Supplied Information ... 115
13.3.4. Automation System  Injector Messages ... 115
13.3.5. Automation System  PAMS Messages .. 116
13.3.6. Flow Diagrams AS  Injector .. 116
13.3.7. Flow Diagrams AS  PAMS ... 116

14. Result Codes (Normative) ... 122

Appendix A TCP/IP Conveyance ... 125

Appendix B TIA-232 or TIA-422 Conveyance ... 126
B.1 The Basic Link Layer Syntax ... 126

B.1.1 Semantics of fields in serial_linklayer() .. 126
B.1.2 Detailed Discussion of Message Syntax and Semantics ... 127

B.2 The Escape Sequence .. 127

Appendix C DIGITAL Video System Conveyance (Informative).. 128

Appendix D Analog Video System Conveyance .. 129

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 7

List of Figures
Title Page Number
FIGURE 6-1: SCTE 35 OVERALL SYSTEM BLOCK DIAGRAM WITH BI-DIRECTIONAL DATA

COMMUNICATIONS 20

FIGURE 6-2: SCTE 35 OVERALL SYSTEM BLOCK DIAGRAM WITH UNI-DIRECTIONAL DATA
COMMUNICATIONS 21

FIGURE 9-1: MULTIPLE_OPERATION_MESSAGE() TO SCTE 35 SECTION FIELD MAPPING
(INFORMATIVE) 44

FIGURE 13-1: ONE-WAY PROTOCOL EMBEDDED IN VIDEO WITH INTEGRATED INJECTOR 87

FIGURE 13-2: ONE-WAY PROTOCOL WITH MULTIPLE AS TO EXTERNAL INJECTOR 88

FIGURE 13-3: ONE-WAY FLOW DIAGRAM WITH DEFERRED PROCESSING 94

FIGURE 13-4: ONE-WAY FLOW DIAGRAM FOR EARLY RETURN 95

FIGURE 13-5: TWO-WAY BLOCK DIAGRAM WITH INTERNAL INJECTOR 96
FIGURE 13-6: TWO-WAY BLOCK DIAGRAM WITH EXTERNAL INJECTOR 97

FIGURE 13-7: TWO-WAY FLOW DIAGRAM FOR INITIALIZATION 105

FIGURE 13-8: TWO-WAY FLOW DIAGRAM WITH DEFERRED PROCESSING 106

FIGURE 13-9: TWO-WAY FLOW DIAGRAM WITH IMMEDIATE PROCESSING 107

FIGURE 13-10: TWO-WAY FLOW DIAGRAM FOR EARLY RETURN 108
FIGURE 13-11: TWO-WAY CANCELLATION BEFORE BEING PROCESSED 109

FIGURE 13-12: TWO-WAY CANCELLATION AFTER BEING PROCESSED 110

FIGURE 13-13: TWO-WAY FLOW DIAGRAM CANCEL AFTER SPLICE POINT 111

FIGURE 13-14: TWO-WAY BLOCK DIAGRAM WITH INTERNAL INJECTOR 112

FIGURE 13-15: TWO-WAY BLOCK DIAGRAM WITH EXTERNAL INJECTOR 113

FIGURE 13-16: AS/PAMS FLOW DIAGRAM FOR INITIALIZATION 117
FIGURE 13-17: PAMS TWO-WAY INITIALIZATION OF A PERMANENT CONNECTION 118

FIGURE 13-18: PAMS DETECTS AN INJECTOR FAILURE 119

FIGURE 13-19: AS DETECTS AN INJECTOR FAILURE 120

FIGURE 13-20: INJECTOR SOCKET FAILED AND RECOVERED 121

List of Tables

Title Page Number
TABLE 8-1: SINGLE OPERATION MESSAGE 27

TABLE 8-2: MULTIPLE OPERATION MESSAGE 29
TABLE 8-3: OPID ASSIGNED VALUES AND MEANINGS FOR SINGLE_OPERATION_MESSAGES 32

TABLE 8-4: OPID ASSIGNED VALUES AND MEANINGS FOR MULTIPLE_OPERATION_MESSAGES
 33

TABLE 9-1: INIT_REQUEST_DATA 37

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 8

TABLE 9-2: INIT_RESPONSE_DATA 38

TABLE 9-3: ALIVE_REQUEST_DATA 39

TABLE 9-4: ALIVE_RESPONSE_DATA 39

TABLE 9-5: SPLICE_REQUEST_DATA 40
TABLE 9-6: SPLICE_INSERT_TYPE ASSIGNED VALUES 41

TABLE 9-7: SPLICE_INSERT_TYPE CORRESPONDING SPLICE_INSERT() FIELD SETTINGS
(INFORMATIVE) 43

TABLE 9-8: ENCRYPTED_DPI_REQUEST_DATA 46

TABLE 9-9: UPDATE_CONTROLWORD_DATA 46

TABLE 9-10: DELETE_CONTROLWORD_DATA 47
TABLE 9-11: COMPONENT_MODE_DPI_REQUEST_DATA 48

TABLE 9-12: GENERAL_RESPONSE_DATA 49

TABLE 9-13: GENERAL RESPONSES 49

TABLE 9-14: INJECT_RESPONSE DATA 49

TABLE 9-15: INJECT_RESPONSES 50

TABLE 9-16: INJECT_COMPLETE RESPONSE DATA 51
TABLE 9-17: INJECT_COMPLETE_RESPONSES 51

TABLE 9-18: START_SCHEDULE_DOWNLOAD_REQUEST_DATA 53

TABLE 9-19: SCHEDULE_DEFINITION_DATA 54

TABLE 9-20: SPLICE_SCHEDULE COMMAND TYPE ASSIGNED VALUES 54

TABLE 9-21: SCHEDULE_COMPONENT_REQUEST_MODE 55
TABLE 9-22: TRANSMIT_SCHEDULE_REQUEST_DATA 56

TABLE 9-23: TIME_SIGNAL_REQUEST_DATA 56

TABLE 9-24: SPLICE_NULL_REQUEST_DATA 57

TABLE 9-25: INJECT_SECTION_DATA_REQUEST 58

TABLE 9-26: INSERT_AVAIL_DESCRIPTOR_REQUEST_DATA 59

TABLE 9-27: INSERT_DESCRIPTOR_REQUEST_DATA 60
TABLE 9-28: INSERT_DTMF_DESCRIPTOR_REQUEST_DATA 61

TABLE 9-29: INSERT_SEGMENTATION_DESCRIPTOR_REQUEST_DATA 62

TABLE 9-30: PROPRIETARY_COMMAND_REQUEST_DATA 64

TABLE 9-31: INSERT_TIER_DATA 65

TABLE 9-32: INSERT_TIME_DESCRIPTOR 66

TABLE 9-33: INSERT_AUDIO_DESCRIPTOR 67
TABLE 9-34: INSERT_AUDIO_PROVISIONING 68

TABLE 9-35: VALUES FOR CODEC_INDEX 68

TABLE 9-36: INSERT_ALTERNATE_BREAK_DURATION 69

TABLE 10-1: CONFIG_REQUEST_DATA 73

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 9

TABLE 10-2: CONFIG_RESPONSE_DATA 74

TABLE 10-3: PROVISIONING_REQUEST_DATA 75

TABLE 10-4: PROVISIONING_RESPONSE_DATA 77

TABLE 10-5: FAULT_REQUEST_DATA 78
TABLE 10-6: FAULT_RESPONSE_DATA 79

TABLE 10-7: AS_ALIVE_REQUEST_DATA 79

TABLE 10-8: AS_ALIVE_RESPONSE_DATA 79

TABLE 10-9: INJECTOR_COMPONENT_LIST() 81

TABLE 12-1: TIME() 83

TABLE 12-2: TIMESTAMP() 84
TABLE 13-1: SUPPORTED PROTOCOL MESSAGES 91

TABLE 13-2: UNSUPPORTED PROTOCOL MESSAGES 92

TABLE 13-3: OPTIONAL PROTOCOL MESSAGES 92

TABLE 13-4: UNUSED PAMS PROTOCOL MESSAGES 93

TABLE 13-5: SUPPORTED PROTOCOL MESSAGES 101

TABLE 13-6: SUPPORTED PROTOCOL MESSAGES (CON’T) 102
TABLE 13-7: OPTIONAL PROTOCOL MESSAGES 103

TABLE 13-8: UNUSED PAMS PROTOCOL MESSAGES 104

TABLE 13-9: PAMS PROTOCOL MESSAGES 116

TABLE 14-1: RESULT CODES 122

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 10

1. Introduction

1.1. Executive Summary

This standard is part of a suite documenting digital control and delivery of advertising, Program and
distribution control (e.g., blackouts) of content between content providers and content distributors. The
reader is referred to the block diagrams in Section 6 (below), namely block diagrams (Figure 6-1 and
Figure 6-2) as well as the discussion of system architectures in SCTE 67 [SCTE67].

1.2. Scope

This standard defines the Communications API between an Automation System and the associated
Compression System that will insert SCTE 35 [SCTE35] private sections into the outgoing Transport
Stream. This standard serves as a companion to both SCTE 35 [SCTE35] and SCTE 30 [SCTE30].

1.3. Benefits

See the discussion in Section 6, below.

2. Normative References
The following documents contain provisions, which, through reference in this text, constitute provisions
of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents
are subject to revision; and while parties to any agreement based on this document are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below, they are
reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References
[SCTE35] SCTE 35 202x, Digital Program Insertion Cueing Message for Cable, Society of

Cable Telecommunications Engineers (SCTE), 202x.

[SCTE30] ANSI/SCTE 30 2021, Digital Program Insertion Splicing API, Society of Cable

Telecommunications Engineers (SCTE), 2021.

[SCTE 242-1] SCTE 242-1, 2022, Next Generation Audio Coding Constraints for Cable

Systems: Part 1 – Introduction and Common Constraints, Society of Cable
Telecommunications Engineers (SCTE), 2022.

2.2. Standards from Other Organizations
[ISO_13818_1] ISO/IEC 13818-1; Information Technology ---- Generic Coding of Moving

Pictures and Associated Audio Information: Systems, International
Organization for Standardization/International Electrotechnical Commission,
2013. (Also standardized as ITU-T Recommendation H.222.0).

[BT653_3] ITU-R BT.653-3, Teletext Systems, International Telecommunications Union

(ITU), Radiocommunication Assembly, 1998.

[CTA516] CTA-516, North American Basic Teletext Specification (NABTS), Consumer

Technology Association, 2013 (CTA). (Defined in BT.653-3 [BT653_3] as

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 11

“System C”). (For the purposes of this document, only Chapters 1, 2, 3, and 4
are normative. Chapters 5 through 8 are informative).

[ETS300_706] ETSI ETS 300 706, Enhanced Teletext specification, European

Telecommunications Standards Institute (ETSI), 2003. (Defined in BT.653-3
as “System B”).

[ETS300_708] ETSI ETS 300 708, Data transmission within Teletext, European [BT653_3]

Telecommunications Standards Institute (ETSI), 2003.

[SMPTE_ST334_1] SMPTE ST 334-1, Vertical Ancillary Data Mapping of Caption Data and Other

Related Data, Society of Motion Picture and Television Engineers, 2015.

[SMPTE_ST291_1] SMPTE ST 291-1, Ancillary Data Packet and Space Formatting, Society of

Motion Picture and Television Engineers, 2011.

[SMPTE_ST2010] SMPTE ST 2010, Vertical Ancillary Data Mapping of ANSI/SCTE 104

Messages, Society of Motion Picture and Television Engineers, 2008.

[IEEE1588] IEEE 1588-2008, IEEE, 24 July 2008, Precision clock synchronization

protocol for networked measurement and control systems

[SMPTE_RA] SMPTE Registration Authority, LLC – http://www.smpte-ra.org/

2.3. Published Materials
No normative published material references are applicable.

3. Informative References
The following documents might provide valuable information to the reader but are not required when
complying with this document.

3.1. SCTE References
[SCTE67] SCTE 67, Digital Program Insertion Cueing Message for Cable --

Interpretation for SCTE 35, Society of Cable Telecommunications Engineers
(SCTE).

[SCTE172] ANSI/SCTE 172, Constraints On AVC and HEVC Structured Video Coding
for Digital Program Insertion, Society of Cable Telecommunications Engineers
(SCTE).

3.2. Standards from Other Organizations
[SMPTE_ST12_1] SMPTE ST 12-1, Time and Control Code, Society of Motion Picture and

Television Engineers.

[SMPTE_EG40] SMPTE EG 40, Conversion of Time Values Between SMPTE 12-1 Time

Code, MPEG-2 PCR Time Base and Absolute Time, Society of Motion Picture
and Television Engineers.

http://www.smpte-ra.org/

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 12

[SMPTE_ST259] SMPTE ST 259, SDTV Digital Signal/Data ---- Serial Digital Interface,

Society of Motion Picture and Television Engineers.

[SMPTE_ST312] SMPTE ST 312, Splice Points for MPEG-2 Transport Streams, Society of

Motion Picture and Television Engineers.

[SMPTE_ST292_1] SMPTE ST 292-1, 1.5 Gb/s Signal/Data Serial Interface, Society of Motion

Picture and Television Engineers.

[SMPTE_ST298] SMPTE ST 298, Universal Labels for Unique Identification of Digital Data,

Society of Motion Picture and Television Engineers.

[SMPTE_ST330] SMPTE ST 330, Unique Material Identifier (UMID), Society of Motion Picture

and Television Engineers.

[SMPTE_ RP168] SMPTE RP 168, Definition of Vertical Interval Switching Point for

Synchronous Video Switching, Society of Motion Picture and Television
Engineers.

[ISO_11172_3] ISO/IEC 11172-3, Information Technology ---- Coding of Moving Pictures

and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s, Part
3: Audio, International Organization for Standardization/International
Electrotechnical Commission.

[ATSC_A52] ATSC Doc. A/52, Digital Audio Compression Standard (AC-3, E-AC-3),

Advanced Television Systems Committee.

[ATSC_A57B] ATSC A/57B, Content Identification and Labeling for ATSC transport,

Advanced Television Systems Committee.

[TR_101_233] ETSI TR 101 233, Code of practice for allocation of services in the Vertical

Blanking Interval (VBI), European Telecommunications Standards Institute
(ETSI).

[RFC793] IETF RFC 793, Transmission Control Protocol, The Internet Society.

[RFC1305] IETF RFC 1305, Network Time Protocol (Version 3), Specification,

Implementation and Analysis, The Internet Society.

[RFC1661] IETF RFC 1661, The Point-to-Point Protocol (PPP), The Internet Society.

[RFC2728] IETF RFC 2728, The Transmission of IP Over the Vertical Blanking Interval

of a Television Signal, The Internet Society.

[X200] ITU-T X.200, Open Systems Interconnection -- Basic Reference Model,

International Telecommunications Union (ITU), Telecommunication
Standardization Sector.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 13

[TIA_232] TIA-232, Interface Between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange,
Telecommunications Industry Association (TIA).

[TIA_250] TIA-250, Electrical Performance for Television Transmission Systems,

Telecommunications Industry Association (TIA).

[TIA_422] TIA-422, Electrical Characteristics of Balanced Voltage Digital Interface

Circuits, Telecommunications Industry Association (TIA).

3.3. Published Materials
No informative published material references are applicable.

4. Compliance Notation
shall This word or the adjective “required” means that the item is an

absolute requirement of this document.
shall not This phrase means that the item is an absolute prohibition of this

document.
forbidden This word means the value specified shall never be used.
should This word or the adjective “recommended” means that there may exist

valid reasons in particular circumstances to ignore this item, but the
full implications should be understood and the case carefully weighed
before choosing a different course.

should not This phrase means that there may exist valid reasons in particular
circumstances when the listed behavior is acceptable or even useful,
but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

may This word or the adjective “optional” indicate a course of action
permissible within the limits of the document.

deprecated Use is permissible for legacy purposes only. Deprecated features may
be removed from future versions of this document. Implementations
should avoid use of deprecated features.

5. Abbreviations and Definitions
Throughout this document, the terms used have specific meanings. Because some of the terms that are
defined in ISO/IEC 13818-1 [ISO_13818_1] have very specific technical meanings, the reader is referred
to the original source for their definition. For terms used in this document, brief definitions are given
below.

In addition to the precisely defined terms and acronyms, there are many widely used, but less precisely
defined terms related to Digital Program Insertion. A table of these appears below.

5.1. Abbreviations

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 14

TERM DESCRIPTION
API Application Program Interface. A mechanism whereby one software

system asks another software system to perform a service.
AS automation system
ATSC Advanced Television Systems Committee
BER bit error ratio
bslbf Bit string, left bit first, where “left” is the order in which bit strings are

written in the Standard. Bit strings are written as a string of 1s and 0s
within single quote marks, e.g. ‘1000 0001’. Blanks within a bit string
are for ease of reading and have no significance. (See ISO/IEC 13818-
1 [ISO_13818_1]).

CRC Cyclic Redundancy Check. A method to verify the integrity of a
transmitted message.

CW control word
dB decibel
DCS Digital Compression System
DES Data Encryption Standard. A method for encrypting data with

symmetric keys.
DPI Digital Program Insertion
GPI General Purpose Interface, commonly used to source or sink contact

closures in video facilities.
HANC Horizontal ANCillary data space in digital video streams
HD-SDI High Definition Serial Digital Interface (See SMPTE ST 292_1)
IJ injector
ISO International Organization for Standardization
ITU International Telecommunications Union
MPTS A Multi Program Transport Stream
MSB Most Significant Bit
NABTS North American Basic Teletext Specification (See CTA 516

[[CTA516])
OSI Open Systems Interconnection
PAMS Provisioning and Alarm Management System (See Section 6)
PID Packet identifier: a unique 13-bit value used to identify elementary

streams of a program in a single or multi-program Transport Stream.
(See ISO/IEC 13818-1 [ISO_13818_1]).

PMT Program Map Table (See ISO/IEC 13818-1 [ISO_13818_1]).
PPP Point-to-Point Protocol. Defined in RFC 1661.
PTP Precision Time Protocol (see IEEE 1588 [)IEEE1588]
PTS Presentation Time Stamp (See ISO/IEC 13818-1 [ISO_13818_1]).
SDI Serial Digital Interface (See SMPTE ST 259 [SMPTE_ST259]
SNR signal to noise ratio
SPTS A Single Program Transport Stream
TAI International Atomic Time (TAI, from the French name Temps

Atomique International) (See Section 9.8.10)
TS transport stream
UTC “Universel Temps Coordonné” in French. Coordinated Universal

Time in English

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 15

TERM DESCRIPTION
VANC Vertical ANCillary data space in digital video streams (See SMPTE

ST 291 0).
VITC Vertical Interval Time Code
WST World System Teletext (See ITU-R BT.653-3 [BT653_3])

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 16

5.2. Definitions
Definitions of terms used in this document are provided in this section. Defined terms that have specific
meanings are capitalized. When the capitalized term is used in this document, the term has the specific
meaning as defined in this section.

TERM DESCRIPTION
Analog Cue Tone In an analog system, a signal which is usually either a sequence of

DTMF tones or a contact closure that denotes to ad insertion
equipment that an advertisement avail is about to begin or end.

API Connection A communications connection between an Automation System and an
Injector for transferring API messages.

Automation System A control system for a program origination facility which controls
operation of the production facilities and devices.

Avail Time space provided to cable operators by cable programming
services during a program for use by the CATV operator; the time is
usually sold to local advertisers or used for channel self promotion.

backoff A mechanism, commonly used in data communications, to randomize
the interval between retries.

Basic A category of Request or Response operation supported by this API.
See Section 8.3.

Break Avail or an actual insertion in progress.
Command A single directive from the Automation System to the Compression

System. A command is always carried within a multiple_operation
message. This term is also used to specify specific SCTE 35
[SCTE35] commands.

Component Splice Mode A mode of the splice_info_section whereby the program_splice_flag is
set to ‘0’ and indicates that each PID/component that is intended to be
spliced will be listed separately by the syntax that follows.
Components not listed in the splice_info_section are not to be spliced.

Control A category of Request operation supported by this API. See Section
8.3.

Control Word A multiple key value used by the encryption mechanisms specified in
SCTE 35 [SCTE35].

Cueing Message See splice_info_section. A term used in SCTE 35 [SCTE35]; a
“Cueing Message” is a Cueing Section in this document.

deferred processing mode Processing of a multiple_operation_message() when the value of
time_type within timestamp() is non-zero (See Section 12.5.1).

Digital Cue Tone Widely used term to refer to an SCTE 35 [SCTE35]
splice_info_section().

DPI Cue Message See splice_info_section. A term used in SCTE 35 [SCTE35]; a “DPI
Cue Message” is a splice_info_section in this document.

DPI PID A single PID carrying SCTE 35 [SCTE35] splice_info_sections.
Event A splice event or a viewing event as defined below.
immediate mode Processing of a multiple_operation_message() when the value of

time_type within timestamp() is 0.
In Point A point in the stream, suitable for entry, that lies on an access unit

boundary.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 17

TERM DESCRIPTION
Injector A device or combination of devices within the DCS capable of

converting SCTE 104 message data into a SCTE 35 [SCTE35]
splice_info_section(), including a program-specific PCR splice time
value, if necessary, and multiplexing the resulting section data along
with the other program components into the eventual MPEG SPTS or
MPTS.

Injector Instance A specific instance of an Injector, constrained to place a single DPI
PID into a single MPEG program in a single Transport Stream.

Long Form Insertion Refers to insertions of material with a duration generally greater than
10 minutes, i.e. program length material

Message In the context of this document a message is a single communication
between the Automation System and the Compression System or
between the Automation System and the PAMS. A message may
contain one or more operations.

Normal A category of Request operation supported by this API. See Section
8.3.

Out Point A point in the stream, suitable for exit, that lies on an access unit
boundary.

PID stream A stream of packets with the same PID within a transport stream.
port See “socket.” Refers to a bit-field defined in a TCP header. May also

refer to a specific physical connector mounted on a device.
Presentation Time The time that a presentation unit is presented in the system target

decoder.
Program A collection of video, audio, and data PID streams which share a

common program number within a SPTS or MPTS.
Registration Descriptor An MPEG-2 (ISO/IEC 13818-1 [ISO_13818_1]) construct to uniquely

and unambiguously identify formats of private data. As used in this
context, it is carried in the PMT of a program to indicate the program’s
compliance with SCTE 35 [SCTE35]. (See ISO/IEC 13818-1
[ISO_13818_1] Section 2.6.8).

Request A single directive, from either the Automation System, the Injector, or
the PAMS, to another portion of the overall system. “Request” and
“Command” are used interchangeably. A request is always carried
within a message. A request is normally answered by a response
message.

reserved The term “reserved”, when used in the clauses defining the coded bit
stream, indicates that the value may be used in the future for
extensions to the standard. Unless otherwise specified in this standard,
all reserved bits shall be set to ‘1’.

Response A reply message to a request directive from the other portion of the
system. Responses are made by the Automation System, the
Compression System, and the PAMS in reply to requests. A response
is always carried within a single_operation message.

Section A private_section structure as defined by ISO/IEC 13818-1
[ISO_13818_1] and (in this case) SCTE 35 [SCTE35]. As used here,
the term is usually “splice_info_section”. See SCTE 35 [SCTE35]
Section 6.2 and ISO/IEC 13818-1 [ISO_13818_1], Section 2.4.4.10.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 18

TERM DESCRIPTION
Short Form Insertion Refers to insertions of material with a duration generally less than 10

minutes, i.e. advertising or promotional material. As of this writing,
the primary use of DPI technology.

Simple Profile A defined subset of the Automation to Injector messages in this API
which supports all basic splicing functionality while excluding
schedules, encryption, and component mode. An implementer may
choose to support only the Simple Profile or features beyond it. The
implementer can then describe their implementation in common terms
(for example “Simple Profile plus encryption”).

socket A TCP/IP mechanism used for connection-oriented communications.
Sometimes also called “port” in an interchangeable manner.

Splice Event An opportunity to splice one or more PID streams.
Splice Immediate Mode A mode of the splice_info_section whereby the splicing device shall

choose the nearest opportunity in the stream, relative to the
splice_info_table, to splice. When not in this mode, the
splice_info_section gives a “PTS_time”, which is a presentation time,
for the intended splicing moment.

Splice Point A point in a PID stream that is either an Out Point or an In Point.
Splice_info_section Basic SCTE 35 [SCTE35] structure for carrying DPI commands in a

TS to downstream equipment. See SCTE 35 [SCTE35] Section 6.2.
Spot Term for the contents of an advertisement, sometimes also used to

refer to an avail.
Supplemental A category of request operation supported by this API. See Section

8.3.
uimsbf Unsigned integer, most significant bit first. (See ISO/IEC 13818-1

[ISO_13818_1]).
Viewing Event A television program or a span of compressed material within a

service; as opposed to a splice event, which is a point in time.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 19

6. Overview
The block diagrams below (Figure 6-1 and Figure 6-2) are based on Figure 6-1 from SCTE 30 [SCTE30].
They show a single Automation System, a single Injector and a single splicer. In reality, the Injector is
part of an overall Digital Compression System (DCS), which includes several other Injectors (for other
channels), multiplexers, and usually conditional access. Typically this system will include redundancy, to
prevent a single device failure from forcing the system offline. Splice_info_section injection may
actually be done by encoders, multiplexers, or other devices. As a result, the injecting device will be
referred to in the rest of this document simply as an “Injector.”

All of these components are under the watch of a master Provisioning and Alarm Management System, or
“PAMS”. The primary task of the PAMS is to monitor device health within the DCS, to notify human
operators of any failures, and to switch redundant units into service as directed by the operator. The
secondary task of the PAMS is to provide provisioning for the equipment contained within the DCS.
Provisioning is usually defined as setting service parameters for each device. The Automation System,
the Digital Compression System, and the PAMS are frequently located at the program origination facility,
sometimes referred to as the “uplink” facility.

Note that TCP/IP networks for use with this standard are intended as strictly private, closed networks for
the use of the Automation, Compression, and Splicing systems. As a result, latency is not expected to be
a major factor in system design. None of these should be connected to either the commercial Internet or
any other LAN or WAN without appropriate routing and firewall systems in place to ensure exclusion of
intrusive traffic, either planned (malicious) or unplanned (accidental).

