




## **NEXT GENERATION HFC:** THE LOOMING IMPACTS OF DOCSIS<sup>®</sup> 3.1 AND EPON OVER COAX (EPOC)

John Ulm, ARRIS Fellow of Technical Staff

Co-authors: Mike Emmendorfer, Rob Howald, Rob Thompson



30

## **DOCSIS® 3.1 or EPoC?**

Overview, Key Objectives, Target Markets

What They Share in Common

D3.1 & EPoC: Key Differences

**Operator Considerations** 

Conclusion





## **DOCSIS® 3.1 or EPoC?**

### Disclaimer:

DOCSIS® 3.1 and EPoC specifications are both under development and subject to change.

The following are the views of the author and do not represent decisions or positions of either CableLabs or IEEE 802.3.





## **Overview – What are D3.1 & EPoC?**

### DOCSIS<sup>®</sup> 3.1

CableLabs effort

- Strong support from Cable
  Europe Labs, Euro operators
- Defines Next Generation DOCSIS<sup>®</sup> devices
  - Common DOCSIS<sup>®</sup> specification worldwide
  - I.e. No regional variants as today with EuroDOCSIS

### EPoC – EPON over Coax

IEEE P802.3bn

- Task Force under IEEE 802.3 Working Group, home of EPON
- Leverages existing EPON MAC and hence EPON technologies

Extends EPON reach over a coax infrastructure





# **Key Objectives**

### DOCSIS<sup>®</sup> 3.1

Efficient support for 10+ Gbps downstream, 1+ Gbps upstream

Significant cost per bit reduction relative to DOCSIS 3.0

Adaptation to different amounts of spectrum and plant conditions

Effective DOCSIS<sup>®</sup> migration strategy

Operates on existing HFC networks and actives

### EPoC – EPON over Coax

At least 1 Gbps in 120MHz for baseline conditions at MAC Interface

- Expanding to 1.6 Gbps in 192MHz

Minimal augmentation to EPON MPCP (MAC) Protocol

Co-exist with legacy HFC services

- FDD support in an Active HFC plant
- TDD or FDD support in Passive HFC

Symmetric or Asymmetric data rates





## **Target Markets**

### DOCSIS<sup>®</sup> 3.1

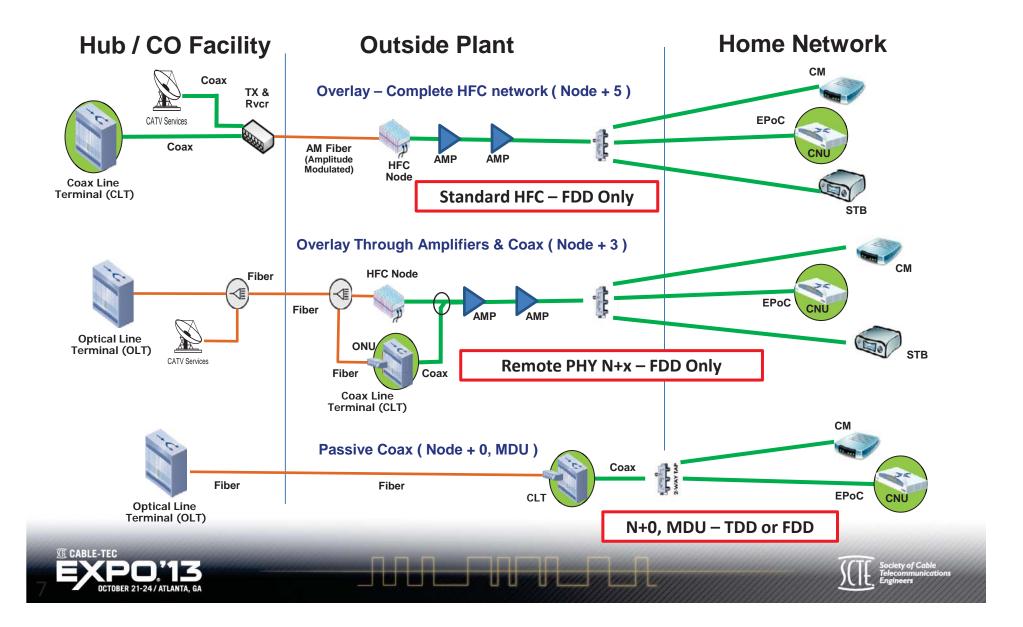
#### Expand existing DOCSIS<sup>®</sup> systems