Latency in a moderately trafficked TCP/IP network should be much less than 1 video frame time (33.37
ms for 30/1.001 Hz systems and 40 ms for 25 Hz systems). As a result, the use of time-stamping is not
mandatory, and thus is an optional portion of this API.

The following two end-to-end system block diagrams are intended as informative high-level overviews of
the components of systems compliant with this standard. The illustrate both bi-directional (TCP/IP or
serial) data communications, as well as uni-directional (video conveyed or serial) data communications.

Actual system architectures are discussed in Section 13.

In addition to TCP/IP, this API also supports data communications through other physical layers, such as
uni-directional or bi-directional serial (TIA-232-F) or uni-directional serial digital video (VANC).
SMPTE has standardized carriage in VANC in SMPTE ST 2010 [SMPTE_ST2010].

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 20

Figure 6-1: SCTE 35 Overall System Block Diagram
with Bi-directional Data Communications

TCP/IP
SOCKET

TCP/IP
SOCKET

Injector
PAMS

Automation
System

Baseband
Video/Audio MPEG-2 TS

Splicer

Server

Primary Multiplex

Insertion Multiplex

Output

Multiplex

Output
Channel

Primary
Channel

Insertion
Channel

SCTE 30
Network

Connection

Transmission
Path

Located at Cable Head-end

Network
Interface

or
Demodulator

Located at Origination Facility

TCP/IP
SOCKET

Located at Uplink (or
Origination Facility)

TCP/IP
SOCKET

Video/
Audio

Sources Automation
Control

Overall System Block Diagram (Informative)
(end-to-end)

Bi-directional Data Communications of API
Messages

DPI Trigger Messages
Carried by Bi-Directional

Data Comm.
(TCP/IP or Serial)

AS to PAMS
Provisioning and

Redundancy Messages
Carried by Bi-Directional

Data Comm.
(TCP/IP or Serial)

Network

Human
Operator

Human
Operator

Digital Compression System (DCS)

Provisioning
and Alarms

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 21

Figure 6-2: SCTE 35 Overall System Block Diagram
with Uni-directional Data Communications

TCP/IP
SOCKET

Injector

Automation
System

Baseband
Video/Audio

MPEG-2 TS

Splicer

Server

Primary Multiplex

Insertion Multiplex

Output
Multiplex

Output
Channel

Primary
Channel

Insertion
Channel

SCTE 30
Network

Connection

Transmission
Path

Located at Cable Head-end

Network
Interface

or
Demodulator

Located at Origination Facility

Located at Uplink

Video/
Audio

Sources Automation
Control

DPI Trigger Messages
Carried in VANC

Overall System Block Diagram (Informative)
(end-to-end)

Uni-directional Data Communications of API
Messages

Human
OperatorPAMS

Digital Compression System (DCS)

Human
Operator

Provisioning
and Alarms

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 22

7. Data Communications
The data communications system for this Standard can be described according to the Open Systems
Interconnection (OSI) Basic Reference Model specified in ITU-T X.200 [X200]. According to this
functional model, information and services may be delivered from device to device by arranging the
information into logical groupings or messages, delivering them to lower functional layers for
transmission and, after reception, reconstituting the information into the proper form for use by the
recipient.

7.1. Concerning Data Communications (Informative)

In what follows, the names of the layers are those adopted by the ISO and the ITU in ITU-T X.200, Open
Systems Interconnection (OSI) -- Basic Reference Model [X200].

Some of these names are also commonly used in broadcasting technology to express different concepts.
This particularly applies to the terms “network” and “link” and care must be taken to avoid confusion.
This is especially important to readers of this Standard, since concise usage of terminology may confuse
others who are less familiar with this Standard and the OSI Reference Model.

Readers unfamiliar with the OSI Reference Model are referred to the many tutorial web sites available
which explain these concepts in detail. The layers of the Reference Model are: Layer 1: Physical; Layer
2: Link; Layer 3: Network; Layer 4: Transport; Layer 5: Session; Layer 6: Presentation; and Layer 7:
Application.

7.2. Data Communications Requirements for this API (Normative)

This Standard defines the Application, Presentation, and Session Layers of the OSI Basic Reference
Model and relies upon other well-defined Standards to provide the lower-level Layers necessary to
function.

The data communication requirements for this Standard are based on those of SCTE 30 [SCTE30], which
expects a high quality-of-service, bi-directional, connection-oriented, end-to-end reliable communications
system using TCP. These expectations should be understood as the norm for this API. In this case, TCP
over IP will provide the bottom 4 Layers of the OSI Basic Reference Model.

In addition to the above normative data communications system requirements, Automation System to
Injector messages defined in this Standard may also be carried over a low noise, high quality-of-service,
bi-directional point-to-point communications systems consisting of encapsulation within serial digital
(SDI) video signal(s) in one or both directions (or a return path of suitable bandwidth capable of carrying
TCP segments per RFC 793 [RFC793]). Within SDI/HD-SDI video, the segments shall be carried in
VANC per SMPTE ST 2010 [SMPTE_ST2010].

A subset of the Automation System to Injector messages defined in this Standard may also be carried over
a low noise, high quality-of-service, uni-directional, point-to-point communications system using
encapsulation within a video signal. The physical conveyance shall be in VANC per SMPTE ST 2010
[SMPTE_ST2010] for serial digital component systems. In this case, those communications methods will
provide the bottom 4 Layers of the OSI Basic Reference Model. A full set of these messages may be
carried in VANC for a serial digital component system, however, a subset of them will not actually be
used (See Section 13.1).

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 23

It is also possible to construct a high quality-of-service, connection-oriented, bi-directional
communications system with one direction conveyed within the video signal and responses via a different
path. Such a system will take careful engineering and may have some additional risks. Such a system
may be able to gracefully degrade to a standard uni-directional, connection-oriented communications
system upon loss of the return path.

7.3. Conveyance Quality-of-Service Considerations (Informative)

The fundamental requirement for all modes of operation under this Standard is to provide high quality of
service to the API messages. For TCP/IP communications, this may seem obvious. For video
conveyance, the requirements are less obvious.

Serial digital component video must have a signal loss in a link of less than 30 dB (see SMPTE ST 259,
[SMPTE_ST259]), which translates into a maximum bit error ratio of 2 x 10–7 or a signal to noise ratio of
better than 17.1 dB. This is actually marginal performance, since it translates into an error per frame of
video (most viewers will judge it noisy). Realistic performance of a link should be a SNR of better than
20 dB (a BER of 8 x 10-14) which in viewer’s terms is one error a day.

In analog video terms, this level of performance requires TIA-250 [[TIA_250] “short haul” link
performance, with a minimum analog signal-to-noise ratio of 57 dB.

It is recognized that all “real world” communications systems may be subject to periodic degradation
from external sources (“rain fade”) that temporarily add considerable noise to the link. As a result, the
conveyance requirements outlined in this document will endeavor to add extra link margin to their
message designs.

7.4. Uni-directional System Considerations (Informative)

The requirements for uni-directional conveyance in the video signal are reasonably straight-forward. The
messages will be inserted via an insertion unit designed for inserting signals in video.

This Standard assumes correct delivery of each message. It must be understood that in a uni-directional,
video conveyed system, the Automation System may choose to operate in a “best effort is OK” manner,
and retransmit messages at least twice to ensure they have been completely received. Such a system
architecture may be desirable where the Digital Compression System is located some distance away from
the origination facilities (and hence, the Automation System) and no return path can be provided.

7.5. Proxy Devices (Normative)

A Proxy Device is a device which accepts messages per this API (as either TCP/IP or bi-directional serial
data communications) and places the appropriate messages of this API into the VANC area of the
associated serial digital video supplied to the Injector per SMPTE ST 2010 [SMPTE_ST2010]. Such a
device should engage in all of the Automation System to Injector Initialization “handshaking” specified in
Section 9.1 of this Standard. Such handshaking should not be passed to the Injector in VANC.

All other messages for the Injector should be passed in VANC, including the Alive (“heartbeat”)
messages specified in Section 9.2.

The Proxy Device should respond to all messages in lieu of actual responses from the Injector, using
(where appropriate) the proxy response code defined in Table 14-1.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 24

In a uni-directional carriage in VANC, the Proxy Device implementation may choose to support deferred
processing mode as outlined in Section 13.1.2.3 of this document. In such case, upon arrival of the
triggering event, the Proxy Device must remove the timestamp() structure as presented by the AS and
replace it with a single byte of 0 per Section 12.5.1, change the messageSize value to reflect that change,
and move the remainder of the bytes in the message forward to fill in as appropriate.

Note: The above requirements facilitate redundancy switching of Proxy Devices connected to the serial
digital video signals to Injectors. In the case of a Proxy Device failure, the new Proxy Device can re-
initialize with the Automation System, who is then aware of the failure, and able to resend any splice
commands it deems necessary.

8. Message Formats
Messages in this API all possess a general message structure that wraps the data for the specific requests
or responses being sent. This is done so that when the message is received, a common parsing routine can
store it, determine what the structure of the data is, and ensure that the request and/or response and
associated data is processed correctly. The end result of operations carried by this API are the placement
of SCTE 35 [SCTE35] Transport Stream (TS) private sections in the outgoing TS and transmission to
downstream splicing equipment. Within this document, these private sections will be referred to as
“splice_info_sections,” using the specific terminology of SCTE 35 [SCTE35].

Note: It is vital that implementers of the present document do so with close examination of the
corresponding section(s) of SCTE 35 [SCTE35]. This present document is structured to furnish the
necessary data to populate the resulting “splice_info_sections,” thus the semantics of the fields in the
“splice_info_section” are described in SCTE 35 [SCTE35] rather than in the present document.

8.1. Terminology (Informative)

The following terms will be used to indicate which level of the communications structure is being
discussed. A splice_info_section will indicate information in the resultant TS, on one or more PIDs
designated for this purpose, which communicate with downstream splicing devices. A “message” will
indicate information communicated between the Automation System and the Compression System via
this API. A given “operation” may be termed a “request” or a “response,” and will indicate an individual
specific action to be taken by either the Compression System or the Automation System. Such action
may result in a splice_info_section being generated.

There are 4 different categories of operations (requests and responses) provided by this API. These are
“Basic,” “Normal,” Control, and “Supplemental.” Basic operations supply the base communications
required to support the system. Normal operations supply the base DPI-related functions (splicing,
schedules, etc.) Supplemental operations are modifiers of Normal operations. Control operations manage
the Control Word database required for encryption support. Detail is provided in Section 8.3.1.

8.2. Message Structures (Normative)

Messages in this API are defined assuming they will be carried via TCP/IP and all delivered as part of a
single datagram.

Messages in this API carried via TIA-232 [[TIA_232] (or TIA-422 [[TIA_422]) shall utilize the Basic
Link Layer Syntax specified in Appendix B.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 25

Messages in this API carried in analog video shall also utilize the Basic Link Layer Syntax specified in
Appendix B. The implementation details are left to the system manufacturer. A discussion of the link
layer requirements is found in Appendix D.

Messages in this API carried via serial digital video do not require any additional “wrapping.” See
DIGITAL Video System Conveyance (Informative).

Where field lengths in the resulting SCTE 35 [SCTE35] splice_info_section are less than a byte, they are
padded on the MSB side to fill an even byte count for ease of debugging. The high-order byte in multiple
byte fields is transmitted first, the lower order byte last. The Injector can pull the required number of bits
from the message in forming the resulting actual splice_info_section TS packet. Each message begins
with an operation identifier field, followed by a length field.

8.2.1. Addressing of Particular Items within a System

Two variables are provided in each of the messages to ensure the ability to uniquely identify the
origination and the destination of messages. For a request for section insertion into an output TS,
AS_index identifies the Automation System generating the request and the specific program component
(DPI_PID_index) for which the resulting SCTE 35 [SCTE35] splice_info_section is intended. For
responses, this indicates the specific Automation System (AS_index) for which the response is intended.

The presence of these variables within this API is not intended to require support of the generation of
multiple DPI PIDs by a single Injector, since the support of multiple DPI PIDs is optional (See Section
11.4).

8.2.1.1. AS_index

AS_index uniquely identifies the source of the message (since it is possible to have several automation
systems active at once). The number ranges from 0 to 255 and shall be zero if this index is not required.
This variable takes the value returned by the “AS_index” field of the config_response message (See
Section 10.2.3). A redundant AS shall be assigned one single value of AS_index which applies to both
primary and backup. Either the primary or the backup is active at a given time, but not both. An Injector
Instance shall be connected to only one AS at a given time. If non-zero, AS_index shall be unique
within a single DCS.

In systems where the PAMS to AS communications are not utilized, it is the operational responsibility of
the Digital Compression System operator and the Automation System operator to each assign values such
that they are unique for each automation system communicating with a given Injector Instance through
this API and that only one automation system at a time will communicate with a given Injector Instance (a
single value of DPI_PID_index for that Injector). The Injector will insure that messages received via the
automation interface will only be used if authorized.

8.2.1.2. DPI_PID_index

DPI_PID_index specifies the index to the DPI PID which will carry the resulting splice_info_sections.
The number ranges from 0 to 65535. DPI_PID_index shall be zero if not required by the system
architecture.

The DPI_PID_index allows a given Automation System to direct messages to a specific DPI PID within
a specific MPEG program in a specific Transport Stream (TS) within the purview of the operational

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 26

system (DCS). This is especially important when there are multiple DPI PIDs referenced by the PMT of
a single MPEG program.

DPI_PID_index is required only if multiple Injector Instances (logical injectors) are present for any
physical connection or if one or more Injector Instances are generating more than one DPI PID.
Examples of situations requiring non-zero values of DPI_PID_index are multiple injectors listening to
the same physical connection, such as multiple injectors receiving the same video stream, or multiple
Injector Instances located behind a single IP address and port number.

Ordinarily, there shall be one value of DPI_PID_index for each DPI PID referenced by a program’s
PMT for each program within the purview of the DCS. The exception to the rule is the case where a
single DPI PID is shared by more than one program within a single TS. In this case, more than one PMT
may make reference to the same shared DPI PID via a common value for DPI_PID_index.

Multiple language versions of the same movie are an example where this facility may be utilized. The AS
is expected to know what these programs are and that the same value of DPI_PID_index may be assigned
for each. In this example, the different programs share a video PID but have different audio PIDs for
each language. The associated DPI PID for the video could be the same or different in this case.

The AS may validate for shared PIDs before sending a provisioning_response message (see Section
10.5.1.2).

In all other circumstances, each value of DPI_PID_index shall be unique.

This value is normally furnished to the AS by the PAMS during system initialization as part of the
Injector Service Notification (via the provisioning_request message, see Section 10.4). In systems
without PAMS to AS service, this value must be manually provided to the automation system.

It is recommended that even trivial system architectures utilize non-zero values of DPI_PID_index.

8.2.2. Single Operation Message

This variable length structure carries a single instance of an operation (request or response as it will be
normally termed) listed in Table 8-3 and whose structural details are provided in Section 9 and Section
9.8.11 of this document.

Operations listed in Table 8-3 shall use the single_operation_message() and shall not use
multiple_operation_message().

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 27

Table 8-1: single operation message

Syntax Bytes Type

single operation message() {

 opID 2 uimsbf

 messageSize 2 uimsbf

 result 2 uimsbf

 result extension 2 uimsbf

 protocol version 1 uimsbf

 AS index 1 uimsbf
 message_number 1 uimsbf

 DPI_PID_index 2 uimsbf

 data() * Varies

}

8.2.2.1. Semantics of fields in single_operation_message()

opID – An integer value that indicates what message is being sent. See Table 8-3. It shall only take
values whose “Usage” column entries are listed as “Basic Request” or “Basic Response.”

messageSize – The size of the entire single_operation_message() structure in bytes.

result – The results to the requested message. See Section 14 (Result Codes) for details on the result
codes. For message Usage types (as shown in the Usage column of Table 8-3) other than Basic Response
messages, this shall be set to 0xFFFF.

result_extension – This shall be set to 0xFFFF unless used to send additional result information in a
response message.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the future, this message
type to carry parameters that may be structured differently than those defined in the current protocol. It
shall be zero (0x00). Non-zero values of protocol_version may be used by a future version of this
standard to indicate structurally different messages.

8.2.3. Multiple Operation Message

This variable length structure carries one or more of the operations (or requests) listed in Table 8-4 which
must be either “Normal”, “Control”, or “Supplemental” in Usage category and whose structural details
are provided in Section 9 of this document. Each request in the data() structure includes a opID value
(two bytes) and a length (two bytes). Thus the first four bytes of every request within the repeating
structure is identical to easily permit a receive device to skip a request if the opID is unknown. This
allows for extensions to the protocol in the future.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 28

Use of the multiple_operation_message() will normally result in the insertion of at least one SCTE 35
[SCTE35] splice_info_section into the resultant TS, unless the Injector (IJ) detects fatal errors in the
message. In multiple byte fields the first byte received is the most significant byte. The value placed in
the SCTE 35 [SCTE35] splice_info_section variable named “tier” may be user specified by the
insert_tier_data() request (See Section 9.8.9). In the absence of an insert_tier_data() request, the Injector
shall set “tier” to the default value 0xFFF.

Note that the use of the multiple_operation_message() will result in a single_operation message in
response, since response messages are defined as Basic Usage responses (which, by definition, use the
single_operation_message).

8.2.3.1. Order of Request Execution

This structure permits multiple requests to be grouped together to permit transmission in one message
(and execution as appropriate). Its use is permitted in both bi-directional (serial or TCP/IP-based) and
uni-directional systems. The data() structure is populated with one or more of the request structures
defined in Section 9 (within the constraints identified elsewhere in this document). The time of
processing may be instantaneous or Deferred, as required.

All requests are executed in the order that they exist within the data() structure. If requests are time
based, then the time is referenced to the start of the video frame that the last byte is received, not the
frame in which it was actually processed.

Requests listed in Table 8-3 shall not use the multiple_operation_message().

Some requests are order dependant, such as the various Supplemental requests. The Supplemental request
modifies the characteristics of a Normal request, so they must be carried following the associated Normal
request. In this way, multiple Normal requests with Supplemental requests can be carried without
confusing which Supplemental request is associated with which Normal request.

Each instance of data() shall begin with a Normal or a Control request. A Normal request may be
followed by zero or more Supplemental requests which modify or augment it. Unless otherwise
specified, Supplemental request operations may occur in any order, except that they must follow the
Normal operation to which they apply. It may then be followed by additional Normal requests for which
the AS requests time deferral. The placement of a new Normal request shall indicate that the definition
of the preceding Normal request is complete and that the resulting SCTE 35 [SCTE35]
splice_info_section can be formatted and output at the time indicated by timestamp().

As used here, the term “processed” refers to whatever operations the Injector must accomplish to emit an
SCTE 35 [SCTE35] section or sections or change a CW database. Processing begins when the
timestamp() time has expired and ends when the section or sections are placed in the TS or the database is
updated.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 29

8.2.3.2. Format of the multiple_operation_message() structure

Table 8-2: multiple operation message

Syntax Bytes Type

multiple_operation_message() {
 Reserved 2 uimsbf
 messageSize 2 uimsbf

 protocol_version 1 uimsbf

 AS_index 1 uimsbf

 message_number 1 uimsbf

 DPI_PID_index 2 uimsbf

 SCTE35 protocol version 1 uimsbf
 timestamp() * Varies

 num_ops 1 uimsbf

 for (i=0; i < num_ops; i++) {

 opID 2

 data_length 2

 data() * Varies

 }

}

8.2.3.3. Semantics of fields in multiple_operation_message()

Reserved – This field shall be set to all ones (0xFFFF).

messageSize – The size of the entire multiple_operation_message() structure in bytes.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the future, this message
type to carry parameters that may be structured differently than those defined in the current protocol. It
shall be zero (0x00). Non-zero values of protocol_version may be used by a future version of this
standard to indicate structurally different messages.

AS_index – Defined in Section 8.2.1 above.

message_number – An integer value that is used to identify an individual message. The
message_number variable must be unique for the life of a message. When multiple copies of the same
message are sent, they can be identified because they have the same message_number. This means that

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 30

for messages that are to be processed in the future, the message_number may not be reused until the
message has been processed. If not in current use, the message_number may freely vary over the range
of 0 to 255.

In a uni-directional system, the message number can be assumed to be available for reuse after the
associated processing timestamp() time has passed.

DPI_PID_index – Defined in Section 8.2.1 above.

SCTE35_protocol_version – This 8-bit unsigned integer field indicates the version of SCTE 35 protocol
that the section which results from this message conforms to. Its function is to allow, in the future, this
section type to carry parameters that may be structured differently than those defined in the current
protocol. At present, the only valid value defined by SCTE 35 [SCTE35] is zero (0x00). Non-zero values
of SCTE35_protocol_version may be used by a future version of this standard to indicate structurally
different sections.

timestamp() – This field delivers the exact time to process all of the requests in this message (See
Section 12.5). The time_type field of timestamp() may be zero, indicating the messages are processed
immediately. The timestamp() may contain either the UTC time or the VITC time specifying when to
process the requests. The timestamp() may alternatively contain the number of the GPI to use for
triggering the messages to be processed. Once the GPI is triggered, all requests associated with that edge
of the GPI will be processed.

num_ops – An integer value that indicates the number of requests contained within the data() loop.

opID – An integer value that indicates what request is being sent. See Table 8-4.

data_length – The size of the data() field being sent in bytes.

data() – Specific data structure for the request being sent. Details on each of the requests containing data
are described in Sections 9.3.1, 9.4, 9.5, 9.7, and 9.8 of this document. The size of this field is equal to
data_length and is determined by the size of the data being added to the multiple_operation_message()
structure.

8.2.3.4. Detailed Discussion of Message Syntax and Semantics

Note that each opID in Table 8-4 has an associated “Usage” column, which indicates the class of each
request. Normal requests have no associations with other requests and (once the time value specified in
the timestamp() structure is reached) are immediately formatted into the appropriate SCTE 35 [SCTE35]
message and dispatched. Each Normal request may be followed by zero or more “Supplemental”
requests. The Supplemental requests must follow immediately after the Normal request that they are
modifying. Some Supplemental requests are specific to a certain type of Normal request. Others are a
general Supplemental request that can be associated with any Normal request, when appropriate. The
Injector must ensure in processing any Normal requests that it checks for the existence of associated
Supplemental requests before inserting the transport packet into the multiplex.

For the Control requests, only one request per Control Word index is permitted within a single
multiple_operation_message(). It is permitted to send several requests in the same message, each
operating on different Control Words. For example, update CW_index 1 and delete CW_index 2 in the
same message is permitted. It would not be permitted to update CW_index 1 and then delete CW_index 1
within the same message.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 31

DPI Schedules are potentially very large. The system is downloading a playlist of future ad avail periods,
one splice point at a time. There is a single start message, and a single stop message, to frame the
downloading of the data. Like other messages in this API, the schedules have Normal and Supplemental
features. If Supplemental features are required, they must be included in the same message as the basic
schedule request, and immediately following the associated basic request.

If multiple Normal requests are present in a message, then the requests are processed in the same order
that they appear in the message. If the time_type field of timestamp() is zero, all Normal request timing
is relative to the arrival time of the last byte of the message. Please see Section 8.2.3.1 for additional
information.

8.3. Operation Types (Normative)

Table 8-3 and Table 8-4 contain the assigned values for each type of operation (request or response)
supported by this API. Other columns in the tables list information identifying the normal originator and
recipient, and other useful information.

Those operations required for the Simple Profile appear in the column labeled “In Simple Profile,” with
an indication of “Y.” An “N” indicates that support of the Request is not required for compliance. “n/a”
indicates “not applicable.” With the sole exception of the “general_response_data()” message, compliant
implementations may also omit support for those messages in Table 8-3 which show PAMS as either the
“Sent By” or “Sent To” when the PAMS is not a constituent portion of the overall system. Systems
should with PAMS as constituent portion of the overall system should indicate this as “Simple Profile
with PAMS,” or, if applicable (and as an example), “Simple Profile plus encryption with PAMS.”

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 32

Table 8-3: opID Assigned Values and Meanings for single_operation_messages
opID assigned
value

Operation Name Sent By Sent To In Simple
Profile

Description Usage

0x0000 general_response_data() PAMS,
Automation or
Injector

PAMS,
Automation or
Injector

Y Used to convey asynchronous
information between the devices.
There is no data() associated with this
message.

basic
response

0x0001 init_request_data() Automation Injector Y Initial Message to Injector on
predefined port

basic
request

0x0002 init_response_data() Injector Automation Y Initial Response to Automation on the
established connection

basic
response

0x0003 alive_request_data() Automation Injector Y Sends an alive message to acquire
current status.

basic
request

0x0004 alive_response_data() Injector Automation Y Response to the alive message
indicating current status.

basic
response

0x0005 - 0x0006 User Defined n/a Receiving devices shall ignore these
values. Used in legacy systems.

0x0007 inject_response_data() Injector Automation Y Response to indicate that the request
was received and that Injector is
preparing to send SCTE 35
[SCTE35] message or messages.

basic
response

0x0008 inject_complete_response_data() Injector Automation Y Response from Injector when all
resultant SCTE 35 [SCTE35] splice
messages are sent.

basic
response

0x0009 config_request_data() Automation PAMS n/a Automation sends PAMS its IP
configuration

basic
request

0x000A config_response_data() PAMS Automation n/a Responds to Config_Request basic
response

0x000B provisioning_request_data() PAMS Automation n/a PAMS notification of the Injectors
provisioned for DPI service

basic
request

0x000C provisioning_response_data() Automation PAMS n/a Response from Automation that the
message is received and DPI is
starting

basic
response

0x000D -0x000E Reserved n/a Range Reserved Used in legacy
systems.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 33

opID assigned
value

Operation Name Sent By Sent To In Simple
Profile

Description Usage

0x000F fault_request_data() Automation PAMS n/a Automation discovered
communication problem with an
Injector

basic
request

0x0010 fault_response_data() PAMS Automation n/a Response from PAMS basic
response

0x0011 AS_alive_request_data() PAMS Automation n/a Maintain PAMS to AS
communications

basic
response

0x0012 AS_alive_response_data() Automation PAMS n/a Maintain AS to PAMS
communications

basic
response

0x0013 -0x00FF Reserved for future basic requests
or responses

 n/a Range Reserved for future
standardization.

0x0100 -0x7FFF Reserved n/a Range Reserved for Table 8-4uses
0x8000 -0xBFFF User Defined Automation or

PAMS
Injector or
PAMS

n/a Range available for user defined
functions.

0xC000 - 0xFFFE Reserved Range Reserved for user defined
Table 8-4 uses.

0xFFFF Reserved Reserved value

Table 8-4: opID Assigned Values and Meanings for multiple_operation_messages
opID
assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0000 -
0x00FF

Reserved n/a Range Reserved (see Table 8-3).

0x0100 inject_section_data_request() Automation Injector Y Generates an SCTE 35 [SCTE35]
section directly

Normal

0x0101 splice_request_data() Automation Injector Y Normally used request to send SCTE 35
[SCTE35] message or messages.

Normal

0x0102 splice_null_request_data() Automation Injector Y Generates an SCTE 35 [SCTE35]
splice_null operation

Normal

0x0103 start_schedule_download_request_data() Automation Injector N Initiates schedule download Normal

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 34

opID
assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0104 time_signal_request_data() Automation Injector Y Generates an SCTE 35 [SCTE35]
time_signal operation

Normal

0x0105 transmit_schedule_request_data() Automation Injector N Initiates schedule transmission Normal
0x0106 component_mode_DPI_request_data() Automation Injector N Adds component mode to a DPI request Supplemental
0x0107 encrypted_DPI_request_data() Automation Injector N Adds encryption to a DPI request Supplemental
0x0108 insert_descriptor_request_data() Automation Injector Y Adds a descriptor to another operation Supplemental
0x0109 insert_DTMF_descriptor_request_data() Automation Injector Y Adds a DTMF descriptor to another

operation
Supplemental

0x010A insert_avail_descriptor_request_data() Automation Injector Y Adds an avail_descriptor to the SCTE 35
[SCTE35] section

Supplemental

0x010B insert_segmentation_descriptor_request_data() Automation Injector Y Adds a segmentation descriptor to another
operation

Supplemental

0x010C proprietary_command_request_data() Automation Injector Y Adds a proprietary descriptor to another
operation

Normal

0x010D schedule_component_mode_request_data() Automation Injector N Adds component mode to an avail
definition

Supplemental

0x010E schedule_definition_data() request Automation Injector N Single avail definition Supplemental
0x010F insert_tier_data() Automation Injector Y Specifies tier data Supplemental
0x0110 insert_time_descriptor() Automation Injector Y Specifies insertion of time descriptors Supplemental
0x0111 insert_audio_descriptor request Automation Injector Y Specifies insertion of audio descriptors Supplemental
0x0112 insert_audio_provisioning request Automation Injector Y Specifies channel mode for audio service Control
0x0113 insert_alternate_break_duration() request Automation Injector Y Specifies substitution of break duration Supplemental
0x0114 -
0x02FF

Reserved n/a Range Reserved for future
standardization (additional Normal or
Supplemental operations).

0x0300 delete_ControlWord_data()request Automation Injector N Maintains CW database Control
0x0301 update_ControlWord_data() request Automation Injector N Maintains CW database Control

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2023 SCTE 35

opID
assigned
value

Operation Name Sent By Sent To In
Simple
Profile

Description Usage

0x0302 -
0x7FFF

Reserved n/a Range Reserved for future
standardization (additional Control
operations).

0x8000 -
0xBFFF

Reserved n/a Range Reserved (see Table 8-3).

0xC000 -
0xFFFE

User Defined Automation
or PAMS

Injector or
PAMS

n/a Range available for user defined
functions for multiple operation
messages.

0xFFFF Reserved Reserved value.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 36

8.3.1. Meaning of the Usage Field in Table 8-3 and Table 8-4

The Usage field indicates the class of each request or response and the messages with which they may be
used:

• Basic requests or responses shall always use the single_operation_message() structure (See
Section 8.2.2).

• Normal requests shall have no linkage with other Normal requests and are normally formatted
into the appropriate SCTE 35 [SCTE35] splice_info_section and dispatched. Normal requests
shall use the multiple_operation_message() structure (See Section 8.2.3.2). While multiple
Normal requests may be grouped together into a single instance of multiple_operation_message(),
they may not have any dependencies beyond execution order (See Section 8.2.3.1).

• Supplemental requests are also carried only by the multiple_operation_message() structure (See
Section 8.2.3). Each Supplemental request follows immediately after the Normal request that
they are modifying. Some Supplemental requests are specific to a certain request. Others are a
general request that can be associated with any Normal request, when appropriate.

• Control requests are also carried only by the multiple_operation_message() structure (See Section
8.2.3). Each Control request shall be independent of any other contained within the same data()
structure and shall be executed at the time specified in the timestamp(). Multiple Control
requests may be present within the data() structure. Supplemental requests do not modify Control
requests.

8.4. Conventions and Requirements
1. Each message that contains data is outlined with its data fields and types below. Additional

structures are indicated as functions and are described in Section 12 of this document.
2. The Injector shall retain the following data values while messages are being processed:

• message_number
• splice_event_id

These are retained until the inject_complete_response message is sent to the AS. In addition, each
Injector which supports splice schedule messages must retain any descriptors defined via this API during
the output of the individual SCTE 35 [SCTE35] splice_schedule() sections which result from a single
schedule_definition request (See Section 9.7).

1. All string lengths have space reserved for a null terminator character (0x00) and shall use null
terminated strings. The size defined for the string is constant and will not vary depending on the
actual length of the string. As an example a string that is defined as 16 characters can have at
most 15 characters of data followed by a null character. Once a null is encountered in scanning a
string, the rest of the characters in the string are undefined and ignored. This specification uses 8
bit ASCII characters for strings.

2. Response messages shall be sent out without unnecessary delay. The device expecting a response
should consider no response within 5 seconds to indicate a timeout. When the Automation
System suspects a timeout, it shall send an alive_request message. If the Injector does not answer
as specified in this document, the connection for this channel shall be dropped and re-established.

3. Initialization (or re-initialization) of the communications between the AS and the Injector shall
not cause interruption of any of the audio, video, or DPI message insertions currently being
processed by either the AS or the Injector. Initialization can be safely conducted at any point in
time. This includes changes to Injector services or Injectors themselves. These events may be
expected to occur at random intervals.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 37

4. When a device is polling to start or restart communications, a suitable interval (30 to 60 seconds)
may be left between attempts. Such an interval might be randomly determined, with exponential
backoff, as is commonly used in Ethernet-based protocols.

9. Automation System to Injector Communication

9.1. Initialization

The methods of initializing the TCP/IP communications parameters are discussed in Section 10.4

For TCP/IP, the initial communication begins with Injector listening on predefined port 5167 and the
Automation System opening an API Connection to the Injector via that socket. If another socket number
has been furnished in the provisioning_request message (via the injector_socket_number field), that
socket should be used instead of the default socket 5167. The Automation System sends an init_request
message to the Injector. The Automation System then listens for the response from the Injector on the
established API Connection. All further communication is done on this API Connection. Either the
Automation System or Injector may terminate communications by closing this API Connection. Each
device is responsible for detecting and properly handling a closed API Connection.

The Injector should support multiple Automation System connections simultaneously if provisioned to do
so. When the Injector initializes the TCP listener on port 5167 it should allow for the number of API
Connections it is provisioned for (see Section 11.4). No two Automation Systems may have an active
connection to any given Injector Instance at any one time. The Injector Instance shall return a response
of “Injector already in use” (see Table 14-1) if this occurs.

The protocol_version fields in single_operation_message() and multiple_operation_message() permit the
Automation System and the Digital Compression System to “negotiate” at which level of the protocol the
system will function. The lesser value shall be taken as the operating point for the system as initialized.
Please note that this value may have implications upon the possible values for the
SCTE35_protocol_version field (see Sections 8.2.2 and 8.2.3).

In a uni-directional system, the AS and Injector must both be configured to operate at a compatible
protocol version.

9.1.1. init_request AS ==> IJ

This basic usage request is sent by the Automation System to the Injector to initialize a TCP/IP
connection. The appropriate value for desired protocol_version shall be furnished to the Injector in this
message.

Table 9-1: init_request_data

Syntax Bytes Type

init_request_data(){

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 38

9.1.2. init_response IJ ==> AS

This basic usage response is sent by the Injector to the Automation System to indicate the receipt of the
init_request. The appropriate value for desired protocol_version shall be furnished to the AS in this
message. All devices supporting this API shall operate from this point forward at the lesser of the
furnished protocol_version values.

Table 9-2: init_response_data

Syntax Bytes Type

init_response_data(){

}

A Proxy Device may respond to this message with a “Proxy Response” result code (see Table 14-1).
This permits the Automation System, should it desire to do so, to track whether or not a given Injector is
served by a Proxy Device or a direct connection.

9.2. Alive (“Heartbeat”) Communications

For bi-directional communications, once initialization is complete, then the Automation System shall
send alive_request messages to ensure that the Injector and the communications path remain up and
running. Each alive_response message (wrapped in the single_operation_message()) contains a result
field that may be used to signal if DPI support has been stopped on the recipient’s end. If there has been
no activity on the connection in the preceding 60 seconds, then an alive_request message shall be sent.

If TCP/IP is being used and the user de-provisions DPI support in the Injector, the Injector will close the
socket connection to the Automation System without waiting for the next alive_request.

For uni-directional communications this message also serves to provide a mechanism that the receiving
device shall use to verify a working connection to the automation computer. This message shall be sent
at least once every 60 seconds. If the messages fail to arrive, then the receiving Injector shall notify its
PAMS or a human operator that communications may be lost.

The second function is to provide clock synchronization for UTC or VITC time-stamped splice messages.
The time () structure provides the time for the start of the associated video frame. This requires the sender
and the receiver to both be examining synchronous video of the same frame rate. In multi-standard
systems, this requirement is very important.

The receiving device can synchronize to the vertical interval of its incoming video and the received time
() value and thus maintain a local UTC or VITC time base to use with time-stamped messages.

For TCP/IP-based systems, implementers may choose to use an external time standard to keep the internal
clocks of the Automation System and the Injector in sync. This is not strictly necessary for the simplest
implementation that meets the requirements of SCTE 35 [SCTE35].

If the Automation System has access to a facility master clock, and it makes sense to both parties, then the
current value of facility time-of-day timecode can be transmitted in the “alive_request” messages from
the Automation System to the Injector and conversely in the Injector to the Automation System
“alive_response” responses. Alternatively, facility time-of-day time samples may be conveyed to the
Injector in the video signal proper as VITC.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 39

9.2.1. alive_request AS ==> IJ

This basic request serves to ensure that the AS to Injector communications path remains open and
reliable. In addition it may be used to ensure the internal time within each is synchronized. If deferred
requests are to be used with a time-value trigger, then it is vital that synchronization be maintained.

Table 9-3: alive_request_data

Syntax Bytes Type

alive_request_data(){

 time()

}

9.2.1.1. Semantics of fields in alive_request_data ()

time() – This is an optional structure, unless the time_type field of the timestamp() structure carried in
multiple operation messages is non-zero. The current UTC time clock of the sending device checked as
close as possible to the sending of the message. This is designed to be used by the Injector and the
Automation System to check on how well the two systems are time synchronized. See Section 12.4 for a
definition of time(). If this time synchronization is not being used in a given system, the value of time()
may be set to zero.

9.2.2. alive_response IJ ==> AS

This basic response serves to ensure that the AS to Injector communications path remains open and
reliable. In addition it may be used to ensure the internal time within each is synchronized. If deferred
requests are to be used with a time-value trigger, then it is vital that synchronization be maintained.

Table 9-4: alive_response_data

Syntax Bytes Type

alive_response_data(){

 time()

}

A Proxy Device should respond to this message with a “Successful Response” result code (see Table 14-
1) as if it were an Injector.

9.2.2.1. Semantics of fields in alive_response_data ()

time() – This is an optional structure, unless the time_type field of the timestamp() structure carried in
multiple operation messages is non-zero. The current UTC time clock of the sending device checked as
close as possible to the sending of the message. This is designed to be used by the Injector and the
Automation System to check on how well the two systems are time synchronized. See Section 12.4 for a

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 40

definition of time(). If this time synchronization is not being used in a given system, the value of time()
may be set to zero.

9.3. Splice Requests

After initializing communications with the Injector, the Automation System can issue (via a multiple
operation message), one of the Normal requests listed in the Usage column of Table 8-4. Issuing
typically a splice_request to initiate placement of one or more SCTE 35 [SCTE35] splice_info_sections
into the outgoing TS. The Automation System may choose to send any of the messages multiple times
before the designated in-point (especially if return path communications is unavailable). The Injector can
detect that these are duplicates of one another by comparison of the message_number fields.

The two messages that are returned (in a bi-directional system) from the splice request messages are the
inject_response message and the inject_complete_response message. A inject_response message is
returned upon receipt of the splice request. A inject_complete_response message is returned once the
SCTE 35 [SCTE35] section has been generated.

9.3.1. splice request AS ==> IJ

This Normal request is the usual carrier of splicing requests. It may be further elaborated upon by various
Supplemental type requests which may follow it within the data() structure of a
multiple_operation_message.

Table 9-5: splice_request_data

Syntax Bytes Type

splice_request_data() {

 splice_insert_type 1 uimsbf

 splice_event_id 4 uimsbf

 unique_program_id 2 uimsbf

 pre_roll_time 2 uimsbf

 break_duration 2 uimsbf

 avail_num 1 uimsbf

 avails_expected 1 uimsbf

 auto_return_flag 1 uimsbf

 not_an_entry_flag 1 uimsbf

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 41

9.3.1.1. Semantics of fields in splice_request_data()

splice_insert_type – An 8-bit unsigned integer defining the type of insertion operation desired. These
will result in the generation of one or more SCTE 35 [SCTE35] splice_info() sections with a
splice_command_type field value of splice_insert with other inferred field values also being set within
the resulting splice_info() section. The other inferred field values are noted with the discussion of each
assigned value. Please refer to Section 9.3.2 below for additional clarification of the inferred values.

Table 9-6: splice_insert_type Assigned Values
splice_insert_type Value assigned
reserved 0
spliceStart_normal 1
spliceStart_immediate 2
spliceEnd_normal 3
spliceEnd_immediate 4
splice_cancel 5

spliceStart_normal section(s) occur at least once before a splice point. This interval should match the
requirements of SCTE 35 [SCTE35] (Section 7.1) and serve to set up the actual insertion. It is
recommended that if sufficient pre-roll time is given by the AS, the Injector send several succeeding
SCTE 35 [SCTE35] splice_info_section() sections (per SCTE 35 [SCTE35] and SCTE 67 [SCTE67]) in
response to a single splice_request message with a spliceStart_normal splice_insert_type value. The
minimum non-zero pre_roll_time is defined in Section 12.3 of this document.

spliceStart_immediate sections may come once at the splice point’s exact location. The Injector shall set
the splice_immediate_flag to 1 and the out_of_network_indicator to 1 in the resulting SCTE 35
[SCTE35] splice_info_section() section. Usage of “immediate mode” signaling is not recommended by
SCTE 35 [SCTE35] and may result in inaccurate splices.

spliceEnd_normal sections come to terminate a splice done without a duration specified. They may also
be sent to ensure a splice has terminated on schedule. The Injector sets the out_of_network_indicator to
0. If they are to terminate a spliceStart_normal with no duration specified, they should be sent prior to
the minimum interval before the return point and carry a value for pre_roll_time, especially if
terminating a long form insertion. The minimum non-zero pre_roll_time is defined in Section 12.3 of
this document.

spliceEnd_immediate sections come to terminate a current splice before the splice point, or a splice in
process earlier than expected. The Injector sets the out_of_network_indicator to 0 and the
splice_immediate_flag to 1. The value of pre_roll_time is ignored.

splice_cancel sections come to cancel a recently sent spliceStart_normal section. The AS must supply
the correct value of splice_event_id for the section to be cancelled. The Injector shall set the
splice_event_cancel_indicator to 1.

splice_event_id – As specified in SCTE 35 [SCTE35]. See the discussion in Section 12.1 of this
document for further details. The Injector retains this value until the time indicated by the timestamp() is
reached.

unique_program_id – As specified in SCTE 35 [SCTE35]. See the discussion in Section 12.2 of this
document for further details.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 42

pre_roll_time – An 16-bit field giving the time to the insertion point in milliseconds. This field is
ignored for splice_insert_type values other than spliceStart_normal and spliceEnd_normal. If zero (and
Component Mode is not in use) the Injector should set the splice_immediate_flag to 1 in the resulting
SCTE 35 [SCTE35] splice_info_section. The minimum non-zero pre_roll_time is defined in Section 12.3
of this document.

break_duration – A 16-bit field giving the duration of the insertion in tenths of seconds. If zero the
Injector will not set a duration. This field is ignored for splice_insert_type values other than
spliceStart_normal and spliceStart_immediate.

avail_num – An 8-bit field giving an identification for a specific avail within the current
unique_program_id. The value follows the semantics specified in SCTE 35 [SCTE35] for this field. It
may be zero to indicate its non-usage.

avails_expected – An 8-bit field giving a count of the expected number of individual avails within the
current viewing event. If zero, it indicates that avail_num has no meaning.

auto_return_flag – If this field is non-zero and a non-zero value of break_duration is present, then the
auto_return field in the resulting SCTE 35 [SCTE35] section will be set to one. This field is ignored for
splice_insert_type values other than spliceStart_normal and spliceStart_immediate.

not_an_entry_flag – When non-zero, this 8-bit optional field indicates to the compression system that
this request shall not be inferred as an entry point in any transport. This flag is not passed into the
resulting SCTE 35 [SCTE35] results from this request. When this field is not present, or the value is zero,
then this request may be inferred as an entry point.

9.3.1.2. Detailed Discussion of Message Syntax and Semantics

The Automation System will only need to send a single splice_request message per splice unless there is
a compelling reason to do so otherwise (such as video conveyance or cancellation). The Injector, on the
other hand, may generate several SCTE 35 [SCTE35] splice_info_sections per splice on a normal basis.
This is in keeping with the recommendations of SCTE 67 [SCTE67]. To permit such action, the AS must
send the single splice_request message well in advance of the minimum pre_roll_time (for example, 10
seconds instead of the minimum 4).

If a spliceStart_normal request with a non-zero value of pre_roll_time which is less than the minimum
allowed value is received, the Injector shall issue the resultant SCTE 35 [SCTE35] splice_info_section
and return an error code of “pre-roll too small”.

If the AS has issued a splice_cancel splice_insert_type request to the Injector, and the indicated request
was issued with a time delay, then the Injector can use the splice_event_id field to determine if it should
simply not issue the resulting SCTE 35 [SCTE35] section related to that message_number, or if it needs
to issue a splice_insert() section with the splice_event_cancel_indicator set to ‘1’.

If a splice is to be canceled, then the splice_insert_type value would be splice_cancel, the AS supplies
the correct value for splice_event_id and the Injector will set the splice_event_cancel_indicator to 1 in
the resulting splice_info_section. If a splice is to be cancelled, then the AS is responsible for ensuring
that a cancellation is sent before the indicated insertion point is reached.

If an early return is to be signaled, the splice_insert_type value would be spliceEnd_immediate. The
splice_info_section the Injector will send as a result has out_of_network_indicator set to 0 and
splice_immediate_flag set to 1.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 43

For long-form insertions where a duration is either not known or the return is to be explicitly signaled, the
break_duration field is set to 0 and a non-zero pre_roll_time value is given. At the return point, a
spliceEnd_normal request is sent, again with a non-zero value in the pre_roll_time field. In this case, the
Injector may also choose to send several return splice_info_sections in a manner analogous to
spliceStart_normal.

9.3.2. Mapping of splice_request fields into SCTE 35 [SCTE35]
splice_insert() fields (Informative)

The following table summarizes the settings resulting from the combination of the splice_insert_type and
the other parameters in the splice_request_data(). Duration_flag is set to one if a non-zero
break_duration is given.

Table 9-7: splice_insert_type corresponding splice_insert() field settings
(Informative)

This API Resulting SCTE 35 splice_insert() structure

splice_insert_type Value

splice_
event_
cancel_
indicator

out_of_
network
_indicator

duration
_flag

splice_
immediate_
flag

auto_ return_
flag*

reserved 0 n/a n/a n/a n/a n/a

spliceStart_normal 1 0 1 0 or 1 0 0 or 1

spliceStart_immediate 2 0 1 0 or 1 1 0 or 1

spliceEnd_normal 3 0 0 0 0 n/a (0)

spliceEnd_immediate 4 0 0 0 1 n/a (0)

splice_cancel 5 1 n/a (0) 0 n/a (0) n/a (0)

* Note: The auto_return_flag is within the SCTE 35 [SCTE35] break_duration() structure, not the
splice_insert() structure, in which all of the other parameters are defined.

A more detailed drawing is shown below, illustrating the mapping between the fields contained in a
single_operation_message() (with opID of splice_request and the resulting SCTE 35 [SCTE35]
splice_info_section()).

Please note that one or more descriptors are built in response to a splice_request, to which the user may
add by use of an insert_avail_descriptor request (See Section 9.8.4), insert_descriptor request (See
Section 9.8.5), an insert_DTMF_descriptor request (See Section 9.8.6), or an
insert_segmentation_descriptor request (See Section 9.8.7).

Note: Advanced (with respect to MPEG-2) video codecs have added a structural concept called a
“Stream Access Point” (or SAP). Refer to SCTE 172 Section 5.1 [[SCTE172]. “Abbreviations” as well
as Section 6. “Digital Program Insertion System Overview (Informative)” for additional details.
Signaling for the SAP values also exists in SCTE 35 [SCTE35]. The reader is also reminded about the
not_an_entry_flag within the splice_request_data() structure, which also may be useful.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 44

splice_info_section() {
table_id
section_syntax_indicator
private_indicator
section_length
protocol_version
encrypted_packet
encryption_algorithm
pts_adjustment
cw_index

splice_command_type
splice_insert() {

splice_event_id
splice_event_cancel_indicator
out_of_network_indicator
program_splice_flag

0x05 = splice_insert()

duration_flag
splice_immediate_flag
splice_time() {

time_specified_flag
pts_time

}
break_duration() {

auto_return
duration

}
unique_program_id
avail_num
avails_expected

}
descriptor_loop_length
avail_descriptor() {

splice_descriptor_tag
descriptor_length
identifier
provider_avail_id

}
for(i=0; i<N2; i++) {

alignment_stuffing
}
CRC_32

}

multiple_operation_message()
Reserved
messageSize
protocol_version
AS_index
message_number
DPI_PID_index
SCTE35_protocol_version
timestamp()
num_ops
opID
data_length
splice_request_data() {

splice_insert_type
splice_event_id
unique_program_id

0x0101 = splice_request_data()

pre_roll_time
break_duration
avail_num
avails_expected
auto_return_flag

}
}

0xFFFF

1

0x01 = spliceStart_normal

SCTE 35SCTE 104

splice_command_length

0xFC
0
0

1

1

Figure 9-1: multiple_operation_message() to SCTE 35 section field mapping (Informative)

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 45

9.4. Encryption Support (Normative)

The method provided by this API for the support of encrypted SCTE 35 [SCTE35] splice_info_sections
assumes that the encryption will be done by the Injector. As a result, the PAMS will need to supply a
number of additional items of provisioning data related to the encryption method to be used, such as the
key information (which may also be provided by the AS using this API) and so forth. Please refer to
Section 9 of SCTE 35 [SCTE35] for additional information.

The Injector which supports encryption shall contain 256 Control Word “slots”. If a slot has been filled
with a Control Word set (three 64-bit numbers) then encryption can take place. If the AS references a slot
without a Control Word defined, then the entire generation of the associated splice_info_section shall be
aborted and an error returned to the AS or an alarm raised by the Injector.

9.4.1. Encryption Control Word Support

The API specifies the basic messages to define and maintain the current (and next) control words.
Compliant implementations which support encryption may choose not to support these messages (defined
in Section 9.4.3 and Section 9.4.4) and instead have the PAMS manage all Control Words.

These AS requests carry sensitive security information. If these requests are used, then normal security
precautions should be implemented (such as password protection on login screens and physical access
restrictions to control areas). The assumption in using these messages is that the link used to carry the
messages is secure and is not easily compromised. Further protection for these requests, such as
encrypting the requests, is outside the scope of this document.

9.4.2. The encrypted DPI request

The encrypted DPI message is used for applications that wish to use the built in security capabilities of
SCTE 35 [SCTE35] under the direction of the Automation System. This message is sent in the clear, and
the resulting SCTE 35 [SCTE35] section will be encrypted by the Injector before being formatted and
placed in the output multiplex.

The actual control words to use by the Injector must have been previously provisioned by the PAMS or
by the AS (via the update_ControlWord request in Section 9.4.3) for the particular control word index, or
the resulting SCTE 35 [SCTE35] splice_info_section() will not be placed in the outgoing TS, the data()
discarded, and an error code returned by the Injector. In a uni-directional communication system, the error
return path shall be notification of the PAMS operator.

This is a Supplemental usage request and must follow the associated splice_request_data() in the data()
structure of the multiple_operation_message() (See Section 8.2.3) for which it applies. If
component_mode_DPI_data() structures are also present in the multiple_operation_message data()
structure, then the encrypted_DPI_data() follows the final occurrence of component_mode_DPI_data().
When this request is present, the encrypted_packet bit shall be set in the resulting splice_info_section().

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 46

Table 9-8: encrypted_DPI_request_data

Syntax Bytes Type

encrypted_DPI_request_data() {

 encryption_algorithm 1 uimsbf

 CW_index 1 uimsbf

}

9.4.2.1. Semantics of fields in encrypted_DPI_request_data()

encryption_algorithm – This field carries the value of the 6-bit field defined in SCTE 35 [SCTE35].