- Mostly residential today with Fast growing business segment
- Operators already heavily invested in DOCSIS<sup>®</sup> infrastructure and back office
- Support today's "Classic" HFC: Node + 'small': N+3, N+6
  - While enabling enhanced capabilities for future Fiber Deep HFC

### EPoC – EPON over Coax

#### Expand EPON Services Coverage

- Focus on services already deployed on EPON
- Operators that have already invested in OLT's


#### Asia-Pacific MDU market

- Especially in China
- EPON fiber drop to the building; EPoC inside
  - Next Gen 'EOC' standardized





### **EPoC – Example Cable Deployment Topologies**



### **Common Channel Characteristics** Channel Model Update Driving System Designs

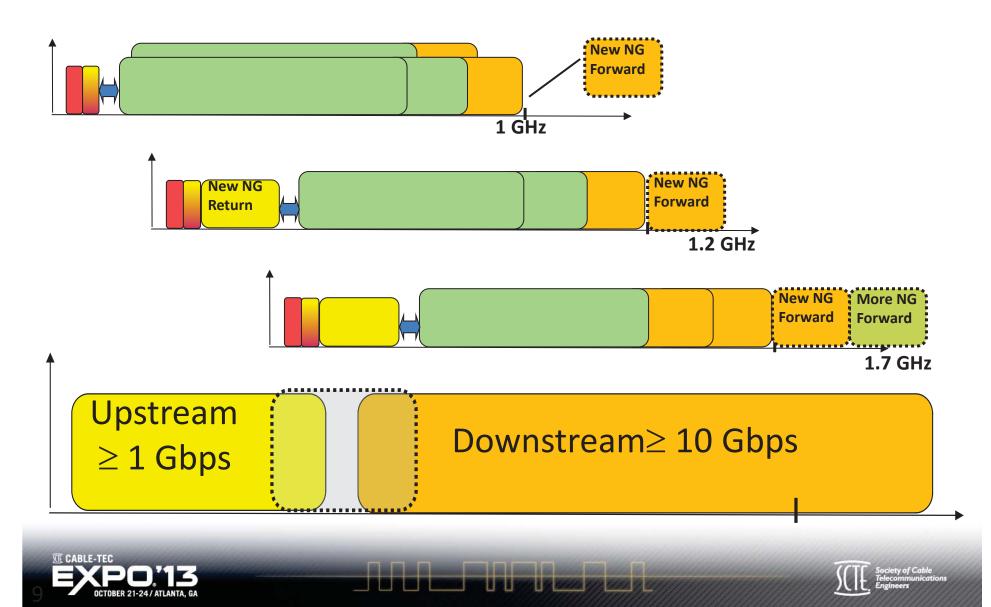
|            | #   | Parameters                                                      | Typical <sup>1</sup> | Limit     | Notes/Dependency         | Inc    |
|------------|-----|-----------------------------------------------------------------|----------------------|-----------|--------------------------|--------|
| Spectrum   | 1   | Frequency range                                                 | 54 MHz - 1 GHz       |           |                          |        |
|            |     | OFDM Bandwidth                                                  | 192 MHz              |           |                          |        |
| RF Level   | 2   | OFDM Power at CPE Input (dBmV)                                  | 15 dBmV, 100         |           | Natao 2.4                | 1 :1 - |
|            |     |                                                                 | ft, 2-way            |           | Notes 2-4                | l Lik  |
|            |     | 6 MHz BW<br>24 MHz BW                                           | -2                   | -14<br>-8 |                          |        |
|            |     | 96 MHz BW                                                       | 4                    | -8<br>-2  |                          |        |
|            |     | 192 MHz BW                                                      | 10                   | -2        | Note 5                   |        |
| SNR        | 4   | SCN Ratio (Signal to Composite Noise Ratio)                     | 43                   | 40        | Note 6                   |        |
| JNK        | -   | Variation over 6 MHz BW (dB)                                    | 43<br>N/A            | 40<br>N/A | Reference Basis 6 MHz    |        |
|            |     | Variation over 24 MHz BW (dB)                                   | 1.5                  | 3.5       | Reference Dasis o Iviliz |        |
|            | -   | Variation over 24 Min2 BW (dB)<br>Variation over 96 MHz BW (dB) | 2.5                  | 4.5       |                          |        |
|            |     | Variation over 192 MHz BW (dB)                                  | 3.0                  | 5.0       |                          |        |
| terference | 5   | CTB Interference (20 kHz BW)                                    | 0.0                  | 0.0       | Note 7-8                 |        |
| Narrowband | Ū   | # of interfered subcarriers @ 30-35 dBc                         | 0%                   | 1%        |                          |        |
|            |     | 35-40                                                           | 1%                   | 0%        |                          |        |
|            |     | 40-45                                                           | 0%                   | 0%        |                          |        |
|            |     | >45                                                             | 0%                   | 0%        |                          |        |
|            | 6   | CSO Interference (20 kHz BW)                                    |                      |           | Note 9                   |        |
|            |     | # of interfered subcarriers @ 30-35 dBc                         | 0%                   | 2%        |                          |        |