CW_index – An 8 bit unsigned integer which conveys which Control Word (key) is to be used to encrypt
and decrypt the message.

9.4.3. update_ControlWord request AS ==> IJ

This is a Control usage request, and serves to setup an authorization group. Changing the Control Words
for a service is expected to be a relatively rare occurrence. This request allows the encryption group to be
downloaded and then used by subsequent encrypted_DPI requests. This message will replace any existing
Control Words in the specified index position.

In some architectures, the control of encryption services may be done by the PAMS rather than the AS.
In these cases, this message would not be used, since it would overwrite the Control Words downloaded
by the system controller. The automation system may still need to know which messages are to be
encrypted and which CW_index to assign to specific messages. The mechanism for doing so is not
defined in this document.

Table 9-9: update_ControlWord_data

Syntax Bytes Type

update_ControlWord_data() {

 CW_index 1 uimsbf

 CW_A 8 uimsbf

 CW_B 8 uimsbf

 CW_C 8 uimsbf

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 47

9.4.3.1. Semantics of fields in update_ControlWord_data()

CW Index – This field specifies the control word index used to reference the control word database. This
field may range from 0 to 255. The index sent indicates which of the 256 Control Word set should be
replaced in the Injector’s Control Word database.

Each Control Word set is 3 64-bit numbers. The two Single DES encryption modes only use CW_A,
while Triple-DES requires all 3 64-bit Control Words. All 3 fields are always sent, but if Triple-DES is
not used, CW_B and CW_C shall be zeros.

CW_A – ControlWord_A, a 64-bit value which is always used. In the case of the two Single DES
encryption modes, CW_A is used alone (CW_B and CW_C are zero filled), while Triple-DES requires
all 3 64-bit control words.

CW_B – The second 64-bit number sent as a Control Word. This value is normally zero unless Triple-
DES encryption is utilized, in which case it carries the second of the three control word values.

CW_C – The third 64-bit number sent as a Control Word. This value is normally zero unless Triple-DES
encryption is utilized, in which case it carries the third of the three control word values.

9.4.4. delete_ControlWord request AS ==> IJ

This is a Control usage request. If an Encryption Group is no longer required, then this request can be
sent to remove the Control Words from the Injector’s database. This is only really necessary if one wishes
to prevent messages from being sent with this Control Word, since empty Control Word index slots
results in an alarm if an attempt is made to use it.

The Injector shall not produce an alarm if an undefined Control Word is deleted. This allows the AS to
delete all control words without actually knowing what Control Words are present, so the Control Word
database can be reinitialized.

In some architectures, the control of encryption services may be done by the PAMS rather than an
automation controller. In these cases, this message would not be used, since it would delete the control
words downloaded by the PAMS.

Table 9-10: delete_ControlWord_data

Syntax Bytes Type

delete_ControlWord_data() {

 CW_index 1 uimsbf

}

9.4.4.1. Semantics of fields in delete_ControlWord_data()

CW Index – This field specifies the control word index used to reference the control word database. This
field ranges from 0 to 255.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 48

9.5. Component Mode Support

9.5.1. component mode DPI request

The component mode DPI request is used for applications that wish to splice into some of the elementary
streams of a program, and not others. This is an advanced method of DPI control that requires detailed
knowledge of the structure of the program elements that exists in the same program as this DPI
splice_info_section.

It is a Supplemental type request (See Section 8.3.1) and must follow the splice_request_data() for which
it applies within the data() structure of the multiple_operation_message (See Section 8.2.3).

The presence of this request changes fundamental syntactic elements in the resulting SCTE 35 [SCTE35]
splice_info_section() as the request will force component mode rather than program mode operation in
the splicer.

Table 9-11: component_mode_DPI_request_data

Syntax Bytes Type

component_mode_DPI_request_data() {

 for(i=0; i<N; i++) {

 component_tag 1 uimsbf

 component_preroll 2 uimsbf

 }

}

9.5.1.1. Semantics of fields in component_mode_DPI_request_data()

component_tag – This field contains the associated component tag for one of the elementary streams to
be spliced. The loop provides a complete list of spliced elementary streams and the time at which the
splice should occur.

component_preroll – The overall request timestamp provides the exact time to process the message. In
component mode, each component (i.e. Elementary stream PID) has a unique time at which its splice is to
occur. The actual SCTE 35 [SCTE35] timestamp can be calculated by adding the pre-roll time to the
timestamp() reference point.

When operating in component mode splicing, the value of pre_roll_time given in the corresponding
splice_request message is not used.

This field is expressed in milliseconds.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 49

9.6. Response Messages

9.6.1. general_response message IJ ==> AS

The general_response message conveys back a result code. This is a basic message.

Table 9-12: general_response_data

Syntax Bytes Type

general_response_data() {

}

This response message is sent following the receipt of the following messages:

Table 9-13: general responses

Request Description

update_ControlWord This allows the AS to download a new CW for use in
encrypted messages.

delete_Control_Word This allows the AS to delete an active CW. Once deleted,
an Injector can flag an error if any attempt is made to use it.

9.6.2. inject_response message IJ ==> AS

The inject_response message conveys back the message_number from the
multiple_operation_message() structure (Section 8.2.3) to which it is responding. This message can
contain a result code if appropriate. This is a basic message.

A Proxy Device may respond with a “Proxy Response” result code (see Table 14-1). This permits the
Automation System, should it desire to do so, to track whether or not a given Injector is served by a Proxy
Device or a direct connection.

Table 9-14: inject_response data

Syntax Bytes Type

inject_response_data() {

message_number 1 uimsbf

}

9.6.2.1. Semantics of fields in inject_response_data()

message_number – The message_number of the multiple_operation_message() that is being
acknowledged.

The inject_response message is sent following the receipt of the following messages:

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 50

Table 9-15: inject_responses

Request Description
splice_request Acknowledgement for splice_request – returned to

the AS immediately to acknowledge receipt of the
command

time_signal_request Acknowledgement for time signal request – returned
to the AS immediately to acknowledge receipt of the
command

splice_null_request Acknowledgement for splice null request – returned
to the AS immediately to acknowledge receipt of the
command

proprietary_command_request Acknowledgement for proprietary command request
– returned to the AS immediately to acknowledge
receipt of the command

start_schedule_download_request Indicates to an Injector that it should start collecting
schedule information.

schedule_definition_request Used to download a single schedule entry into the
Injector’s database.

schedule_component_mode
request

Used as a supplemental command for Schedule
Definition to indicate that a component splice is being
scheduled.

transmit_schedule_request The Automation System uses this command to tell an
Injector to send the accumulated schedule
information.

9.6.3. inject_complete response IJ ==> AS

The inject_complete_response message is sent once when the Injector finishes issuing all SCTE 35
[SCTE35] splice_info_sections for a given Normal request operation and conveys back the
message_number from the multiple_operation_message() structure (Section 8.2.3) to which it is
responding. If a Normal request does not result in the issuing of any SCTE 35 splice_info_sections, then
this response is not sent. The value of the message_number variable is now free to be re-used.

A single inject_complete_response message is sent regardless of the number of operations contained
within a given multiple_operation_message() structure. The inject_complete_response message
contains a count which indicates the number of SCTE 35 splice_info_sections issued by Injector in
response to the previous splice_request. A result value of “Successful Response” will normally be
expected for this message. See Table 14-1 for the various result codes.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 51

Table 9-16: inject_complete response data

Syntax Bytes Type

inject_complete_response_data() {

message_number 1 uimsbf

cue_message_count 1 uimsbf

}

A Proxy Device may respond with a “Proxy Response” result code (see Table 14-1). This permits the
Automation System, should it desire to do so, to track whether or not a given Injector is served by a Proxy
Device or a direct connection.

9.6.3.1. Semantics of fields in inject_complete_response_data()

message_number – message number of the multiple_operation_message() that has completed
processing.

cue_message_count – this an integer value that specifies the count of SCTE 35 [SCTE35]
splice_info_sections sent by Injector. This value may be logged by the Automation System if desired.
The Injector will clear the cue_message_count after each inject_complete_response is sent to the
Automation System.

The inject_complete_response message is sent following the injection the SCTE 35 [SCTE35] section in
response to the following messages:

Table 9-17: inject_complete_responses

Request Description

splice_request Acknowledgement for splice request – returned after the
DPI message has been injected into the transport. May be
returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

time_signal_request Acknowledgement for Time Signal request – returned after
the DPI message has been injected into the transport. May
be returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

splice_null_request Acknowledgement for Splice Null request – returned after
the DPI message has been injected into the transport. May
be returned immediately after the Splice Response if
immediate mode timing is used. May be delayed if time
stamped processing is used.

proprietary_command_request Acknowledgement for Proprietary Command request –
returned after the DPI message has been injected into the
transport. May be returned immediately after the Splice

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 52

Response if immediate mode timing is used. May be
delayed if time stamped processing is used.

transmit_schedule_request Indicates the schedule data has been has been injected into
the transport

9.7. SCTE 35 splice_schedule() Support Requests

The DPI schedule requests may exist in multiple sections within a transport. Each section contains a
descriptor loop. All sections of a given schedule will contain the exact same descriptors.

If the avail descriptor is to be present, then it is filled from the data provided in the start schedule
download request. This allows each section to be built as the data is being downloaded.

If other descriptors are to be present, those requests follow in data(), and the insert_descriptor requests
must be present in the same message that carries this request. Those descriptors will then be duplicated in
each real section generated. The Injector must have enough memory to hold the descriptors as well as the
schedule data.

9.7.1. start schedule download request AS ==> IJ

The SCTE 35 [SCTE35] standard allows for a schedule of avail times to be broadcast. This request
readies the Injector to accept one or more schedule_definition_data() requests prior to transmission. Since
a schedule can potentially have a large amount of data, provision has been made to download the data in
smaller pieces.

The start schedule download message permits generation of a SCTE 35 [SCTE35] avail_descriptor. It is a
Normal type message. The Injector must allocate sufficient memory to permit the accumulation of the
maximum amount of section data specified by SCTE 35 [SCTE35]. A splice_request is not required in
conjunction with splice_schedule.

If the schedule request is intended to be encrypted before being sent, then the Encrypted_DPI_data()
structure must be included in the same multiple_operation_message data() structure (See Section 8.2.3) as
this start_schedule_download_data() structure. In this case ONLY, it must be placed in the data()structure
before the start_schedule_download_data() structure is placed in the data() structure. By setting up the
encryption before downloading the data, any intermediate sections that might be created can also be
encrypted.

The SCTE 35 [SCTE35] splice_info_section() structure only allows one descriptor loop for an entire
schedule splice_info_section. Therefore, any Supplemental requests that generate descriptors must be
attached to the Start Schedule Request. These descriptors will then be inserted in all splice_info_section
generated as a result of the schedule download.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 53

Table 9-18: start_schedule_download_request_data

Syntax Bytes Type

start_schedule_download_request_data() {

 num_provider_avails 1 uimsbf

 for (i=0 ;i< num_provider_avails; i++) {

 provider_avail_id 4 uimsbf

 }

}

9.7.1.1. Semantics of fields in
start_schedule_download_request_data()

num_provider_avails – If this field is zero, then the provider avail id field is not being used and the
value should be ignored and no avail_descriptor will be created.

If this field is non-zero, then the provider avail id field(s) must contain valid data.

provider_avail_id – This is an optional 32-bit number which will be inserted into the SCTE 35
[SCTE35] splice_info_section() avail_descriptor.

Please refer to Section 8.3.1 of SCTE 35 [SCTE35] for more information.

9.7.2. schedule definition request AS ==> IJ

This request allows a single avail definition to be collected by the Injector. Using the overall message
structure, it is possible to deliver multiple splice point definitions in the same resultant
splice_info_section(). This request will be issued once per splice event to be included in that
splice_info_section().

A splice definition being transmitted must be contained within a SCTE 35 [SCTE35]
splice_info_section() structure. This section has a limited size of 4096 bytes, although some
implementations may have lower maximum sizes. If a schedule being transmitted exceeds the local
maximum memory allocated, it is possible that the first resultant section could be formatted, packetized,
and placed in the Transport Stream before the transmit_schedule request is sent to force transmission and
thus make space for more schedule data in the local memory of the Injector.

This is a Supplemental request and must follow a start_schedule_download_data() in the data() structure
of a multiple_operation_message().

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 54

Table 9-19: schedule_definition_data

Syntax Bytes Type

schedule_definition_data() {

 splice_schedule command 1 uimsbf

 splice_event_id 4 uimsbf

 time() 4

 unique_program_id 2 uimsbf

 auto_return 1 uimsbf

 break_duration 2 uimsbf

 avail_num 1 uimsbf

 avails_expected 1 uimsbf

}

9.7.2.1. Semantics of fields in schedule_definition_data()

splice_schedule command – This field indicates if the associated SCTE 35 [SCTE35] splice_schedule()
section generated will be a splice insert (away from the network) or a splice return to the network. A
cancellation may also be signaled.

Table 9-20: splice_schedule command type Assigned Values
splice_schedule_command_ty

pe
Value assigned

reserved 0
splice_insert 1
reserved 2
splice_return 3
reserved 4
splice_cancel 5

splice_event_id – This is a 32-bit number that will be coded into the splice_event_id in the final SCTE
35 [SCTE35] splice_info_section.

time()– See Section 12.4. A 32-bit unsigned integer quantity representing the time of the signaled splice
event as the number of seconds since 00 hours UTC, January 6, 1980, with the count of intervening leap
seconds included. See RFC 1305 [RFC1305] for further information.

unique_program_id – This is a 16-bit field as defined by SCTE 35 [SCTE35].

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 55

auto_return – If this field is non-zero, then the auto_return field in the resulting break_duration() of the
SCTE 35 [SCTE35] section will be set to one.

break_duration – A 16-bit field giving the duration of the insertion in tenths of seconds. If
break_duration is set to zero, then the resulting SCTE 35 [SCTE35] splice_schedule() section will not
include the break_duration() and the flags auto_return and duration_flag will be set to zero.

avail_num – This is an 8-bit number indicating which avail within the program is currently being
described (see SCTE 35 [SCTE35]). It will be coded as a decimal number from 1 to 255. A value of zero
indicates that the avail fields are not being used. If this field is coded as zero, so should the
avails_expected field.

avails_expected – This is an 8-bit number indicating how many avails to expect within the program
currently being described (see SCTE 35 [SCTE35]). It will be coded as a decimal number from 1 to 255.
A value of 0 indicates that the avail fields are not being used. If this field is coded as zero, so should the
avail_num field.

9.7.3. The schedule component mode request AS ==> IJ

The schedule_component_mode request is used for applications that wish to splice into some of the
elementary streams of a program, and not others. This is an advanced method of DPI control that requires
detailed knowledge of the structure of the program elements that exists in the same program as this DPI
message. If component mode is used for a specific avail, then this structure may be delivered along with
the associated schedule_definition_data() structure to define the components that will be spliced in that
avail.

Table 9-21: schedule_component_request_mode

Syntax Bytes Type

schedule_component_mode_request_data() {

 for(i=0; i<N; i++) {

 component_tag 1 uimsbf

 time() *

 }

}

9.7.3.1. Semantics of fields in
schedule_component_mode_request_data()

component_tag – This field contains the associated component tag for one of the elementary streams to
be spliced. The loop provides a complete list of spliced elementary streams and the time at which the
splice should occur.

time() – See Section 12.4. A 32-bit unsigned integer quantity representing the time of the signaled splice
event as the number of seconds since 00 hours UTC, January 6, 1980, with the count of intervening leap
seconds included. See RFC 1305 [RFC1305] for further information.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 56

9.7.4. transmit_schedule request

This is a Normal usage request. When this request is processed, any schedule data saved in local memory
is packetized and transmitted at the time indicated.

A downloaded schedule is not remembered after it has been transmitted, and the Injector may
immediately free-up allocated local memory. The automation device is responsible for retransmitting up-
to-date schedule information when required.

Table 9-22: transmit_schedule_request_data

Syntax Bytes Type

transmit_schedule_request_data() {

 cancel 1 uimsbf

}

9.7.4.1. Semantics of fields in transmit_schedule_request_data()

cancel – This flag is used to cancel any downloaded data and abort the transmission of the schedule in
progress. A value of zero is normal, and indicates that the downloaded data can be transmitted at the time
that the timestamp indicates. Any non-zero value indicates that the download should be cancelled.

If this request is cancelled before being processed, then the entire schedule downloaded is also discarded.
The effect is the same as if this request was sent with the cancel bit set.

9.8. Miscellaneous Requests

9.8.1. time signal request AS ==> IJ

This is a Normal request which will be generated and transmitted at the time indicated by the timestamp()
field of the multiple_operation_message() structure. This request will normally be accompanied by one or
more insert_descriptor requests.

Table 9-23: time_signal_request_data

Syntax Bytes Type

time_signal_request_data() {

 pre-roll_time 2 uimsbf

}

9.8.1.1. Semantics of fields in time_signal_request_data()

pre-roll_time – The splice splice_info_section may be sent by the automation system well in advance of
when it is required. In order to support repeated sending of the same splice_info_section and to support
multiple sections being outstanding simultaneously, this request supports the preloading of its parameters.
The timestamp() indicates the time to process the splice_info_section. The pre-roll field indicates the

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 57

amount of time, in milliseconds, after being processed that the action will occur. For the
time_signal_request() this is the pre-roll for the associated descriptors. If this request arrives after the
indicated time, the splice_info_section is sent as soon as possible.

The timestamp field can indicate immediate processing (and therefore uses relative timing) or Deferred
processing (which uses exact timing). In all cases, the signaling point is calculated relative to the time the
Request is processed. The pre-roll field determines the exact delay period for the splice point relative to
the Request being processed.

If this Request is processed immediately on arrival, then the physical insertion of the time signal request
is as soon as it is received.

In the case of an exact timestamp using a UTC, VITC1 or GPI triggering2, the Request is processed at the
indicated time.

In the case when a component mode request is used to modify this basic request, the overall pre-roll time
is not used. That is, this field is only used when the DPI splice_info_section produced is for a program
mode splice. For component mode splicing, each component will have its own time stamp.

9.8.2. splice null request

This is a Normal usage request. When this request is processed, an SCTE 35 [SCTE35] splice_null()
splice_info_section will be generated and transmitted at the time indicated by the timestamp field. This
request will normally be accompanied by one or more insert_descriptor requests.

Table 9-24: splice_null_request_data

Syntax Bytes Type

splice_null_request_data() {

}

9.8.3. inject section data request AS ==> IJ

This is a Normal usage request. When this request is processed, the image will be copied into the
command structure of the associated SCTE 35 [SCTE35] splice_info_section being created. Some
Supplemental requests, such as an insert descriptor request or encrypted_DPI request may be used with
this request.

1 If the timecode is recorded with the program, rather than using an uninterrupted 24-hour studio timecode, VITC
cannot be used to indicate the exact splice point, as the VITC would be discontinuous around the start/end of the
program. It would be impossible to determine the proper splice point since one cannot simply subtract the pre-roll
time from the desired VITC. Doing so may bring the computed VITC across a discontinuity and it would never
match a time found on the input.
2 GPI (General Purpose Input) is generally used when co-timing to analog cue tone systems. Using a 3rd party
device, the analog cue tone can be converted to a GPI pulse. This would occur at the insertion point of the cue tone,
not the splice point. So, the pulse is occurring at the pre-roll time before the actual splice point.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 58

Table 9-25: inject_section_data_request

Syntax Bytes Type

inject_section_data_request() {

 SCTE35_command_length 2 uimsbf

 SCTE35_protocol_version 1 uimsbf

 SCTE35_command_type 1 uimsbf

 SCTE35_command_contents() *

}

9.8.3.1. Semantics of fields in inject_section_data_request()

SCTE35_command_length – This field encodes the number of bytes in the
SCTE35_command_contents() structure.

SCTE35_protocol version – When the SCTE 35 [SCTE35] splice_info_section() is created, the protocol
version field in the Splice Info Section will be filled in with this value. This could allow a compatible
method of delivering commands defined in future revisions of SCTE 35 [SCTE35] using older versions of
this protocol

SCTE35_command_type – This field will fill in the value of the splice_command_type field in the
SCTE 35 [SCTE35] splice_info_section() being created.

SCTE35_command_contents() – This is a complete binary image of the SCTE 35 [SCTE35]
splice_info_section() being created, following the splice_command_type field up to, but not including,
the descriptor_loop_length field.

9.8.4. insert_avail_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, an avail_descriptor() shall be
added to the descriptor loop of the associated SCTE 35 [SCTE35] splice_info_section being created. The
Normal request to which it applies must exist earlier in the same data() buffer.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 59

Table 9-26: insert_avail_descriptor_request_data

Syntax Bytes Type

insert_avail_descriptor_request_data() {

 num_provider_avails 1 uimsbf

 for (i=0 ;i< num_provider_avails; i++) {

 provider_avail_id 4 uimsbf

 }

}

9.8.4.1. Semantics of fields in insert_avail_descriptor_request_data()

num_provider_avails – If this field is zero, then the provider_avail_id field is not being used and the
value shall be ignored.

If this field is non-zero, then the num_provider_avails field is the repetition count for the
provider_avail_id field. Also, the Injector must include an avail_descriptor()in the DPI
splice_info_section created.

provider_avail_id – This is an optional 32-bit field which may be inserted into the resulting SCTE 35
[SCTE35] splice_info_section. If the value of num_provider_avails is zero, this field shall be ignored
and no avail_descriptor() shall be created.

9.8.5. insert_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the descriptor image will be copied
into the descriptor loop of the associated SCTE 35 [SCTE35] splice_info_section being created. One of
the Normal requests must exist earlier in the same data() buffer and these descriptors will be added to any
SCTE 35 [SCTE35] section generated by that Normal request.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 60

Table 9-27: insert_descriptor_request_data

Syntax Bytes Type

insert_descriptor_request_data() {

 descriptor_count 1 uimsbf

 for(i=0; i< descriptor_count ; i++) {

 descriptor_image() *

 }

}

9.8.5.1. Semantics of fields in insert_descriptor_request_data()

descriptor_count – This field encodes the number of descriptors following.

descriptor_image – This field carries a complete image of a standard SCTE 35 [SCTE35] descriptor,
which follows MPEG-2 rules and has its length as the second byte of the descriptor. This request is used
to inject proprietary, or future standard descriptors into a request without need for specific knowledge of
the contents of the descriptor to be injected. For standard descriptors, the recommended method is to
update this protocol to include a request for the new descriptor.

9.8.6. insert_DTMF_descriptor request AS ==> IJ

This is a Supplemental usage request. This request creates an image of the DTMF descriptor defined in
SCTE 35 [SCTE35]. Refer to SCTE 35 [SCTE35] for details of each field in the descriptor.

One specific note about this descriptor. The pre-roll field found in this descriptor is intended to be the
same value as that used for the associated splice_request. The DTMF descriptor allows for tenths of a
second resolution, and the splice_request allows millisecond resolution. One should ensure that both
requests use the same pre-roll value to provide a consistent program insertion on both analog and digital
systems.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 61

Table 9-28: insert_DTMF_descriptor_request_data

Syntax Bytes Type

insert_DTMF_descriptor_request_data() {

 pre-roll 1 uimsbf

 dtmf_length 1 uimsbf

 for(i=0; i<dtmf_length; i++) {

 DTMF_char 1 uimsbf

 }

}

9.8.6.1. Semantics of fields in insert_DTMF_descriptor_request_data()

pre-roll – Refer to SCTE 35 [SCTE35] for detail usage of this field.

The pre-roll time encodes the number of tenths of seconds before the splice_point signaled in the resulting
SCTE 35 [SCTE35] section that a DTMF tone sequence should finish being emitted. To allow for
processing time, the pre-roll signaled in the SCTE 35 [SCTE35] message should be greater than this
value.

dtmf_length – This indicates the length of the following loop in bytes.

DTMF_char – This field carries one character of a DTMF sequence to be output by an IRD. This field
should contain one of the ASCII characters ‘0’ through ‘9’, ‘*’, ‘#’, and ‘A’ through ‘D’. Refer to SCTE
35 [SCTE35] for detailed usage of this field.

9.8.7. insert_segmentation_descriptor request AS ==> IJ

This is a Supplemental usage request, and creates a Segmentation descriptor defined in SCTE 35
[SCTE35]. Refer to SCTE 35 [SCTE35] for details of each field in the descriptor. The
program_segmentation_flag shall be set to one in the resulting SCTE 35 [SCTE35]
splice_info_section(). If the user needs to support component mode segmentation, then an
insert_descriptor request should be used to directly format this descriptor.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 62

Table 9-29: insert_segmentation_descriptor_request_data

Syntax Bytes Type

insert_segmentation_descriptor_request_data() {

 segmentation_event_id 4 uimsbf

 segmentation_event_cancel_indicator 1 uimsbf

 duration 2 uimsbf

 segmentation_upid_type 1 uimsbf

 segmentation_upid_length 1 uimsbf

 segmentation_upid varies uimsbf

 segmentation_type_id 1 uimsbf

 segment_num 1 uimsbf

 segments_expected 1 uimsbf

 duration_extension_frames 1 uimsbf

 delivery_not_restricted_flag 1 uimsbf

 web_delivery_allowed_flag 1 uimsbf

 no_regional_blackout_flag 1 uimsbf

 archive_allowed_flag 1 uimsbf

 device_restrictions 1 uimsbf

 insert_sub_segment_info

 sub_segment_num

 sub_segments_expected

}

1

1

1

uimsbf

uimsbf

uimsbf

9.8.7.1. Semantics of fields in
insert_segmentation_descriptor_request_data()

segmentation_event_id – A four byte (32-bit) unique segmentation event identifier.

segmentation_event_cancel_indicator – A one byte flag that when set to ‘1’ indicates that a previously
sent segmentation event, identified by segmentation_event_id, has been cancelled.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 63

duration - A two byte (16-bit) field giving the duration of the program segment in whole seconds. A
zero value is legal and results in the segmentation_duration_flag in the resulting SCTE 35 [SCTE35]
section being set to ‘0’. See duration_extension_frames.

segmentation_upid_type – A one byte field that specifies the type of “UPID” utilized in this program.
There are multiple types allowed to insure that programmers will be able to use an id that their systems
support. Refer to SCTE 35 [SCTE35] for full details.

segmentation_upid_length – A one byte field that specifies the length in bytes of the
segmentation_upid. If there is no segmentation_upid data, segmentation_upid_length shall be set to
0.

segmentation_upid – A variable-length field that specifies the “UPID” value for this segment. Refer to
SCTE 35 [SCTE35] for details.

segmentation_type_id – A one byte field which designates type of segmentation and takes values
specified in SCTE 35 [SCTE35].

segment_num – A one byte field that provides identification for a specific segment within a collection of
segments. Refer to SCTE 35 [SCTE35] for full details.

segments_expected – A one byte field that provides a count of the expected number of individual
segments within a collection of segments.

duration_extension_frames – A one byte field that shall carry a value in the range from 0 to the value of
the greatest integer less than frame rate, which shall be the number of frames in the fractional second not
included in duration plus one. The total duration of the program segment is duration seconds plus
duration_extension_frames frame times. If duration is 0 this field carries no meaning.

Note: In SCTE 35 [SCTE35], content length is described in terms of the number of ticks of a 90 kHz
MPEG counter. A value in these units is calculated from duration and duration_extension_frames by
converting duration using the Section titled “Conversion of SMPTE ST 12-1 Time-Address Value to
Local Wall Clock Time” of SMPTE EG40 [SMPTE_EG40], converting duration_extension_frames using
Section titled “Conversion of Local Wall Clock Time to MPEG-2 PCRtb Value” of SMPTE EG40
[SMPTE_EG40], and adding the resulting values. It is vital that implementers reference the latest
published edition of SMPTE EG40 [SMPTE_EG40].

delivery_not_restricted_flag – A one byte flag that when set to 1 indicates there is no need for external
checks prior to delivery. A value of 0 indicates the content requires external checks. Refer to SCTE 35
[SCTE35] for full details.

web_delivery_allowed_flag – A one byte flag that when set to 1 indicates web delivery is allowed. Refer
to SCTE 35 [SCTE35] for full details.

no_regional_blackout_flag – A one byte flag that when set to 1 indicates there is not a regional
blackout. Refer to SCTE 35 [SCTE35] for full details.

archive_allowed_flag – A one byte flag that when set to 1 indicates the content is archiveable. Refer to
SCTE 35 [SCTE35] for full details.

device_restrictions – A one byte field which designates type of segmentation and takes values specified
in SCTE 35 [SCTE35].

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 64

insert_sub_segment_info - A one byte flag that indicates whether sub_segment_num and
sub_segments_expected are included in the resultant SCTE 35 [SCTE35] segmentation descriptor. If the
value is 1, the values shall be inserted. If the value is 0 or null, the values shall not be inserted.
insert_sub_segment_info is not passed in the resultant SCTE 35 [SCTE35] segmentation descriptor.

sub_segment_num – A one byte field that provides identification for a specific sub-segment within a
collection of segments. Refer to SCTE 35 [SCTE35] for full details.

sub_segments_expected – A one byte field that provides a count of the expected number of individual
sub-segments within a collection of sub-segments.

Note: insert_sub_segment_info, sub_segment_num and sub_segments_expected can form an optional
appendix to the segmentation descriptor. The presence or absence of this optional data block is
determined by the descriptor loop’s data_length.

9.8.8. proprietary_command request AS ==> IJ

This is a Normal usage request, and allows for proprietary extension to the protocol. The data_length
field functions in the normal manner for the data() loop within the context of
multiple_operation_message().

The opID variable for the proprietary_command_data() is one of the values defined in Table 8-3 for user
defined requests. In addition to using this opID value, each company that wishes to define proprietary
SCTE 35 [SCTE35] commands should register with SMPTE-RA [SMPTE_RA] for a proprietary id value
(see SCTE 35 [SCTE35] Section 9.3.6). This permits the company to create one or more proprietary
commands that are uniquely theirs, each identified by their respective proprietary_command_data()
structure.

The data_length field in multiple_operation_message() (See Section 8.2.3) the must be correctly set to
reflect the number of bytes utilized by the remainder of the request which follows the data_length field
itself. Failure to do so will result in the commands not being processed correctly.

Table 9-30: proprietary_command_request_data

Syntax Bytes Type

proprietary_command_request_data() {

 proprietary_id 4 uimsbf

 proprietary_command 1 uimsbf

 for (i=0; i<data_length-5; i++) {

 proprietary_data() *

 }

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 65

9.8.8.1. Semantics of fields in proprietary_command_request_data()

proprietary_id – This number is a 32-bit identifier that has been registered with SMPTE-RA [12] for a
specific company. The contents of the command and the definition of how to process the command are
proprietary. All definitions are beyond the scope of this document.

proprietary_command – This is a field, similar to the opID tag, which identifies individual proprietary
commands for each proprietary id. The meaning of this field is not defined, but must follow the basic
rules for the protocol.

proprietary_data() – This is a variable length field that contains the data for the specific proprietary
command. The amount of data contained in the command can be determined from the overall length field
for this command.

The definition for this data is not specified, but it must follow the basic rules for the protocol.

9.8.9. insert_tier_data request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the tier value shall be copied into
the associated SCTE 35 [SCTE35] splice_info_section being created. One of the Normal requests shall
be placed earlier in the same data() buffer and this value will be added to the SCTE 35 [SCTE35] section
generated by that Normal request. If this request is missing, the Injector shall insert the value of 0xFFF
into the tier field in the associated SCTE 35 [SCTE35] splice_info_section being created.

Table 9-31: insert_tier_data

Syntax Bytes Type

insert_tier_data() {

 tier_data 2 uimsbf

}

9.8.9.1. Semantics of fields in insert_tier_data()

tier_data – A field with the most significant nibble set to 0x0 and containing, in the lower 12-bits, a
value with semantics as specified in SCTE 35 [SCTE35] for “tier.”

9.8.10. insert_time_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the time_descriptor() shall be
associated with the Normal request that shall have been placed earlier in the same data() buffer and this
structure will be added the SCTE 35 [SCTE35] section generated by that Normal request.

The request requires the AS to supply an exact PTP [TAI] sample to be inserted in the resulting message
(see IEEE 1588 [IEEE1588]).

Per SCTE 35 [SCTE35], this request may be associated with splice_insert(), splice_null() and
time_signal() requests. The injector will make no effort to verify that no other Normal request is being
used.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 66

Table 9-32: insert_time_descriptor

Syntax Bytes Type

insert_time_descriptor() {

 TAI_seconds

 TAI_ns

 UTC_offset

}

6

4

2

uimsbf

uimsbf

uimsbf

9.8.10.1. Semantics of fields in insert_time_descriptor()

TAI_seconds – Per SCTE 35 [SCTE35] Table 27, time_descriptor().

TAI_ns – Per SCTE 35 [SCTE35] Table 27, time_descriptor().

UTC_offset – Per SCTE 35 [SCTE35] Table 27, time_descriptor().

9.8.11. insert_audio_descriptor request AS ==> IJ

This is a Supplemental usage request. When this request is processed, the audio_descriptor() shall be
associated with the Normal request that shall have been placed earlier in the same data() buffer and this
structure will be added the SCTE 35 [SCTE35] section generated by that Normal request.

Per SCTE 35 [SCTE35], this request may be associated with splice_insert(), splice_null() and
time_signal() requests. The injector will make no effort to verify that no other Normal request is being
used.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 67

Table 9-33: insert_audio_descriptor

Syntax Bytes Type

insert_audio_descriptor() {

 audio_count 1 uimsbf

 for (i=0; i<audio_count; i++) {

 component_tag 1 uimsbf

 ISO_code 3 uimsbf

 Bit_Stream_Mode 1 uimsbf

 Num_Channels 1 uimsbf

 Full_Srvc_Audio 1 uimsbf

 }

}

9.8.11.1. Semantics of fields in insert_audio_descriptor()

audio_count – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

component_tag – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

ISO_code – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

Bit_Stream_Mode – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

Num_Channels – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

Full_Srvc_Audio – Per SCTE 35 [SCTE35] Table 28, audio_descriptor().

9.8.12. insert_audio_provisioning request AS ==> IJ

This Normal request is the usual carrier of audio encoder provisioning requests. It shall be accompanied
by at least a time_signal_request specifying the time for the channel_mode change to take place held
within the data() structure of a multiple_operation_message.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 68

Table 9-34: insert_audio_provisioning

Syntax Bytes Type

insert_audio_provisioning() {

 audio_count 1 uimsbf

 for (i=0; i<audio_count; i++) {

 channel_mode 1 uimsbf

 Codec_index 1 uimsbf

 }

}

9.8.12.1. Semantics of fields in insert_audio_provisioning

audio_count – The number of audio services under the control of this
Automation/Compression system.

channel_mode – Per SCTE 242-1, Table 1, the “channel_mode” to be set for this
particular audio service.

codec_index – Value assigned to the codec in Table 9-35:

Table 9-35: values for codec_index

Codec_index Value assigned

reserved 0

AC-3 1

E-AC-3 2

AAC 3

reserved 4

AC-4 5

MPEG-H 6

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 69

9.8.13. insert_alternate_break_duration_request AS ==> IJ

This is a Supplemental usage request. When this request is processed, an alternate break duration() shall
replace the break_duration of the associated SCTE 35 [SCTE35] splice_info_section being created. The
Normal request to which it applies must exist earlier in the same data() buffer.

The request requires the AS to supply an exact break duration in milliseconds to be inserted in the
resulting message.

If this request is missing, the Injector shall insert the value of break_duration into the break_duration field
in the associated SCTE 35 [SCTE35] splice_info_section being created.

Note: The time value of the alternate_break_duration is given in milliseconds. The time value of
break_duration is given in tenths of seconds. The injector shall calculate the break_duration in PTS ticks
appropriate to the duration type used.

Table 9-36: insert_alternate_break_duration

Syntax Bytes Type

insert_alternate_break_duration_data() {

 alternate_break_duration_data 4 uimsbf

}

9.8.13.1. Semantics of fields in
insert_alternate_break_duration_request()

alternate_break_duration – A 32-bit field giving the duration of the insertion in
milliseconds. If alternate_break_duration is set to zero, then the resulting SCTE 35
[SCTE35] splice info() section shall use the break_duration(). This field is ignored for
splice_insert_type values other than spliceStart_normal and spliceStart_immediate.

10. PAMS to the Automation System Communications
The PAMS to the Automation System Communications are an optional, but normative section of this
Standard. The PAMS is defined in logical terms, and no particular implementation is expected. The
reader is reminded that PAMS is an acronym for “Provisioning and Alarm Management System.”

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 70

The messages defined within this section supply the required standard mechanisms for a bi-directional
data communication system to support the following functional requirements:

• System Initialisation and Service Discovery
• Data Communications Channel Maintenance (sometimes called “heartbeat”)
• System Restart from Maintenance or Redundancy Change

Injector Provisioning and de-provisioning in real-time
• Service Addition and Subtraction in real-time
• Failure Reporting
• Appropriate Reaction to Failures

Additional functionality may be added, provided the core messages are compliant and function as
described.

10.1. System Design Philosophy

The data communications between the PAMS and the AS is expected to be truly “peer to peer.” This
translates to, in outline form, that these communications must be:

• Best effort communications – if a link is down and no other path is available, notify a human
operator, but do not treat the link as de-provisioned

• Notification of outages is not expected
• Restarts are expected
• Non-volatile storage of system and API parameters is expected
• Data Communications Channel Maintenance messages are optional
• Full-time availability is not required for all aspects of the system (only Injector signalling and

redundancy handling)
• A wide variety of system implementations are possible
• The PAMS may not be a full-time participant in the overall system operation – it may divide

functions between AMS (Alarm Management), which is expected to be full-time (and possibly
not implemented in devices which have direct User Interfaces) and P (Provisioning), which may
be available only on an “as needed” basis, when the operations staff needs to change a given
device’s specific provisioning.

Uni-directional systems are not expected to utilize the messages specified in this section, and could
accomplish all of the same logical functions via manual initialization and coordination. The necessary
functions are outlined above.

Bi-directional system implementers are free to choose to support these messages or not, however they
must all be supported if any are. The user can be advised simply “PAMS support” or “no PAMS support”
as regards a particular implementation.

10.1.1. TCP/IP Data Communications

In a bi-directional system utilizing TCP/IP, the communication shall be purely peer-to-peer. Some
system operators may desire a heartbeat remain active between the two. This is provided as an optional
extension.

If either the Automation System or the PAMS fails, there is no need to notify the other (or distribute
alarms). When the failed system is again ready to function, it should issue either a config_request
message (Automation System) or a provisioning_request message (PAMS). If one system attempts to
communicate with the other and there is no response, it shall continue functioning based on the last

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 71

available configuration. Periodic retries shall be done until the other system eventually responds and
normal communications is again established.

10.1.2. Bi-directional Serial Data Communications

As with TCP/IP, the communication is also peer-to-peer. Failures must be tolerated with alarm
notification to the appropriate operational staff and periodic retries if the sender has need to communicate
with the receiver (a failure notification to deliver, for example).

10.2. PAMS Functionality

As outlined above, the basic functionality divides into the following areas outlined in detail below. Each
of these will be considered briefly in order:

10.2.1. System Initialization and Service Discovery

Initialization should happen (ideally) once when a system is first commissioned, and then never again. It
is recognized that this is naïve, and messages are provided for re-starting both an AS and the PAMS.

Handled by the config_request, the config_response, the provisioning_request, and the
provisioning_response messages. Please refer to Sections 10.4.1, 10.4.2, 10.5.1, and 10.5.2.

10.2.2. Data Communications Channel Maintenance

Capabilities are provided for PAMS to AS “link alive” messages if desired by the end-user.

Handled by the AS_alive request and the AS_alive response messages. Please refer to Sections 10.7.1
and 10.7.2.

10.2.3. System Restart from Maintenance or Redundancy Change

Messages are provided for re-starting both an AS and the PAMS.

Handled by the config_request, the config_response, the provisioning_request, and the
provisioning_response messages. Please refer to Sections 10.4.1, 10.4.2, 10.5.1, and 10.5.2.

10.2.4. Injector Provisioning and de-provisioning in real-time

The specifics of provisioning and de-provisioning of injectors is dealt with in Section 11 and are not
further specified, except from a logical viewpoint. Notification is handled via the provisioning_request
and the provisioning_response messages. Please refer to Sections 10.5.1, and 10.5.2.

10.2.5. Service Addition and Subtraction in real-time

Handled by the provisioning_request and the provisioning_response messages. Please refer to Sections
10.5.1 and 10.5.2.

10.2.6. Failure Reporting

Failure reporting is defined in this Section, and shall be present whenever the system is operational. A
number of implementation architectures will meet this requirement.

Handled by the fault_request and the fault_response messages. Please refer to Sections 10.6.1 and 10.6.2.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 72

10.2.7. Appropriate Reaction to Failures

Injector replacement notification and action is defined in this Section, and shall be present whenever the
system is operational. A number of implementation architectures will meet this requirement.

Notification is via the provisioning_request and the provisioning_response messages. Please refer to
Sections 10.5.1, and 10.5.2.

10.2.8. System Initialization

System Initialization is an infrequent event. This API defines messages to be utilized in bi-directional
systems to permit system to system notification of events and changes in status. Both the AS and the
PAMS shall expect notification messages from the other and process them in manners which do not
disrupt DPI or other services.

The definition of the PID or PIDs used for DPI service and their method of creation is beyond the scope
of this standard.

10.3. Service Continuity

Initialization (or re-initialization) of the communications between the AS and the PAMS shall not cause
interruption of any of the audio, video, or DPI services currently being processed by either the AS or the
DCS. Initialization can be safely conducted at any point in time. This includes changes to Injector
services or Injectors themselves. These events may be expected to occur at random intervals.

10.4. System Initialization Messages

The manner in which the initial IP address for the PAMS is conveyed to the Automation System is
beyond the scope of this Standard.

In a bi-directional system utilizing TCP/IP, the initial communication begins with the PAMS listening on
predefined socket 5167 and the Automation System opening an API Connection to the PAMS via that
socket. The Automation System sends a config_request to the PAMS. The Automation System then
listens for the response from the PAMS and closes the API Connection. For all further PAMS-to-the
Automation System communication, the PAMS will use the IP address and port number supplied in the
Config_Request message. This message may also be used to notify the PAMS of the Automation System
redundancy switching.

10.4.1. config_request message AS ==> PAMS

When the PAMS receives config_request message, it will store the Automation System configuration info
for further use, and immediately respond with a config_response message.

This message shall be sent at system initialization, following AS downtime for whatever reason, and
upon AS redundancy switch requiring the PAMS to connect to a new IP address.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 73

Table 10-1: config_request_data

Syntax Bytes Type

config_request_data(){

 AS_IP_address 4 uimsbf

 AS_socket_number 2 uimsbf

 activeflag 1 uimsbf

 protocol_version 1 uimsbf

 last_AS_index 1 uimsbf

 last_injectorcount 2 uimsbf

 permanent_connection_requested 1 uimsbf

}

10.4.1.1. Semantics of fields in config_request_data()

AS_IP_address – IP address of the Automation System. In a bi-directional serial communications
system architecture, it shall be zero.

AS_socket_number – TCP port of the Automation System, waiting for incoming communication from
the PAMS In a bi-directional serial communications system architecture, it shall be zero.

activeflag – Boolean flag indicating if this AS instance acts as a primary or a backup. Zero indicates a
the AS is a backup, non-zero indicates the AS is a primary.

protocol_version – An 8-bit unsigned integer which indicates the version number of the protocol and
which shall be 0x00.

last_AS_index – Value of the AS_index provided by the PAMS during a previous system initialization.
If used, it ranges from 1 to 255. If not used, or this is the first system initialization, it is zero.

last_injectorcount – Value of the injectorcount last provided by the PAMS. Zero during the first
system initialization.

permanent_connection_requested – Non-zero indicates that maintaining a permanent TCP/IP link has
been provisioned on the AS side. The PAMS will not close the TCP/IP socket after sending the
provisioning_request message and will supply heartbeat messages. A backup AS may request a
permanent connection.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 74

10.4.1.2. Detailed Discussion of Message Syntax and Semantics

Under normal circumstances the PAMS will communicate only with the Automation System IP address
with activeflag set to TRUE. The one exception is if the provisioning_request message (See Section
10.5.1 for details) from the backup requests a permanent connection be maintained.

When a backup AS instance takes over as primary, it shall send a config_request message to the PAMS
as a method of notifying the PAMS that a new IP address and socket must be connected to. In this case,
the AS supplies the value for AS_index initially furnished at system startup.

10.4.2. config_response message PAMS ==> AS

The config_response message conveys back an index value later used to populate the AS_index field in
the single_operation_message() and multiple_operation_message() structures (Sections 8.2.2 and 8.2.3)
and indicates that the config_request message was received. This message can also contain a result code
(see Table 14-1) if appropriate.

For systems using TCP/IP data communications, once the PAMS sends this message, it will immediately
close the socket and re-open TCP/IP communications using the AS_IP_address and AS_socket_number
values from the config_request message. It will then send a provisioning_request message (See Section
10.5.1) to the AS.

Table 10-2: config_response_data

Syntax Bytes Type

config_response_data(){

 AS_index 1 uimsbf

 permanent_connection_requested 1 uimsbf

}

10.4.2.1. Semantics of fields in config_response_data()

AS_index – Index provided by the PAMS, ranging from 0 to 255. See Section 8.2.1 for a complete
discussion regarding usage of this value.

When responding to a redundancy switch within a given AS, this shall be the same value contained in the
last_AS_index in the config_request message.

permanent_connection_requested – Non-zero indicates that maintaining a permanent TCP/IP link has
been provisioned on the PAMS side. If this is requested, the PAMS will not close the TCP/IP socket after
sending the provisioning_request message and will supply AS_alive messages.

10.5. Injector Service Notification

The PAMS shall notify the AS of all active injectors at the time of system initialization or re-initialization
and shall notify the AS of any new injectors as they are provisioned. In a similar manner, the PAMS
shall notify the AS of any injectors which are de-provisioned.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 75

A provisioning_request message is also sent by the PAMS upon re-initialization following either
downtime for maintenance, non-redundant failure, or redundant switchover. If AS_alive messages had
been requested, they would then be resumed following the receipt of a provisioning_response message.

10.5.1. provisioning_request message PAMS ==> AS

PAMS will notify the Automation System of all injectors ready for use in DPI service via the following
structure. In some system architectures, the same IP address and socket may be shared by different
services with the Injector.

Table 10-3: provisioning_request_data

Syntax Bytes Type

provisioning_request_data(){

 service_count 1 uimsbf

 for (i=0; i<service_count; i++) {

 injector_IP_address 4 uimsbf

 injector_socket_number 2 uimsbf

 service_name 32 bslbf

 number_of_DPI_PIDs 1 uimsbf

 for (i=0; i<number_of_DPI_PIDs; i++) {

 DPI_PID_index 2 uimsbf

 shared_PID 1 uimsbf

 event_id_compliance_flag 1 uimsbf

 }

 component_mode 1 uimsbf

 if (component_mode != 0){

 injector_component_list()

 }

 }

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 76

10.5.1.1. Semantics of fields in provisioning_request_data()

service_count – specifies the number of services defined within the following loop. Each iteration of the
loop defines basic data for a given Injector Instance.

injector_IP_address - A standard 32-bit IP address. This is the IP address of the injector. In systems not
using TCP/IP communications, the value of this field shall be zero.

injector_socket_number - A standard 16-bit socket number. In systems not using TCP/IP
communications, the value of this field shall be zero.

service_name - A case sensitive string value, terminated by a 0x00 byte giving the service name. This
value must be manually provisioned by both the AS and the PAMS and must match. It is used to
unambiguously identify the service. There may be duplicate service_names only for hot backups.

number_of_DPI_PIDs - count of the number of DPI PIDs provisioned. This number shall range from 1
to the limit specified in SCTE 35 [SCTE35].

DPI_PID_index - The PID index for each specific DPI service. The value is not an actual PID number,
rather the index by which the AS may request the specific service identified by cue_stream_type. This
value populates the DPI_PID_index variable in both the single_operation_message() and
multiple_operation_message() structures (See Sections 8.2.2 and 8.2.3). It is normally assigned a unique
value unless a shared PID situation is signaled by a non-zero value in shared_PID. The rules for usage
of DPI_PID_index are defined in Section 8.2.1.

shared_PID – A zero value indicates that the corresponding value of DPI_PID_index is unique. A value
of one indicates that the corresponding value of DPI_PID_index is intentionally duplicated (typically the
same video with different language audio tracks) and that the AS should only communicate with one
instance of DPI_PID_index. This flag shall be set to one for all instances of the corresponding
DPI_PID_index.

cue_stream_type - Identifies the type of cue stream. The values are taken from Table 6-3 of SCTE 35
[SCTE35].

event_id_compliance_flag – A one value indicates that all splice_event_id values comply with the
Section titled “Constraints on Event Id” of SCTE 35 [SCTE35]. The “Constraints on Event Id” section
lists the applicable SCTE 35 messages that include an event id compliance indicator. Note: The actual
SCTE 35 messages will use a value of 0 (zero) to indicate compliance. See SCTE 35 [SCTE35] for
specific constraints on coding the compliance flag in the applicable SCTE 35 messages.

component_mode - Length of the injector_services_list (). A zero value indicates no services_list is
present.

injector_component_list () - See Section 10.8.1.

10.5.1.2. Detailed Discussion of Message Syntax and Semantics

The PAMS will send this message whenever the configuration for an Injector changes. This could be
during provisioning, removal, or reallocation after a failure. This approach allows the Automation
System to verify that its internal data structure is in sync with the PAMS Injector configuration. If no
injectors have been provisioned, then a zero InjectorCount message is sent. This confirms to the
Automation System that the PAMS is active, even if no injectors have been provisioned for DPI service.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 77

The AS is expected to check the consistency of the values assigned to DPI_PID_index and to send the
provisioning_response message with a result code of “Inconsistent value of DPI PID index found” (see
Table 14-1). If an expected common value of DPI_PID_index is not found, then the AS should send
the provisioning_response message with a result code of “Shared value of DPI PID index not found” (see
Table 14-1). If a common value of DPI_PID_index is found across physical injectors or in a situation
where the AS is not expecting a shared PID, then the AS shall send the provisioning_response message
with a result code of “Illegal shared value of DPI PID index found” (see Table 14-1). Both the PAMS
and the AS should produce alarms immediately upon sensing this condition to permit the operations staff
to resolve the discontinuity.

If the user changes an Injector’s service_name value, then this message is sent again to the Automation
System.

PAMS will send this message to both a primary and a backup Automation System IP address if such are
defined.

The AS, the PAMS, and the Injectors shall all comply with the requirements of service continuity
outlined in Section 10.3 when processing this message.

10.5.2. provisioning_response message AS ==> PAMS

The provisioning_response message contains no data and indicates that the provisioning_request message
was received. This message may return a result code (See Section 14) if appropriate. The AS is expected
to return specific result codes in certain circumstances. Please refer to the discussion of DPI_PID_index
uniqueness in Section 8.2.1.

Table 10-4: provisioning_response_data

Syntax Bytes Type

provisioning_response_data(){

}

10.6. Failure Notification Messages (Device or Communications)

The messages in this section shall be utilized by either the AS or the PAMS to notify the other of failures
in situations where the other system must take action in response to the notification. Such action may
take the form of an automatic response (for example a change of injectors requiring a switch of IP
addresses and an initialization of communications with the new Injector) or notification of the system
operator (for example an apparent communications failure). The action taken in response to receipt of
these messages may be operationally constrained, however the minimal reaction of the recipient system
shall be alarm notification to the system operator.

Notification of the AS of an Injector replacement shall utilize the provisioning_request message defined
in Section 10.5.1.

Since the AS can sense an apparent Injector failure, a message is provided for this specific notification.
The PAMS must be ready to accept Injector failure notification from the AS at any point, before, during,
or after it has processed any Injector failures that it may have detected on its own. Operational procedures
for handling such a failure will be system specific.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 78

10.6.1. fault_request message AS ==> PAMS

This message permits the AS to notify the PAMS of a possible failure of either an Injector or the data
communications link to that Injector. Resultant action taken by the PAMS shall be configurable by the
operations staff of the DCS site. When automatic replacement is desired by that staff, this message shall
result in an automatic replacement of an Injector. The minimum compliant response shall be the
generation of an operator alarm.

As a result of receipt of this message, the PAMS may (if configured to do so) automatically trigger a
redundancy replacement of an Injector (which shall result in it sending a provisioning_request message
after the switch). It may also notify the operator or request operator guidance. The specifics of the precise
reaction to this message must be left to operational provisioning of the PAMS and the DCS.

After sending a fault_request message and receiving a fault_response in return, the AS may logically
expect to receive a provisioning_request message at some point in the future to notify the AS of the
Injector change. In the mean-time, until such a notification is given, the AS shall continue to periodically
attempt to communicate with the Injector, since the link failure may be only visible to the AS and
operations personnel may restore the link based on the fault_request notification. In such case, the AS
shall re-establish the communications and continue operating as if a failure had never been detected.

Table 10-5: fault_request_data

Syntax Bytes Type

fault_request_data(){

 injector_IP_address 4 uimsbf

 injector_socket_number 2 uimsbf

 injector_service_name 32 bslbf

 DPI_PID_index 2 uimsbf

}

10.6.1.1. Semantics of fields in fault_request_data()

injector_IP_address - A standard 32-bit IP address. Zero if TCP/IP communications are not being used.

injector_socket_number - A standard 16-bit socket number. Zero if TCP/IP communications are not
being used.

injector_service_name - A string value, terminated by a 0x00 byte giving the injector service name.
This value must match the name sent by the PAMS in the defining provisioning_request message. It is
used to unambiguously identify the service.

DPI_PID_index - The PID index for the specific DPI service which appears to have failed. This field
may be zero if the Injector can be unambiguously identified by the other 3 fields in this message. The
rules for usage of this field are defined in Section 8.2.1.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 79

10.6.2. fault_response message PAMS ==> AS

The fault_response message contains no data and indicates that the Fault Request message was received.
This message may return a result code (see Table 14-1) if appropriate, including an indication of “no fault
found”.

Table 10-6: fault_response_data

Syntax Bytes Type

fault_response_data(){

}

10.7. PAMS to AS permanent “link alive” messages

Use of a permanent “link alive” messages (also called a “heartbeat”) between the PAMS and the AS is
optional in usage, depending upon operational provisioning. All PAMS and AS which support messages
within Section 9.8.11 of this document are expected to support this permanent “link alive” messages
functionality. Either system can request this service be initiated and the other shall cooperate in
maintaining it. Both TCP/IP and bi-directional serial systems shall support “link alive” messages.

If loss of the link is detected by either the AS or the PAMS, it shall result in immediate operator
notification.

10.7.1. AS_alive_request PAMS ==> AS

This Basic request serves to ensure that the PAMS to AS communications path remains open and reliable.
If there has been no activity on the connection in the preceding 60 seconds, then an AS_alive_request
message shall be sent.

Table 10-7: AS_alive_request_data

Syntax Bytes Type

AS_alive_request_data(){

}

10.7.2. AS_alive_response AS ==> PAMS

This Basic response serves to ensure that the AS to PAMS communications path remains open and
reliable.

Table 10-8: AS_alive_response_data

Syntax Bytes Type

AS_alive_response_data(){

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 80

10.8. PAMS to AS Common Elements

10.8.1. injector_component_list() Definition

This structure defines the list of component services carried by a given Injector Instance. This is utilized
only if component mode splicing is supported.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 81

Table 10-9: injector_component_list()

Syntax Bytes Type

injector_component_list {

 video_component_tag 1 uimsbf

 number_of_audio_component_tags 1 uimsbf

for (i=0; i<number_of_audio_component_tags; i++) {

 audio_component_tag 1 uimsbf

 }

 number_of_data_component_tags 1 uimsbf

for (i=0; i<number_of_data_component_tags; i++) {

 data_component_tag 1 uimsbf

 }

}

10.8.1.1. Semantic definition of fields in injector_component_list()

video_component_tag - component_tag value of the video stream

number_of_DPI_PIDs - count of the number of DPI PIDs provisioned

number_of_audio_component_tags - count of the audio component_tags (hence the index of the
component_tag list)

audio_component_tag - component_tag value of each specific audio stream

number_of_data_component_tags - count of the data component_tags.

data_component_tag - component_tag value of each specific data service.

11. PAMS to Injector Communications (Informative)
The communications specifics between the Injector and the PAMS can be expected to be proprietary and
out of the scope of this document. This document will specify logical operations which are necessary to
ensure this API functions properly as a system.

11.1. The PAMS Implementation

It must be noted that the PAMS is a logical function which may be realized in real implementations in a
variety of manners. This API does not dictate any particular implementation, rather specifies the logical

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 82

functions the PAMS must realize. The only mandated function is that there be a method of alerting the
system operator of Injector or communications failures.

This API does expect that the PAMS will store system configuration information in some non-volatile
storage media to ensure continuity in case of a hardware failure requiring replacement of some
component of the PAMS hardware.

11.2. Injector Provisioning

Injector provisioning will be done in response to operator input into the PAMS. Injector provisioning
includes notifying the Injector of the PID to be used for DPI splice_info_sections and possibly setting
other Injector parameters. Provisioning will also define the maximum number of socket connections the
Injector must make available for multiple Automation Systems. Response by the Injector to this
provisioning includes placing the SCTE 35 [SCTE35] Registration Descriptor in the PMT for that service.

This API provides capabilities for multiple services per Injector as well as multiple AS. The AS_index
and DPI_PID_index fields in the various messages are utilized to ensure that in all cases the AS, the
Injector, and the service on that Injector can be uniquely identified. Implementations which do not
support one or more of these aspects simply constrain the values of those fields to zero.

11.3. PAMS Structure

The provisioning of injectors is dealt with in Section 11.2 and is not further specified, except from a
logical viewpoint. The alarm management and the overall initialization aspects are within scope, and are
defined in this Section. Initialization should happen (ideally) once when a system is first commissioned,
and then never again. The initialization aspect of the PAMS might then go offline. The alarm
management aspect remains vigilant, however. A number of implementation architectures will meet this
requirement. For more information See Section 11.1. There are requirements for service continuity
specified in Section 10.3.

11.4. Support of multiple DPI PIDs

The attention of implementers must be drawn to the question of the DCS’s support of multiple DPI PIDs.
This refers to (1) multiple services per Injector, (2) multiple PIDs per service, (3) multiple Injector
Instances per data communications connection (i.e. per IP address or serial link), (4) a combination of
these, or (5) multiple Automation Systems connecting to a single DCS. Please consult Section 8.2.1 for a
comprehensive discussion of this topic.

This API provides a mechanism for unambiguous request addressing in a system supporting multiple
Injector Instances, namely the field named DPI_PID_index found in both single_operation_message()
and multiple_operation_message(). The value for each Injector Instance is communicated by the PAMS
to the Automation System via the field named DPI_PID_index.

Assuming that the implementers wish to support multiple services and that such are provisioned by the
operational staff, the values returned in DPI_PID_index will be non-zero and provide the Automation
System an unambiguous method of identifying the desired service on a particular data communications
link. Please see Section 8.2.1 for additional background.

12. Common Elements
The following are the common syntactic elements used throughout this API. They are listed here for ease
of reference.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 83

12.1. Values of splice_event_id used in this Interface

Splicers use the splice_event_id to determine when multiple messages refer to the same event (insertion
opportunity).

AS implementers should be aware of the splice_event_id uniqueness discussion in Section 5.3 of SCTE
67 [SCTE67].

12.2. Values of unique_program_id used in this Interface

The usage of particular values for the unique_program_id field by servers and splicers is outside the
scope of this document. Once set by the AS, the value of the field is relied upon for operations as defined
by the syntax.

12.3. Minimum Pre-roll Time Supported by this Interface

In compliance with the requirements of SCTE 35 [SCTE35], and in keeping with the advice of SCTE 67
[SCTE67], the minimum non-zero value of pre-roll time shall be 4000 milliseconds for a splice_request.
A zero value may be sent if splice_insert_type is spliceStart_immediate or spliceEnd_immediate. If the
Automation System is somehow notified of an event with less time than the minimum, it might count
itself down to the trigger time and request a spliceStart_immediate operation.

SpliceEnd_normal shall use a pre-roll, even though it has been common practice in the industry for a
return command to be sent with zero pre-roll. SpliceEnd_immediate sets the immediate bit which
indicates an early return from a splice. It effectively aborts any content insertion currently in progress.

Note: There is an important distinction between a pre-roll of zero and a splice return with the immediate
bit set. A spliceEnd_normal indicates that the content insertion should have ended approximately at the
time indicated, with or without a pre-roll value. Common industry practice has been to ignore a normal
return message in favor of finishing the playout of the content. Any receive device may choose to use a
return message as a sanity check, and if it determines that the content will excessively exceed the time
indicated, may choose to return to the network early and flag an error.

12.4. time() Definition

This structure serves to carry the current time of day sample of the sender.

Table 12-1: time()

Syntax Bytes Type

time() {

 seconds 4 uimsbf

 microseconds 4 uimsbf

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 84

12.4.1. Semantic definition of fields in time()

seconds – Elapsed seconds since 12:00 AM UTC January 6, 1980, with the count of intervening leap
seconds included.

microseconds – Offset in microseconds of the seconds field.

12.5. timestamp() Definition

This structure serves to carry both current and future time samples as well as contact closure triggers.
Note that all time samples carried by this structure are video frame times. See SMPTE EG 40
[SMPTE_EG40] for guidance when performing calculations using frame times.

Table 12-2: timestamp()

Syntax Bytes Type

timestamp(){

 time_type 1 uimsbf

 if(time_type == 1) {

 UTC_seconds 4 uimsbf

 UTC_microseconds 2 uimsbf

 }

 if(time_type == 2) {

 hours 1 uimsbf

 minutes 1 uimsbf

 seconds 1 uimsbf

 frames 1 uimsbf

 }

 if(time_type == 3) {

 GPI_number 1 uimsbf

 GPI_edge 1 uimsbf

 }

}

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 85

12.5.1. Semantic definition of fields in timestamp()

time_type – If the value is set to 0, then there is no time required and the remainder of the structure is
empty. A value of 1 indicates that the time field has been setup for UTC time for triggering a DPI
splice_info_section. A value of 2 indicates that the time field has been setup for SMPTE VITC (see
[SMPTE_ST12_1]) for more information for triggering a DPI Splice_info_section. A value of 3 indicates
that a GPI input is being used to trigger a DPI splice_info_section.

Note: Non-zero values of time_type that are not currently defined are reserved for future standardization.
Any message received with a time_type it does not understand should be ignored and an error code of
“time type unsupported” returned to the requestor. This error should not occur under normal
circumstances, since the protocol_version will need to be increased to support new definitions of time.

UTC_seconds – Elapsed seconds since 12:00 AM UTC January 6, 1980 UTC with the count of
intervening leap seconds included.

UTC_microseconds – Most significant bits of the offset in microseconds of the UTC_seconds field.
The least significant byte of the value shall be ignored (giving a granularity of 256 microseconds, which
provides sufficient accuracy). See SMPTE EG 40 [SMPTE_EG40] for details of conducting frame count
math.

hours – This field encodes the hour of the day in 24-hour time. Values range from 0 to 23.

minutes – This field encodes the minute of the hour. Values range from 0 to 59.

seconds – This field encodes the seconds of the minute. Values range from 0 to 59.

frames – This field encodes the frame within the current second. The range of values changes based
upon whether the system is 30 Hz or 25 Hz based video and whether or not the frame rate is actually
divided by 1.001. Typical values are 0 to 29 for 30 or 30/1.001 Hz systems, and 0 to 24 for 25 Hz
systems3.

GPI_number – This field encodes a number from 0 to 255 and indicates the GPI to use for triggering the
insertion of the DPI splice_info_section. The actual number of GPI’s available, the GPI numbering and
the edge used for triggering are details of implementation. The automation system should know these
details in order to choose a proper value for this field. If the physical GPI does not exist, the Injector
should discard the request and raise an alarm to the operator.

GPI_edge – This field encodes the edge to use to trigger message processing. A value of 0 indicates a
transition from open to closed. A value of 1 indicates a transition from closed to open.

12.5.2. Use cases and discussion (Informative)

The maximum number of microseconds for 30/1.001 Hz video is 967633 for frame 29. That is 0xEC3D1.
For 60/1.001 Hz video, frame 59 is 984316 microseconds or 0xF04FC. For 50 Hz video, frame 49 is

3 One should be aware that SMPTE VITC allows dropped or repeated frames. If the automation system should give
a timestamp that is lost because the source dropped that frame, then the message should be generated on the first
frame following the dropped frame. Automation systems should avoid using timestamps near discontinuities in the
timecode. For example, if timecode 23:59:59:29 was given, but the source dropped this frame, then the message
would never be generated because it would never see a timecode higher than the specified timecode.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 86

980000 microseconds or 0xEF420. In each case it properly should have 3 bytes, but 2 is actually
sufficient.

For each of these frame rates, the “tick” size (number of microseconds between frame times) is 33367 for
30/1.001, 16683 for 60/1.001, and 20000 for 50 Hz. In each case this is much larger than 256 … thus it is
clear there will be no ambiguity from dropping the least significant byte. It is worth noting that even if
the proposed high frame rates for UHDTV1 are used (up to 300 Hz), the “tick” size remains sufficient and
no frame math ambiguity will result.

Choosing an arbitrary frame number (20), its frame time in a 30/1.001 Hz system is 667333 microseconds
or 0xA2EC5. As the reader can see this requires three bytes, rather than the two provided. Dropping the
LSB results in 0xA2E. Frame 19 is 0x9AC and frame 21 is 0xAB1 (both after dropping the LSB), and
there is no ambiguity.

Doing the same exercise for 60/1.001 Hz, frame 20 is 333666 microseconds or 0x51762. Dropping the
LSB gives 0x517. Frame 19 is 0x4D6 and frame 21 is 0x558 (both after dropping the LSB), and there is
no ambiguity either.

Repeating for 50 Hz, frame 20 is 400000 microseconds or 0x61A80. Dropping the LSB gives 0x61A.
Frame 19 is 0x5CC and frame 21 is 0x668 (both after dropping the LSB), and there is no ambiguity
either.

Picking another frame number (just to be exhaustive), say frame 23, we have 767433 in a 30/1.001 Hz
system, or 0xBB5C9. Dropping the LSB gives 0xBB5. Frame 22 is 0xB33 and frame 24 is 0xC38 (both
after dropping the LSB), and there is no ambiguity.

Working it for 60/1.001 Hz, frame 23 is 383716 microseconds or 0x5DAE4. Dropping the LSB gives
0x5DA. Frame 22 is 0x599 and frame 24 is 0x61C (both after dropping the LSB), and there is no
ambiguity.

Finally, for 50 Hz, frame 23 is 460000 microseconds or 0x704E0. Dropping the LSB gives 0x704.
Frame 22 is 0x6B6 and frame 24 is 0x753 (both after dropping the LSB), and again, there is no
ambiguity.

13. System Architecture and Provisioning (Informative)

13.1. One Way Protocol – Automation System to Injector

13.1.1. System Architecture Summary

This architecture assumes that an Automation System (AS) only connects with Injectors over a one-way
communication link. Figure 13-1 below shows the Injector as a black box within the encoder. The
protocol can use a link layer that is embedded in video (e.g. SDI VANC area) or a serial communications
protocol (e.g. TIA-232 [[TIA_232]) directly connected to the encoder. The normal assumption for this
type of system is that there is a single SCTE 35 [SCTE35] PID (or DPI PID for short) generated for each
encoder. This system is not limited to a single DPI PID however, but extra provisioning will be required
to support multiple DPI PID streams.

This system shows a simplified version of how SDI VANC embedding works. The Automation System
would maintain N serial outputs (4 in this example) one for each primary encoder. Each of the serial data
channels would be directed to an embedder for the specific video channel that the DPI data is associated
to. The SDI stream is then fed through a video switcher for redundancy. The video stream may be directed

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 87

to either the primary encoder or one of the backup encoders as required. Since the DPI data stream is
embedded within the video, the correct DPI commands for the video are always available to whatever
device receives the video. The exact method of embedding DPI commands into the VANC area is
standardized by SMPTE ST 2010 [SMPTE_ST2010].

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

V
I
d
e
o

S
w
i
t
c
h

4x

S
D
I

E
m
b
e
d
d
e
r

Figure 13-1: One-way Protocol Embedded in Video with Integrated Injector

Figure 13-2 shows the Injector as a separate chassis. Each physical box contains one or more Injector
Instances, one for each DPI PID that is to be generated by that injector. The Automation System
maintains one serial channel for each physical device, and can use the DPI_PID_index field to direct the
traffic to the Injector Instance associated to that specific video stream. This diagram also shows multiple
Automation Systems connected to each injector. The communication link of each Automation System is
multiplexed in a single physical input on the injector. This type of system will require the AS_index field
to distinguish traffic from each AS.

This injector is assumed to output transport packets suitable for multiplexing into a standard transport
stream. This diagram is still in a logical view, since there are many physical architectures that could work.
Examples are separate boxes (as shown), the Injector in the Multiplexer, or all Encoders, Injectors, and
the Multiplexer in one chassis.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 88

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

AS

Figure 13-2: One-way Protocol with Multiple AS to External Injector

13.1.2. Automation System Provisioning Requirements

The following system description gives the essential information required in both the AS and the Injector
to allow an Automation System to communicate with a specific Injector for a single service. This includes
support for multiple Injectors for the purpose of redundancy. It is expected that all of the information
must be provided separately for every service in the system. In a number of cases, the provisioning of the
AS and the Injectors is the same as that described for the “Two Way Protocol – Automation System to
Injector Only” described in Section 13.2.

13.1.2.1. Service Definition and DPI_PID_index

For each physical connection there is a list of one or more MPEG services that may have a DPI PID
stream produced from commands carried on that connection. Each MPEG Service may have zero to eight
DPI PIDs assigned to it. This assumes that a service with no DPI PIDs does not need to be provisioned to

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 89

an Injector. The Automation System and Injector must both have a common agreement on what content is
contained on every service.

The commands used to create a specific DPI message are the same for the one and two way protocols. If
there is more than one DPI PID in the encoder, then a DPI_PID_index must be provisioned in both the
Automation System and the Injector. In order to simplify the network, the DPI_PID_index should be
unique in the entire DCS, if it is used at all. If there is at most one DPI PID generated per encoder, then it
is acceptable to use a value of zero for all DPI_PID_index’s indicating that this field is not required for
proper operation.

The reasons for using DPI_PID_index, and the methods to provision the value in both the AS and
Injector are the same as in the Two-way protocol and will not be repeated here. This includes both
Component Mode and non-Component Mode support (see Section 13.2.3).

13.1.2.2. Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single physical
connection, each Automation System should be provided with a unique AS_index value. If there is only
one Automation System supplying information for a DPI component, the AS_index can be set to zero,
indicating that this parameter is not required for proper operation. Since DPI_PID_index is coordinated
for the entire DCS, including multiple Automation Systems, the AS_index is not required as long as there
is a one for one relationship.

If there are redundant Automation Systems and the AS_index field is non-zero, then the same AS_index
should be assigned to both the primary and backup systems. It is the responsibility of the Automation
System’s to coordinate between them which one is active at any one time. Only one of these redundant
Automation Systems should communicate to the Injector at any one time.

The Injector can use the AS_index to distinguish between messages coming from different devices, and
can provide some self checks to ensure that control for a specific MPEG service is coming from the
expected Automation System. It is also used to ensure that the different Automation System do not assign
duplicate Event Ids, for example. Any cancel from one Automation System will not cancel commands
from the other Automation System.

13.1.2.3. Time

In a one-way system, the link layer may be full bandwidth (SDI/HD-SDI) and thus function in immediate
processing mode. In other one-way systems, the link layer may be of a lower bandwidth and would
benefit from more time for command processing.

When deferred mode is in use and a proxy device is used, the deferral may take place in the proxy device
or in the injector/encoder. In some systems the proxy device is operating in immediate mode and the
injector/encoder is handling the deferral. In that particular case the proxy device is transparent and passes
the message without modifying the content of the message.

Using the deferred processing mode will help provide more time for commands. In order to use the
timestamp() feature of the messages, the time in both the Injector and the Automation System need to be
coordinated within a few milliseconds of each other. The exact method of synchronization is a system
design issue. It is expected that the Alive Request message will be used for synchronization.

Other methods may be used if available, such as:
• NTP

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 90

• GPS
• SMPTE Timecodes

If the system is designed to work in immediate processing mode, time synchronization is not necessary.
Such design considerations and equipment selection are out of scope of this Standard.

If the system utilizes a proxy device in a deferred processing mode, upon arrival of the triggering event,
the Proxy Device shall remove the timestamp() structure as presented by the AS and replace it with a
single byte of 0 per Section 12.5.1, change the messageSize value to reflect that change, and move the
remainder of the bytes in the message forward to fill in as appropriate. The message shall be placed into
the VANC space of the next frame of video for delivery to the Injector.

13.1.2.4. Encryption in the Automation System

Encryption is an optional component in SCTE 35 [SCTE35] systems. If used, the encryption commands
are used the same way as described for the two-way system in Section 13.2.7.

13.1.2.5. DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident with the digital cue
tones, then it must be provisioned with the DTMF tone sequence and the pre-roll timing. If used, the
DTMF descriptor information is provisioned and used the same way as described for the two-way system
in 13.2.8.

13.1.3. Automation System  Injector Messages

13.1.3.1. Supported Messages

The following table gives the various commands that can be used between the Automation System and
the Injector in a one-way system. Note that the commands are identical in the AS to Injector direction,
and all responses are not used. For more detailed descriptions, one can refer to the information given for
the two-way system.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 91

Table 13-1: Supported Protocol Messages

Command Type Direction Description

splice_request Either AS 
Injector

Sent any time a splice is to be signaled

alive_request Single AS 
Injector

Sent periodically to ensure that the
connection is active to the automation
system.

May include the current time so that the
AS and Injector can maintain a
synchronized timebase.

time_signal_request Either AS 
Injector

Generates a SCTE 35 [SCTE35] Time
Signal message. While either type may
be used, time signal will normally have a
descriptor associated with it, making the
multiple command type the normal type.

splice_null request Single AS 
Injector

Generates a SCTE 35 [SCTE35] Null
Message.
If the Null Message is used to generate a
heartbeat message, the single command
type is likely to be used.
If the Null Message is used to convey a
private descriptor, the multiple command
type must be used.

proprietary_command
request

Either AS 
Injector

A Generic Basic command. This is used
for future support of standard commands
or proprietary extension. Like other basic
commands, one may attach advanced
commands like the Inject Section.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 92

Table 13-2: Unsupported Protocol Messages

Command Type Direction Description

init_request Single AS 
Injector

Information contained is not useful in a
one-way system. The alive_request
serves as the initialization of a one-way
system.

init_response Single AS 
Injector

No return path.

inject_response Single AS 
Injector

No return path.

inject_complete_response Single AS 
Injector

No return path.

alive_response Single AS 
Injector

No return path.

13.1.3.2. Optional Commands

Some features are deemed optional in an Automation system.
• Encryption
• Component Mode
• DTMF descriptors

The following table lists all of the commands associated with these optional features. If the option is not
implemented, the command is not required.

Table 13-3: Optional Protocol Messages

Command Type Direction Description

update_ControlWord
request

Single AS 
Injector

Database control of control words

delete_ControlWord
request

Single AS 
Injector

Database control of control words

start_schedule_download
request

Single AS 
Injector

Used to support SCTE 35 [SCTE35]
schedules

schedule_definition request Multiple AS 
Injector

Used to support SCTE 35 [SCTE35]
schedules

schedule_component_mode
request

Multiple AS 
Injector

Used to support SCTE 35 [SCTE35]
schedules

transmit_schedule request Single AS 
Injector

Used to support SCTE 35 [SCTE35]
schedules

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 93

13.1.3.3. Unused Commands

PAMS support is an optional part of this specification. In a one-way system, there may be no TCP/IP
connections available, so support of a PAMS is unlikely. If a system was designed with a connection
between a PAMS and an Automation System, these commands could be used. Refer to Section 13.3 for a
detailed look at PAMS support if required.

Table 13-4: Unused PAMS Protocol Messages

Command Type Direction Description
config_request Single AS  PAMS
config_response Single AS  PAMS
provisioning_request Single AS  PAMS
provisioning_response Single AS  PAMS
fault_request Single AS  PAMS
fault_response Single AS  PAMS
AS_alive_request Single AS  PAMS
AS_alive_response Single AS  PAMS

13.1.3.4. Flow Diagram

Figure 13-3 shows a normal communication flow. It assumes that a one-way connection has been setup
and both the Automation System (AS) and Injector have been provisioned manually.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 94

Initialization
Complete

splice_info_section (OON=1)

Avail Duration
splice_info_section (OON=0)

Serial or
Embedded Video

alive_request + time()

splice_request
(spliceStart_normal)

splice_request
(spliceEnd_normal)

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

AS Injector TS

Splice Point

Splice Point

Figure 13-3: One-way Flow Diagram with Deferred Processing

As shown, the alive_request command flows from the Automation System to the Injector at least once
before any normal data flow may commence. This is necessary in order to synchronize the clocks in the
Injector to the reference clock in the automation system. This alive request is expected to be sent
periodically to keep the two clocks in sync over time. Other than this requirement, the flow diagram looks
very much like the flow diagram given for the two-way systems. The main difference is the lack of any
response type commands, which cannot be generated, since there is no return path in this system.

There is no diagram shown for immediate message processing. It is assumed that normal one-way
systems will require the delay in processing. If a system is designed with a sufficiently high speed data
link, then one can use the flow diagram as shown in Figure 13-9 and simply remove the response type
flows.

Figure 13-4 shows how an Automation System can terminate an avail early, by using the
spliceEnd_Immediate command type in the splice_request command. Similar diagrams for the
cancellation type commands could be drawn based on Figure 13-11, Figure 13-12, and Figure 13-13 in
the two-way system description, by removing all response type flows.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 95

Initialization
Complete

splice_info_section (OON=1)

splice_request
(spliceStart_normal)

alive_request + time()

splice_request
(spliceEnd_immediate)

Avail Durationsplice_info_section
(cancel bit set)

pre-roll time∆τ ⇒

timestamp() time∆τ ⇒

AS Injector TS

Splice Point

Early Return
Splice Point

Serial or
Embedded Video

Figure 13-4: One-way Flow Diagram for Early Return

13.2. Two Way Protocol – Automation System to Injector Only

13.2.1. System Architecture Summary

This architecture assumes that an Automation System (AS) only connects with Injectors over a two-way
communication link. Figure 13-5 below shows the Injector as a black box within the encoder, while
Figure 13-6 shows multiple external boxes containing Injector Instances. The essential thing is that there
is a one-for-one relationship with the Injector and the service carrying the related video and audio content.

This architecture will assume that the PAMS is not directly connected to the Automation System, so there
is no automatic provisioning of the Automation System, nor any automated redundancy. Redundancy
switching works by the Automation System attempting to connect to backup systems it has been
configured for. The PAMS is shown as present because it is assumed to provide the provisioning and
redundancy control for the encoders, multiplexers and Injectors. But, in this scenario, the Automation
System must be able to provide automation control to a hot standby continuously or discover a failure and
switch automatically to a cold standby.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 96

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

Figure 13-5: Two-way Block Diagram with Internal Injector

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 97

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

Figure 13-6: Two-way Block Diagram with External Injector

13.2.2. Automation System Provisioning Requirements

The following system description gives the essential information required in both the AS and the Injector
to allow an Automation System to communicate with a specific Injector for a single service. This includes
support for multiple Injectors for the purpose of redundancy. It is expected that all of the information
must be provided separately for every service in the system.

13.2.2.1. IP Address and Port

The AS must be setup with the IP address and Port Number of each Injector that is configured for the
service. In general, there is expected to be two such Injectors at most, the primary and the hot backup.
There is no reason why a certain network could not choose to have multiple backups, but this is not
generally done.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 98

The AS is expected to output the same command to each IP address and Port configured. This way, a hot
backup is always available to be switched in. The PAMS could switch in a backup device and expect that
no DPI messages would be lost.

In a N:M backup system, where one Injector backs up for multiple primary Injectors, it is the
responsibility of the Injectors to support the messages from (possibly) multiple AS sources.

13.2.3. Service Definition and DPI_PID_index

13.2.3.1. Non Component Mode Support

For each IP address there is a list of one or more MPEG services that are supplied with DPI messages.
Each MPEG Service may have zero to eight DPI PIDs assigned to it. This document assumes that a
service with no DPI PIDs does not need to be provisioned to an Injector. The Automation System and
Injector must both have a common agreement on what content is contained on every service. The content
determines the schedule of breaks and the Automation System must be sure that a break it has scheduled
aligns to an avail in the video of that service. A common method of identifying a service would be by the
MPEG program number. There program number is not used by SCTE 35 [SCTE35] directly, but the PMT
for that program number will have one or more PIDs defined to carry the SCTE 35 [SCTE35] message
stream.

Some systems may define multiple PIDs for a single service. In this case, the automation system must
have some method of identifying which PID is carrying specific messages. Some reasons for carrying
multiple PIDs have been identified:

• A method of grouping DPI messages for specific regional groups
• Separate authorization can be applied to different PIDs
• Separate functionality, such as DPI messages and segmentation messages on different PIDs

In general, the purpose assigned to a specific PID is out of scope for this signaling standard. It will be a
proprietary and manual process to identify the type of DPI messaging for each PID of each service.

The method used for coordinating the PID assignments is done using the DPI_PID_index field in the
single_operation_message() and multiple_operation_message(). The DPI_PID_index is a unique value in
the entire Digital Compression System (DCS). It is expected that a single value of the DPI_PID_index
will be assigned to each DPI PID in the DCS. The Automation System would then be provisioned with a
list of DPI_PID indexes for every service.

There are some systems which are sufficiently simple that there is no need for a DPI_PID_index. If there
is at most a single DPI PID per Injector Instance, and that Injector Instance can be uniquely identified,
then the DPI PID used to carry DPI messages is well known (i.e. there is only one choice). In this system,
there is no need to provision a DPI_PID_index and it can be set to a value of zero.

13.2.3.2. Component Mode Support

In a system that supports Component Mode DPI Messages, it is necessary to supply the Automation
System with a more complete service definition. Within an MPEG service, there are specific components
(i.e. PIDs) defined. Each component must have a component tag assigned to it. The Automation System
will require knowledge of the type of PID (video, audio, data) and the relative pre-roll each component
has relative to video.

In the simplest system, component mode is used to simply splice into some PIDs and allow other PIDs
(e.g. Internet traffic) to always flow through to the consumer’s receive device all of the time. In a more

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 99

complex system, an Automation System could produce multiple splice commands such that each
component is spliced at a different time. How the timing for each component is provisioned is out of
scope for this document.

13.2.4. Multiple Injector Instance

The field DPI_PID_index may also be used to route messages when multiple Injector Instances are
present in a single physical device, as is shown in Figure 13-6. If there is a single Injector per device
(such as in Figure 13-5) or it can be resolved to a single Injector Instance (using a socket for example)
then this field may not be required and can be assigned a value of zero. Please consult Section 8.2.1 for
specifics.

There are at least two ways that this standard supports multiple Injectors. The exact implementation can
be chosen as best fits a specific implementation.

13.2.4.1. IP Port Segmentation

In a TCP/IP type configuration, each Injector Instance can be assign a unique port number, or in an
extreme case, a unique IP address and port number. In this architecture, each Injector Instance can be
treated as a physical Injector, even though they are in the same chassis.

This type of configuration may use too many resources. Each socket connection consumes memory and
processing power. Some implementations may limit the total number of sockets, which would make this
method of communication to have a limited usefulness.

The DPI_PID_index can provide a limited socket-like functionality if multiple IP Sockets are not
available.

13.2.4.2. DPI PID Index Segmentation

DPI_PID_index is a field, as described above, which provides a unique identification for a single DPI
PID within the Digital Compression System (DCS). A device with multiple injectors could use
DPI_PID_index to route messages to a specific Injector Instance. For this to work, an Injector would need
to maintain a complete list of DPI_PID indexes being serviced by each Injector Instance. When a message
arrives with a non-zero DPI_PID_index set, the main controller can forward the message to the Injector
Instance configured to handle it.

13.2.5. Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single physical
connection, each Automation System should be provided with a unique AS_index value. If there is only
one Automation System supplying information for a DPI component, the AS_index can be set to zero,
indicating that this parameter is not required for proper operation.

In a two-way system, an individual socket connection can be established for each automation system.
Even if there are multiple Automation Systems communicating to a single Injector, the communications
path is one to one. Therefore, one would not expect to use the AS_index in any system (broadcast or bi-
directional) that uses the IP protocol, and AS_index may be set to zero.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 100

13.2.6. Time

If Automation System messages are Deferred processed, using the timestamp() feature of the messages,
then the time in both the Injector and the Automation System need to be coordinated within a few
milliseconds of each other. The exact method of synchronization is a system design issue. Some extra
options are available to a system designer when a TCP/IP connection is available. Some examples for
time synchronization are given below.

• NTP/SNTP
• GPS
• SMPTE Time Codes
• The Alive Request Message

If the system is designed to work in immediate processing mode, time synchronization is not necessary.

13.2.7. Encryption in the Automation System

Encryption is an optional component in SCTE 35 [SCTE35] systems. If the system is not using
Encryption, then information in this section may be ignored.

There are three methods of supporting the encryption of SCTE 35 [SCTE35] messages.
1. The Automation System controls the encryption because there are requirements for targeting,

event related changes, or full control of an external CA system.
2. The Injector (i.e. PAMS controlled) locally encrypts messages based upon a fixed definition of

the Control Word and Algorithm for every message in a service.
3. Shared encryption control where the AS and Injector agree that a specific CW Index applies to a

specific group of receivers. The Injector is provided the control words locally and the AS only
needs to direct any one DPI message to use the CW. The rules for defining what a CW means
needs to be worked out for the system, so that the AS and Injector have a common understanding
of the groups.

There are three commands used to support encryption.
• Encrypt DPI Data
• Update Control Word
• Delete Control Word

In complex systems (Method 1), the encryption parameters could change on an event basis. Encryption
could also be used as a form of targeting messages, so multiple messages could be generated per event,
each with different encryption parameters. A different CW_Index may be applied per message to
determine how the message is encrypted.

A device upstream of the Injector should control access and/or targeting of DPI messages and would need
to be provisioned to do so. It may not be an Automation System per se, but would it would use this
protocol and would appear to the Injector as an Automation System.

Note: The database of control words is unique to an Injector Instance. Due to the potentially large size of
the database, an Injector may choose to limit the maximum number of control words that are stored
simultaneously.

In summary:

If the AS implements the complete conditional access system (Method 1) it would use all of the
encryption commands. If the AS implemented no conditional access (Method 2) then the AS should never

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 101

send any of the commands. If the AS has only control of which messages are encrypted (Method 3), then
only the “Encrypt DPI Data” command is ever sent by the AS.

Access security is a concern. The environment between the AS and the Injector should have physical
security at a minimum.

13.2.8. DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident with the digital cue
tones, then it must be provisioned with the DTMF tone sequence and the pre-roll timing.

In advanced applications, it is possible that each tone sequence is unique. An example might be a limited
form of targeting using different digits sequences. The Automation System needs to be the source of the
DTMF information in order to provide such control.

In simple systems that have a fixed relationship of the DTMF Tone Sequence and timing, the Injector
could be directly provisioned with this information and there would be no need for automation support.

13.2.9. Automation System  Injector Messages

13.2.9.1. Supported Messages

The following table gives the various commands that can be used between the Automation System and
the Injector.

Table 13-5: Supported Protocol Messages

Command Type Direction Description
init_request Single AS  Injector Sent immediately after a socket connection

has been established
init_response Single AS  Injector Acknowledgement for Init Request
splice_request Either AS  Injector Sent any time a splice is to be signaled
inject_response Single AS  Injector Acknowledgement for splice request –

returned to immediately acknowledge receipt
of the command

inject_complete_response Single AS  Injector Acknowledgement for splice request –
returned after the DPI message has been
injected into the transport.

May be returned immediately after the inject
Response if immediate mode timing is used.

May be delayed if time stamped processing is
used.

alive_request Single AS  Injector Sent periodically to keep the connection
active.

May include the current time so that the AS
and Injector can maintain a synchronized
timebase.

alive_response Single AS  Injector Acknowledgement for the Alive Request

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 102

time_signal_request Either AS  Injector Generates a SCTE 35 [SCTE35]

Time Signal message. While either
type may be used, time signal will
normally have a descriptor associated
with it, making the multiple
command type the normal type.

inject_response Single AS  Injector Acknowledgement for Time Signal –
returned to immediately acknowledge
receipt of the command

inject_complete_response Single AS  Injector Acknowledgement for Time Signal –
returned after the DPI message has
been injected into the transport.

May be returned immediately after
the Splice Response if immediate
mode timing is used.

May be delayed if time stamped
processing is used.

Table 13-6: Supported Protocol Messages (Con’t)

Command Type Direction Description
splice_null request Single AS  Injector Generates a SCTE 35 [SCTE35] Null

Message.

inject_response Single AS  Injector Acknowledgement for Splice Null –
returned to immediately acknowledge
receipt of the command

inject_complete_response Single AS  Injector Acknowledgement for Splice Null –
returned after the DPI message has
been injected into the transport.

May be returned immediately after the
Splice Response if immediate mode
timing is used.

May be delayed if time stamped
processing is used.

proprietary_command
request

Either AS 
Injector

A generic Normal command. This is used for
future support of standard commands or
proprietary extension. Like other basic
commands, one may attach advanced
commands like the Inject Section.

inject_response Single AS 
Injector

Acknowledgement for Proprietary Command
– returned to immediately acknowledge
receipt of the command

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 103

inject_complete_response Single AS 
Injector

Acknowledgement for Proprietary Command
– returned after the DPI message has been
injected into the transport.

May be returned immediately after the Splice
Response if immediate mode timing is used.

May be delayed if time stamped processing
is used.

13.2.9.2. Optional Commands
Some features are deemed optional in an Automation system.

• Encryption
• Component Mode
• DTMF descriptors

The following table lists all of the commands associated with these optional features. If the option is not
implemented, the command is not required.

Table 13-7: Optional Protocol Messages

Command Type Direction Description
update_ControlWord
request

Single AS  Injector This allows the AS to download a new
CW for use in encrypted messages.

 general_response Single AS  Injector
delete_Control_Word
request

Single AS  Injector This allows the AS to delete an active
CW. Once deleted, an Injector can flag an
error if any attempt is made to use it.

 general_response Single AS  Injector
start_schedule_download
request

Single AS  Injector Indicates to an Injector that it should start
collecting schedule information.

inject_response Single AS  Injector
schedule_definition request Multiple AS  Injector Used to download a single schedule entry

into the Injectors database.
inject_response Single AS  Injector
schedule_component_mode
request

Multiple AS  Injector Used as a supplemental command for
Schedule Definition to indicate that a
component splice is being scheduled.

inject_response Single AS  Injector
transmit_schedule request Single AS  Injector The Automation System uses this

command to tell an Injector to send the
accumulated schedule information.

inject_response Single AS  Injector
 inject_complete_response AS  Injector Indicates the schedule data has been

placed in the outgoing TS.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 104

13.2.9.3. Unused Commands

With no PAMS supported, the PAMS related command are not used.

Table 13-8: Unused PAMS Protocol Messages

Command Type Direction Description
config_request Single AS  PAMS
config_response Single AS  PAMS
provisioning_request Single AS  PAMS
provisioning_response Single AS  PAMS
fault_request Single AS  PAMS
fault_response Single AS  PAMS
AS_alive_request Single AS  PAMS
AS_alive_response Single AS  PAMS

13.2.10. Flow Diagrams

Figure 13-7 shows how the initialization of a TCP/IP two-way connection is setup. The client
(Automation System) must first establish a socket to the server (Injector). The init_request() message is
sent to establish the socket connection. In a system that is using keep_alive() messages for time
synchronization, the keep_alive() message must also be sent to synchronize time before any normal
message traffic that uses delay processing is sent.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 105

TCP/IP
AS

(Client)
Injector
(Server)

TS

splice_init_response
splice_init_request

Open a Socket

alive_response
alive_request

Normal AS, Injector and TS Traffic

Normal AS, Injector and TS Traffic

Initialization
Complete

Repeat as
required

alive_response
alive_request

Required if time() needs
synchronization

Figure 13-7: Two-way Flow Diagram for Initialization

Figure 13-8 shows a normal communication flow. It assumes that a TCP/IP connection has been setup
and both the Automation System (AS) and Injector have been provisioned manually. This diagram shows
the system without any PAMS support for automatic provisioning of the Automation System. For normal
communications, a single message will produce a single MPEG section. For example, a splice request
with a command type “spliceStart_normal” will produce a splice_info_section containing a splice_insert
command with out_of_network (OON) set to a one. When an immediately processed command is sent
that produces an MPEG section, there are two responses returned at the same time. They both may be
returned in the same datagram if desired.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 106

Initialization
Complete

splice_request
(spliceEnd_normal)

splice_response

splice_info_section (OON=0)
splice_complete_response

TCP/IP

Avail Duration∆τ ⇒timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section (OON=1)splice_complete_response

splice_response

splice_request
(spliceStart_normal)

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

Splice Point

Splice Point

Figure 13-8: Two-way Flow Diagram with Deferred Processing

The diagram shows the splice_request for both a normal message that directs a splice to exit the network
feed and the command to return to the network feed at the end of the avail. The splice_request contains a
command_type field that gives the type of command, as defined in Table 9-6. Figure 13-8 shows a system
that uses Deferred processing for both start and the end of the avail period. Figure 13-9 shows the same
normal system flow diagram, but it uses the “process immediately” mode. These commands are identified
by having a time_type value of zero in the Timestamp() field. This system assumes that the TCP/IP
connection has relatively low latency and that the injector can output a splice_info_section in the same
video frame as the command arrives.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 107

Initialization
Complete

splice_request
(spliceEnd_normal)

splice_info_section (OON=1)

splice_info_section (OON=0)

TCP/IP

Avail Duration∆τ ⇒

pre-roll time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_complete_response
splice_response

splice_request
(spliceStart_normal)

splice_complete_response
splice_response

Splice Point

Splice Point

Figure 13-9: Two-way Flow Diagram with Immediate Processing

These diagrams do not show the initialization sequence for the TCP/IP connection. Nor does it show the
alive request and response which are exchanged periodically.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 108

Figure 13-10 shows a case of abnormal termination of an avail. It starts with a normal sequence (normal
splice: out_of_network = 1) for the start of the avail using the Deferred method of processing. If a
network operator has detected some abnormal programming requirements, they can initiate an emergency
return to network. This uses a splice_request with a splice_return_early command type. Due to the
emergency nature of this command, one would expect it to be sent with a zero for the time_type field
which forces an immediate processing of the early return. The receive device, when it detects a
splice_info_section with the immediate bit set in a return to network message (return: out_of_network =
0), it will abort any inserted content it is playing and return to the network immediately.

Initialization
Complete

splice_response

timestamp() time

splice_info_section (OON=1)

Avail Durationsplice_info_section (OON=0)
(Immediate bit set)

pre-roll time

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

∆τ ⇒

∆τ ⇒

TCP/IP

splice_request
(spliceEnd_immediate)

AS Injector TS

∆τ ⇒

Splice Point

Early Return
Splice Pointsplice_complete_response

Figure 13-10: Two-way Flow Diagram for Early Return

In some special circumstances, when a long timestamp() is used for Deferred processing, or there is a
long pre-roll, an operator may decide that a splice in progress needs to be canceled. When the Automation
System wishes to a cancel a command soon after it is sent, it may not know if it has been processed or if a

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 109

section has been sent in the output transport. In this case, it sends a splice cancel as shown in Figure 13-
11, Figure 13-12, or Figure 13-13. If the Automation System is sure that an insertion is in progress, they
should send the spliceEnd_Immediate instead of the cancel command.

Figure 13-11 shows a cancel that is sent before the splice_info_section is generated. In this case, the
section generation is canceled. Also, the inject_complete_response for the original message will not be
returned.

Initialization
Complete

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_request
(splice_cancel)
splice_response

splice_complete_response

splice_info_section (OON=1) Normal traffic is
never sent due
to cancellation

timestamp() time∆τ ⇒

AS Injector TS

Figure 13-11: Two-way Cancellation before being Processed

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 110

Figure 13-12 shows a cancel command being sent after a splice_info_section has been placed in the
output multiplex. In this case, the Injector must create a splice_info_section formatted with the cancel bit
set.

Initialization
Complete

splice_info_section (OON=1)

Splice Point
Canceled

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_response

splice_request
(splice_cancel)

splice_complete_response

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section
(cancel bit set)

Figure 13-12: Two-way Cancellation after being Processed

Figure 13-13 shows a cancel command being sent after a splice_info_section has been placed in the
output multiplex and after the splice time indicated has passed. In this case, the Injector must create a
splice_info_section formatted as a spliceEnd_immediate type command to abort the insertion that is in
progress.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 111

Initialization
Complete

splice_info_section (OON=1)

Splice Point

splice_complete_response

splice_response

splice_request
(spliceStart_normal)

TCP/IP

splice_response

splice_request
(splice_cancel)

splice_complete_response

timestamp() time∆τ ⇒

pre-roll time∆τ ⇒

AS Injector TS

splice_info_section
(OON=0 Immediate)

Early Return
Splice Point

Figure 13-13: Two-way Flow Diagram Cancel after Splice Point

13.3. Two Way Protocol – Automation System to Injector with PAMS

13.3.1. System Architecture Summary

This architecture assumes that an Automation System (AS) connects with Injectors over a two-way
communication link. The Automation System also connects with a Provisioning and Alarm Management
System (PAMS) to be automatically provisioned with information about the services available in the
network. The PAMS can also provide support for controlled redundancy of Injectors and indicate to an
Automation System how to reconfigure to maintain service. Figure 13-14 below shows the Injector as a
black box within the encoder, while Figure 13-15 shows multiple external boxes containing Injector
Instances. The essential thing is that there is a one-for-one relationship with the Injector and the service
carrying the related video and audio content.

A failure of an injector in this system can be detected by either an AS or the PAMS. If the AS detects a
failure it can notify the PAMS of this fact. If the PAMS detects a failure it can take corrective action

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 112

immediately. In both cases, the PAMS is responsible for reprovisioning the Injectors and informing the
AS of the new configuration. The AS can then attempt to reconnect to the replacement Injector.

AS MUX

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

Enc/Injector

PAMS

Figure 13-14: Two-way Block Diagram with Internal Injector

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 113

AS

Injector

Injector

MUX
Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

PAMS

.

.

.

Figure 13-15: Two-way Block Diagram with External Injector

13.3.2. Automation System Provisioning Requirements

The following system description gives the essential information required in the AS to allow an
Automation System to communicate with a specific Injector for a single service. This includes support for
multiple Injectors for the purpose of redundancy. It is expected that all of the information must be
provided separately for every service in the system. The PAMS is expected to provide the detailed
information on services and Injector communications to the Automation System.

13.3.2.1. IP Address and Port for PAMS

The Automation System will require the IP Address and Port for each PAMS in the system. A normal
system is expected to have a single active PAMS controlling a set of Encoders and matching Injectors.
Some systems may have a redundant PAMS available. In this case, the AS may wish to establish initial

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 114

communications with the backup PAMS, but normal operation communications is with the currently
active PAMS.

The PAMS will supply the IP Address and Port information for all Injectors after the initial connection
has been established.

13.3.2.2. Service Name

The AS and Injectors must agree on what DPI data is associated with what content and for which services
that the content is being carried on. The only field available to synchronize the three devices (AS, PAMS
and Injector) is through the use of the text string service_name.

The automation system must be manually provisioned with a text service name that associates a list of
splice times for the content it is controlling. The PAMS is also manually provisioned with a service_name
for each program number it is controlling. For each service, the PAMS supplies a list of DPI_PID_index,
one for each DPI PID in the service. The PAMS may optionally supply a list of components contained in
the service, by supplying the component_tags for each elementary stream PID.

One should note that it is possible to associate a video and audio with more than one service in some
systems. It is also possible, by extension, to associate the same DPI_PID_index to multiple services. In a
complete service definition, duplicate DPI_PID Indexes may be present. If this is found, one must assume
that it is also the exact same physical DPI PID Stream and the AS need only send the AS to Injector
commands to each physical device once.

It is also possible that the same DPI_PID_index value is found associated with multiple IP Address and
Ports. The physical DPI PID stream is identical. In this case, the PAMS is indicating to the Automation
System that there are multiple “Hot Backup” Injectors active. The AS cannot know which of these many
devices is the active device, and must direct AS to Injector commands to all physical devices.

Note that in some systems, the DPI_PID_index is not required, and that DPI_PID_index will be set to
zero in this special case. Therefore, the uniqueness requirement described above only applies when
DPI_PID_index is non-zero. The service name must always be a unique text string. The text string is
case sensitive.

13.3.2.3. Time

If Automation System messages are Deferred processed in the Injector by using the timestamp() feature
of the messages, then the time in both the Injector and the Automation System need to be coordinated
within a few milliseconds of each other. The time can be synchronized using any of the methods
described in Section 13.2.6.

13.3.2.4. Encryption in the Automation System

Encryption is an optional component in SCTE 35 [SCTE35] systems. If the system is not using
Encryption, then information in this section may be ignored. The PAMS has no direct control over how
Encryption should be used. Therefore, Encryption must be manually provisioned the same as is described
in Section 13.2.7.

13.3.2.5. DTMF Descriptors

If the Automation System wishes to control the output of analog cue tones coincident with the digital cue
tones, then it must be provisioned with the DTMF tone sequence and the pre-roll timing. The PAMS has

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 115

no direct control over how DTMF tones are used by the Automation System. Therefore, they will need to
be manually provisioned the same as is described in Section 13.2.8.

13.3.3. PAMS Supplied Information

13.3.3.1. Injector Configuration

The PAMS is the device that is aware of the network interconnections, such as which Injector Instance is
associated with each physical device. Using this configuration information, the PAMS can supply the
Automation System with the exact IP Address and Port for each service in the system.

13.3.3.2. Multiple Injector Instance Support

Multiple physical injectors may require more than simply the IP Address of the device to enable the
correct routing of the AS to Injector traffic. In this case, it is the PAMS that determines if the Injector
Instance can be identified by IP address, DPI_PID_index or a combination of both fields.

13.3.3.3. Service Information

The PAMS must be aware of the exact configuration of each MPEG service in the system. If component
mode is being used, it must also be aware of all of the components present and the associated
component_tags. This information must be supplied to the Automation System so that it can direct the
DPI Commands to the correct Injector Instance.

13.3.3.4. Automation Index (AS_index field)

When more than one Automation System communicates to a single DPI PID on a single hardwired
connection (such as serial or USB communications), each Automation System should be provided with a
unique AS_index value. The PAMS can determine if an AS_index is required and can inform the AS of
the value of AS_index that it should use when communicating to the injector. A value of zero can be used
if AS_index is not required for proper operation, for example when TCP/IP is used. In TCP/IP systems,
each connection can have a unique instance of the socket to determine which Automation System is
supplying the command.

13.3.4. Automation System  Injector Messages

13.3.4.1. Supported Messages

The messages exchanged between the Automation System and the Injector are the same as those used for
the two-way system without PAMS support. Refer to Table 13-5 and Table 13-6 for a summary of the
available commands.

13.3.4.2. Optional Commands

Some features are deemed optional in an Automation system.
• Encryption
• Component Mode
• DTMF descriptors

The optional messages exchanged between the Automation System and the Injector are the same as those
used for the two-way system without PAMS support. Refer to Table 13-7 for a summary of the available
commands.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 116

13.3.5. Automation System  PAMS Messages

With PAMS support, the PAMS related commands are used as described in Section 9.8.11. The
commands available are summarized in Table 13-9.

Table 13-9: PAMS Protocol Messages

Command Type Direction Description
config_request Single AS  PAMS Used on initial connection of

the Automation System to a
PAMS

config_response Single AS  PAMS Acknowledges the
confiq_request

provisioning_request Single AS  PAMS This is sent on the reset of a
PAMS, after a config_request,
whenever there is a change in
the service definitions, or a
change in what service each
Injector has assigned to it.

provisioning_response Single AS  PAMS Acknowledges the
provisioning_request

fault_request Single AS  PAMS This command is sent by the
AS whenever it detects a
failure of an Injector. The
PAMS should reconfigure the
Injectors and return a
provisioning_request when the
backup Injector has been
configured.

fault Response Single AS  PAMS Acknowledges the
fault_request

AS_alive_request Single AS  PAMS Sent periodically by the PAMS
when a permanent connection
has been established.

AS_alive_response Single AS  PAMS Acknowledges the
AS_alive_request

13.3.6. Flow Diagrams AS  Injector

The flow diagrams between and Automation System and the Injector are the same as for the non-PAMS
system described in Section 13.2.10.

13.3.7. Flow Diagrams AS  PAMS

Figure 13-16 shows how the initialization of a TCP/IP two-way connection is setup. The client
(Automation System) must first establish a socket to the server (PAMS). The, the config_request()
message is sent to establish the socket connection.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 117

Open a Socket

Close the Socket

Open a Socket

Close the Socket

TCP/IP
AS

(Client)
PAMS

(Server)

config_response
config_request

Initialization
Complete

provisioning_response
provisioning_request

Figure 13-16: AS/PAMS Flow Diagram for Initialization

In a system that is using a permanent connection, the AS_keep_alive() message should also be sent. The
connection to the PAMS is not closed. This is shown in Figure 13-17.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 118

Open a Socket

Close the Socket

Open a Socket

TCP/IP
AS

(Client)
PAMS

(Server)

config_response
config_request

Initialization
Complete

provisioning_response
provisioning_request

AS_alive_response
AS_alive_request

Periodic
Communication

Figure 13-17: PAMS Two-way Initialization of a Permanent Connection

Figure 13-18 and Figure 13-19 show two ways that a failure may be detected as the system reconfigured
in response.

Figure 13-184 shows the PAMS detecting a failure that may not be apparent to an Automation System.
The PAMS will send a new configuration to the Automation System by sending an updated
provisioning_request.

4 The OPEN and CLOSE socket actions shown in the figure are not required if the PAMS opens a permanent
connection.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 119

Open a Socket

Close the Socket

TCP/IP

AS PAMS

provisioning_response
provisioning_request

Figure 13-18: PAMS detects an Injector Failure

Figure 13-195 shows the Automation System detecting a failure that may not be detected by a PAMS (for
example a cable being disconnected). The AS may then request that a new injector be assigned to replace
the failed unit. Ultimately, it is the PAMS that determines if there is a replacement device available and
will send a provisioning_request when the replacement Injector has been fully provisioned.

5 The OPEN and CLOSE socket actions shown in the figure are not required if the PAMS opens a permanent
connection.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 120

Open a Socket

Close the Socket

Open a Socket

Close the Socket

TCP/IP

AS PAMS

fault_response
fault_request

provisioning_response
provisioning_request

Figure 13-19: AS detects an Injector Failure

When the PAMS adds or removes a service from an Injector, it uses the provisioning_request to change
the service definition in the Automation System. Similarly, if an Injector is taken offline or replaced by a
new physical device, the provisioning_request is used to tell the Automation System of the new
configuration. In both cases, the diagram is essentially the same as that used for changes that result from a
device failure, as shown in Figure 13-18.

Figure 13-20 shows what happens when the Automation System detects a failure with Injector
communications, but the PAMS has not detected a failure. The AS is expected to retry to establish a
connection with the Injector periodically until either it works or the PAMS re-provisions the system. The
example shown has the PAMS ignoring the fault_request sent by the AS. It is assumed that either the AS,
the PAMS, or both report the fault to the operator for corrective action. If the AS retries and fails again, it
should send another fault_request to the PAMS. The PAMS can re-provision the system if enough
failures occur to the same device.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 121

Socket Failed

AS tries to open a Socket

Open a Socket

Close the Socket

TCP/IP

AS PAMS

fault_response
fault_request

Injector

TCP/IP

PAMS determines
No Fault Found

splice_init_response
splice_init_request AS Retry Timeout

Reconnect worked

Figure 13-20: Injector Socket Failed and Recovered

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 122

14. Result Codes (Normative)

Table 14-1: Result Codes
Result Result Name Description Response Message
100 Successful Response This result code shall be sent to

indicate that everything is fine,
no problems, request handled
completely.

All

101 Access Denied-Injector
not authorized for DPI
service

This result code shall be sent to
indicate that the injector is not
provisioned, does not support
DPI, or that there are possible
license problem (user defined)

init_response

102 CW index does not have
Code Word

This result code shall be sent to
indicate that Request points to
a CW index without a Code
Word

general_response or
inject_response

103 DPI has been de-
provisioned

This result code may be sent to
indicate that the Injector has
been de-provisioned from DPI
service.

alive_response

104 DPI not supported This result code may be sent to
indicate that Injector does not
support DPI functionality

init_response

105 Duplicate service name This result code may be sent to
indicate that the AS has found
an invalid duplicate service
name.

provisioning_response

106 Duplicate service name is
OK

This result code may be sent to
indicate that the AS has found
a valid duplicate service name.

provisioning_response

107 Encryption not supported This result code shall be sent to
indicate that Injector does not
support SCTE 35 [SCTE35]
message encryption

inject_response

108 Illegal shared value of
DPI PID index found

This result code may be sent to
indicate that AS does not
understand the DPI PID values
as properly shared Both PAMS
and the AS should produce
alarms as a result.

provisioning_response

109 Inconsistent value of DPI
PID index found

This result code may be sent to
indicate that Duplicate value
assigned to two or more
DPI_PID_index’s without
shared_PID being non-zero.
Both PAMS and the AS should
produce alarms as a result.

provisioning_response

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 123

Result Result Name Description Response Message
110 Injector is already in use This result code shall be sent to

indicate that another AS is
already connected to this
Injector.

init_response

111 Injector is not provisioned
to service this AS

This result code may be sent to
indicate that the Injector has
not been provisioned to service
this particular AS.

init_response

112 Injector Not Provisioned
For DPI

This result code shall be sent to
indicate that Injector at this IP
address has not been
provisioned for DPI operation
(yet). Try again later.

init_response

113 Injector will be replaced This result code may be sent to
indicate that PAMS will
replace the Injector in the near
future.

failure_response

114 Invalid Message Size This result code shall be sent to
indicate that The message was
not the correct length as
determined by this
specification

ALL

115 Invalid Message Syntax This result code shall be sent to
indicate that Fields defined by
this specification are not within
the valid range

ALL

116 Invalid Version This result code shall be sent to
indicate that Automation
System and Injector are using
totally incompatible versions of
this API. The DPI system
should produce a major alarm.

init_response

117 No fault found This result code may be sent to
indicate that the PAMS cannot
find a communications fault
and will most likely not change
Injectors.

failure_response

118 Service name is missing This result code may be sent to
indicate that the service name
is missing.

provisioning_response

119 Shared value of DPI PID
index not found

This result code may be sent to
indicate that AS knows of a
common DPI PID between
multiple programs. Not found
in provisioning_request
message data. Both PAMS and
the AS should produce alarms
as a result.

provisioning_response

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 124

Result Result Name Description Response Message
120 Splice Request Failed –

Unknown Failure
This result code shall be sent to
indicate that The Injector failed
to insert Cue message

inject_complete response

121 Splice Request Is Rejected
Bad splice_request
parameter

This result code shall be sent to
indicate that

inject_response

122 Splice Request Was Too
Late – pre-roll is too small

This result code shall be sent to
indicate that A pre-roll
parameter of a Splice request
is too small (should be greater
than 4 seconds)

inject_response

123 Time type unsupported This result code shall be sent to
indicate that a value for
time_type in the timestamp() is
unsupported.

inject_response

124 Unknown Failure This result code shall be sent to
indicate that the Injector has
experienced a possible software
failure or an attempt has been
made to use un-implemented
functionality.

All

125 Unknown opID This result code shall be sent to
indicate that an unknown opID
is present in data(). Use the
result_extension field to
indicate which opID is at fault.

ALL

126 Unknown value for
DPI_PID_index

This result code shall be sent to
indicate that the Injector does
not know of this value.

ALL

127 Version Mismatch The message contains a
protocol version number not
yet supported by the Injector.
Message features may not be
fully implemented.

ALL

128 Proxy Response This result code shall be sent to
indicate that everything is fine,
no problems, request handled
completely by a Proxy Device.

init_response

1.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 125

Appendix A TCP/IP Conveyance
Messages conveyed via TCP/IP follow the paradigm of SCTE 30’s [SCTE30] communications between
a Splicer and a Server. In this particular case (see Figure 6-1) the communications are primarily point-to-
point messages between an Automation System and an Injector. There are also ancillary (but important)
communications between the Digital Compression system’s Provisioning and Alarm Management System
(PAMS) and the Automation System.

A number of necessary parameters, such as the assignment of IP addresses, are defined in a manner that is
outside the scope of this Specification.

The communication between the Automation System and the Injector is conducted over one TCP/IP
socket connection per Output Channel (Injector). Once this API Connection is established it remains
established until one of the devices terminates the API Connection at which time re-initialization is
needed to splice again. No multicasting or other broadcast communications mechanisms are to be utilized
for messaged defined by this Standard.

All messages exchanged between the Automation System and the Injector share a common general format
detailed in the Message Format Section (see Section 8). The format divides messages into two classes,
“single_operation” and “multiple_operation.” Most traffic is expected to be of the “single_operation”
class. The “multiple_operation” class will permit full support of all SCTE 35 [SCTE35] functions and
does allow for a category of messages of the “User Defined” type. These can also be used as a
mechanism for private data messages between the Automation System and the Splicer that are beyond the
scope of this document.

All request messages require a response from the recipient. Most of the response messages only indicate
a result and do not contain any other data. They are needed to ensure the requestor that the message was
received and interpreted correctly. If there are errors, the message can be resent.

“Heartbeat” messages (alive request/alive response) are also provided to ensure both systems that their
partner remains connected, even though no splicing related traffic has been sent for a considerable time.
Readers should keep in mind that in many distribution systems there may be as few as a single “avail” an
hour.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 126

Appendix B TIA-232 or TIA-422 Conveyance
Data communications for a “classic” automation system utilized point-to-point TIA-422 [[TIA_422] or
TIA-232 [[TIA_232] communications which required extra characters to provide message
synchronization.

Messages in this API which are carried either by TIA-232 [[TIA_232] or TIA-422 [[TIA_422] shall
utilize the Basic Link Layer Syntax, as defined in Appendix B.1. The data is carried in a binary form on
TIA-232 [[TIA_232] or TIA-422 [[TIA_422]. The link layer is used to convey the information from
source to destination reliably.

Messages in this API which are carried in video (analog or digital) shall also utilize the Basic Link Layer
Syntax, as defined in Appendix B.1. The implementation specifics are left to the system manufacturer.

B.1 The Basic Link Layer Syntax

Table B-1: serial_linklayer Structure

Syntax Bytes Type

serial_linklayer(){

 start_delimiter 1 uimsbf

 message() *

 message_CRC 4 uimsbf

 end_delimiter 1 uimsbf

}

B.1.1 Semantics of fields in serial_linklayer()

start_delimiter – This is used to unique identify the start of a message. It shall be the value 0x02
(ASCII STX). This code shall not exist within the body of the message unless proceeded by an ESC
character (See Section B.2 below).

message() – This field carries the message as defined in Section 8.2.2 or 8.2.3. The message contents
will be modified to include Escape Codes (ESC) to ensure the uniqueness of the start and end
delimiters (See Section B.2 below).

message_CRC – This field carries the MPEG standard 32-bit CRC calculated on the original
message bytes. One must ensure that the escape encoding is applied to the CRC after its calculation
but before the final transmission of the message.

end_delimiter – This is used to unique identify the end of a message. It shall be the value 0x03
(ASCII ETX). This code shall not exist within the body of the message unless proceeded by an ESC
character (See Section B.2 below).

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 127

B.1.2 Detailed Discussion of Message Syntax and Semantics

As detailed below, the message contents must be scanned for occurrences of ESC, STX, or ETX
characters, and if such are found, they are replaced by the Escape Sequence detailed below.

The escape sequence is used to ensure unique start and end delimiters. Making the start and end
unique, the system can reliably synchronize on the start of a message as well as reliably locate the
CRC and the completion of the message.

B.2 The Escape Sequence
The basic escape code shall be the ASCII Escape character ‘ESC’ (0x1B).

In the “message” and the CRC, all instances of the reserved binary values (STX, ETX, and ESC) will be
replaced by the Escape Sequence (<ESC, STX>, <ESC, ETX> and <ESC, ESC> respectively).

On the transmitter, the escape codes are added immediately before the start and end delimiters are added,
but after the CRC is calculated and added to the message.

The general rule on the receiver is that any instance of the ESC character is removed on reception and the
character immediately following is retained but is not used in checking for synchronization. The CRC is
checked after the ESC characters have been removed and the original message has been recreated.

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 128

Appendix C DIGITAL Video System
Conveyance (Informative)

For certain specific system architectures, the ability to imbed the requests in the vertical ancillary data
areas (VANC) of a serial digital video signal is required. SMPTE has standardized the conveyance of the
messages defined in this Standard in SMPTE ST 2010 [SMPTE_ST2010].

This method is supported by this Standard with some important limitations. The receiving Injector must
process the message and not replicate a digitized copy of the line(s) that carried it. If vertical interval is
being carried in the compressed stream, the line(s) must be replaced by black or not coded in the MPEG
domain. Messages in VANC should be removed.

The original edition of this standard provided for both immediate processing and deferred processing of
AS messages (See Section 7 of this document). The original edition did not anticipate deferred
processing of VANC messages and thus may have been less than clear on some aspects of
implementation (See the footnotes to Section 9.8.1.1, “Semantics of fields in time_signal_request_data()”
as well as Section 13.1.2.3, “Time”).

ANSI/SCTE 104 2023

AMERICAN NATIONAL STANDARD ©2022 SCTE 129

Appendix D Analog Video System
Conveyance

For certain specific system architectures, the ability to imbed the requests in the vertical blanking interval
of an analog video signal is required. This method is supported by this Standard with some important
limitations.

The receiving Injector must process the message and not replicate a digitized copy of the line(s) that
carried it. If vertical interval is being carried in the compressed stream, the line(s) must be replaced by
black or not coded in the MPEG domain.

The message paradigm is based upon the widely deployed Teletext paradigm, documented in WST
[BT653_3], NABTS [EIA516], and the DVB extensions in [ETS300_706] and [ETS300_708]. This
paradigm constructs messages which consist of a synchronization sequence, followed by a message
prefix, the message body, and an error correction suffix. The synchronization sequence permits receiver
clocks to properly lock to the remainder of the message.

For analog signals, the transmission system signal-to-noise ratio must be sufficient to permit the CRC or
Hamming-code recovery of corrupted characters in the message. Transmission of the message multiple
times will help with this, but the users must take care to ensure high quality transmission links.

	NOTICE
	Document Tags
	Document Release History
	1. Introduction
	1.1. Executive Summary
	1.2. Scope
	1.3. Benefits

	2. Normative References
	2.1. SCTE References
	2.2. Standards from Other Organizations
	2.3. Published Materials

	3. Informative References
	3.1. SCTE References
	3.2. Standards from Other Organizations
	3.3. Published Materials

	4. Compliance Notation
	5. Abbreviations and Definitions
	5.1. Abbreviations
	5.2. Definitions

	6. Overview
	7. Data Communications
	7.1. Concerning Data Communications (Informative)
	7.2. Data Communications Requirements for this API (Normative)
	7.3. Conveyance Quality-of-Service Considerations (Informative)
	7.4. Uni-directional System Considerations (Informative)
	7.5. Proxy Devices (Normative)

	8. Message Formats
	8.1. Terminology (Informative)
	8.2. Message Structures (Normative)
	8.2.1. Addressing of Particular Items within a System
	8.2.1.1. AS_index
	8.2.1.2. DPI_PID_index

	8.2.2. Single Operation Message
	8.2.2.1. Semantics of fields in single_operation_message()

	8.2.3. Multiple Operation Message
	8.2.3.1. Order of Request Execution
	8.2.3.2. Format of the multiple_operation_message() structure
	8.2.3.3. Semantics of fields in multiple_operation_message()
	8.2.3.4. Detailed Discussion of Message Syntax and Semantics

	8.3. Operation Types (Normative)
	8.3.1. Meaning of the Usage Field in Table 8-3 and Table 8-4

	8.4. Conventions and Requirements

	9. Automation System to Injector Communication
	9.1. Initialization
	9.1.1. init_request AS ==> IJ
	9.1.2. init_response IJ ==> AS

	9.2. Alive (“Heartbeat”) Communications
	9.2.1. alive_request AS ==> IJ
	9.2.1.1. Semantics of fields in alive_request_data ()

	9.2.2. alive_response IJ ==> AS
	9.2.2.1. Semantics of fields in alive_response_data ()

	9.3. Splice Requests
	9.3.1. splice request AS ==> IJ
	9.3.1.1. Semantics of fields in splice_request_data()
	9.3.1.2. Detailed Discussion of Message Syntax and Semantics

	9.3.2. Mapping of splice_request fields into SCTE 35 [SCTE35] splice_insert() fields (Informative)

	9.4. Encryption Support (Normative)
	9.4.1. Encryption Control Word Support
	9.4.2. The encrypted DPI request
	9.4.2.1. Semantics of fields in encrypted_DPI_request_data()

	9.4.3. update_ControlWord request AS ==> IJ
	9.4.3.1. Semantics of fields in update_ControlWord_data()

	9.4.4. delete_ControlWord request AS ==> IJ
	9.4.4.1. Semantics of fields in delete_ControlWord_data()

	9.5. Component Mode Support
	9.5.1. component mode DPI request
	9.5.1.1. Semantics of fields in component_mode_DPI_request_data()

	9.6. Response Messages
	9.6.1. general_response message IJ ==> AS
	9.6.2. inject_response message IJ ==> AS
	9.6.2.1. Semantics of fields in inject_response_data()

	9.6.3. inject_complete response IJ ==> AS
	9.6.3.1. Semantics of fields in inject_complete_response_data()

	9.7. SCTE 35 splice_schedule() Support Requests
	9.7.1. start schedule download request AS ==> IJ
	9.7.1.1. Semantics of fields in start_schedule_download_request_data()

	9.7.2. schedule definition request AS ==> IJ
	9.7.2.1. Semantics of fields in schedule_definition_data()

	9.7.3. The schedule component mode request AS ==> IJ
	9.7.3.1. Semantics of fields in schedule_component_mode_request_data()

	9.7.4. transmit_schedule request
	9.7.4.1. Semantics of fields in transmit_schedule_request_data()

	9.8. Miscellaneous Requests
	9.8.1. time signal request AS ==> IJ
	9.8.1.1. Semantics of fields in time_signal_request_data()

	9.8.2. splice null request
	9.8.3. inject section data request AS ==> IJ
	9.8.3.1. Semantics of fields in inject_section_data_request()

	9.8.4. insert_avail_descriptor request AS ==> IJ
	9.8.4.1. Semantics of fields in insert_avail_descriptor_request_data()

	9.8.5. insert_descriptor request AS ==> IJ
	9.8.5.1. Semantics of fields in insert_descriptor_request_data()

	9.8.6. insert_DTMF_descriptor request AS ==> IJ
	9.8.6.1. Semantics of fields in insert_DTMF_descriptor_request_data()

	9.8.7. insert_segmentation_descriptor request AS ==> IJ
	9.8.7.1. Semantics of fields in insert_segmentation_descriptor_request_data()

	9.8.8. proprietary_command request AS ==> IJ
	9.8.8.1. Semantics of fields in proprietary_command_request_data()

	9.8.9. insert_tier_data request AS ==> IJ
	9.8.9.1. Semantics of fields in insert_tier_data()

	9.8.10. insert_time_descriptor request AS ==> IJ
	9.8.10.1. Semantics of fields in insert_time_descriptor()

	9.8.11. insert_audio_descriptor request AS ==> IJ
	9.8.11.1. Semantics of fields in insert_audio_descriptor()

	9.8.12. insert_audio_provisioning request AS ==> IJ
	9.8.12.1. Semantics of fields in insert_audio_provisioning

	9.8.13. insert_alternate_break_duration_request AS ==> IJ
	9.8.13.1. Semantics of fields in insert_alternate_break_duration_request()

	10. PAMS to the Automation System Communications
	10.1. System Design Philosophy
	10.1.1. TCP/IP Data Communications
	10.1.2. Bi-directional Serial Data Communications

	10.2. PAMS Functionality
	10.2.1. System Initialization and Service Discovery
	10.2.2. Data Communications Channel Maintenance
	10.2.3. System Restart from Maintenance or Redundancy Change
	10.2.4. Injector Provisioning and de-provisioning in real-time
	10.2.5. Service Addition and Subtraction in real-time
	10.2.6. Failure Reporting
	10.2.7. Appropriate Reaction to Failures
	10.2.8. System Initialization

	10.3. Service Continuity
	10.4. System Initialization Messages
	10.4.1. config_request message AS ==> PAMS
	10.4.1.1. Semantics of fields in config_request_data()
	10.4.1.2. Detailed Discussion of Message Syntax and Semantics

	10.4.2. config_response message PAMS ==> AS
	10.4.2.1. Semantics of fields in config_response_data()

	10.5. Injector Service Notification
	10.5.1. provisioning_request message PAMS ==> AS
	10.5.1.1. Semantics of fields in provisioning_request_data()
	10.5.1.2. Detailed Discussion of Message Syntax and Semantics

	10.5.2. provisioning_response message AS ==> PAMS

	10.6. Failure Notification Messages (Device or Communications)
	10.6.1. fault_request message AS ==> PAMS
	10.6.1.1. Semantics of fields in fault_request_data()

	10.6.2. fault_response message PAMS ==> AS

	10.7. PAMS to AS permanent “link alive” messages
	10.7.1. AS_alive_request PAMS ==> AS
	10.7.2. AS_alive_response AS ==> PAMS

	10.8. PAMS to AS Common Elements
	10.8.1. injector_component_list() Definition
	10.8.1.1. Semantic definition of fields in injector_component_list()

	11. PAMS to Injector Communications (Informative)
	11.1. The PAMS Implementation
	11.2. Injector Provisioning
	11.3. PAMS Structure
	11.4. Support of multiple DPI PIDs

	12. Common Elements
	12.1. Values of splice_event_id used in this Interface
	12.2. Values of unique_program_id used in this Interface
	12.3. Minimum Pre-roll Time Supported by this Interface
	12.4. time() Definition
	12.4.1. Semantic definition of fields in time()

	12.5. timestamp() Definition
	12.5.1. Semantic definition of fields in timestamp()
	12.5.2. Use cases and discussion (Informative)

	13. System Architecture and Provisioning (Informative)
	13.1. One Way Protocol – Automation System to Injector
	13.1.1. System Architecture Summary
	13.1.2. Automation System Provisioning Requirements
	13.1.2.1. Service Definition and DPI_PID_index
	13.1.2.2. Automation Index (AS_index field)
	13.1.2.3. Time
	13.1.2.4. Encryption in the Automation System
	13.1.2.5. DTMF Descriptors

	13.1.3. Automation System (Injector Messages
	13.1.3.1. Supported Messages
	13.1.3.2. Optional Commands
	13.1.3.3. Unused Commands
	13.1.3.4. Flow Diagram

	13.2. Two Way Protocol – Automation System to Injector Only
	13.2.1. System Architecture Summary
	13.2.2. Automation System Provisioning Requirements
	13.2.2.1. IP Address and Port

	13.2.3. Service Definition and DPI_PID_index
	13.2.3.1. Non Component Mode Support
	13.2.3.2. Component Mode Support

	13.2.4. Multiple Injector Instance
	13.2.4.1. IP Port Segmentation
	13.2.4.2. DPI PID Index Segmentation

	13.2.5. Automation Index (AS_index field)
	13.2.6. Time
	13.2.7. Encryption in the Automation System
	13.2.8. DTMF Descriptors
	13.2.9. Automation System (Injector Messages
	13.2.9.1. Supported Messages
	13.2.9.2. Optional Commands
	13.2.9.3. Unused Commands

	13.2.10. Flow Diagrams

	13.3. Two Way Protocol – Automation System to Injector with PAMS
	13.3.1. System Architecture Summary
	13.3.2. Automation System Provisioning Requirements
	13.3.2.1. IP Address and Port for PAMS
	13.3.2.2. Service Name
	13.3.2.3. Time
	13.3.2.4. Encryption in the Automation System
	13.3.2.5. DTMF Descriptors

	13.3.3. PAMS Supplied Information
	13.3.3.1. Injector Configuration
	13.3.3.2. Multiple Injector Instance Support
	13.3.3.3. Service Information
	13.3.3.4. Automation Index (AS_index field)

	13.3.4. Automation System (Injector Messages
	13.3.4.1. Supported Messages
	13.3.4.2. Optional Commands

	13.3.5. Automation System (PAMS Messages
	13.3.6. Flow Diagrams AS (Injector
	13.3.7. Flow Diagrams AS (PAMS

	14. Result Codes (Normative)

	Appendix A TCP/IP Conveyance
	Appendix B TIA-232 or TIA-422 Conveyance
	B.1 The Basic Link Layer Syntax
	B.1.1 Semantics of fields in serial_linklayer()
	B.1.2 Detailed Discussion of Message Syntax and Semantics

	B.2 The Escape Sequence

	Appendix C DIGITAL Video System Conveyance (Informative)
	Appendix D Analog Video System Conveyance