|            |     | 35-40                                                           | 0%                   | 0%        |                          |        |
|            |     | 40-45                                                           | 2%                   | 0%        |                          |        |
|            |     | 45-50                                                           | 0%                   | 0%        |                          |        |
|            |     | >50                                                             | 0%                   | 0%        |                          |        |
|            | 7   | LTE Interference                                                |                      | 2,0       |                          |        |
|            | D/S | Bandwidth (MHz)                                                 | 10                   | 40        |                          |        |
|            |     | Level, dBc (PSD)                                                | -30                  | -30       |                          |        |
|            | U/S | Bandwidth (MHz)                                                 | 10                   | 10        |                          |        |
|            |     | Level, dBc (PSD)                                                | -40                  | -5        |                          |        |
|            | 8   | Additive Interference (other)                                   |                      |           | Additional bands TBD     |        |
|            |     | Range of dBc                                                    | -41                  | -29       | CL 1997 Report           |        |
|            |     | Percentage of effected subcarriers                              | 1                    | 1         |                          |        |
| Wideband   | 9   | Burst Interference                                              |                      |           | Note 10                  |        |
|            |     | Bandwidth (MHz)                                                 | 30                   | TBD       |                          |        |
|            |     | Level, dBc (PSD)                                                | -20                  | -5        | Reference:               |        |
|            |     | Duration (usec)                                                 | 16                   | 25        | http://www.i             | eee8i  |
|            | -   | Period (Hz)                                                     | Infrequent           | 10        | 1 '                      |        |
|            | 10  | Impulse (white) Noise                                           | intequent            |           | mar13/howa               | iia_3l |
|            |     | Level, dBc (PSD)                                                | -25                  | -25       | Note 11                  |        |
|            |     | Duration (nsec)                                                 | 0.5                  | 0.5       |                          |        |
|            | -   | Period (kHz)                                                    | 10                   | 10        |                          | _      |

#### Downstream Example Snapshot

ndustry Cross-Section Channel Model Team

- MSO, OEMs, Chip Manufacturers

Likely Scenarios for DOCSIS<sup>®</sup> & EPoC


- Architecture Variants
- Channel Loading Variants
- Spectrum Use Variants
- Downstream & Upstream

| ote 9                                                                     | Freq Response       |                                      |                           |      |         |            |
|---------------------------------------------------------------------------|---------------------|--------------------------------------|---------------------------|------|---------|------------|
|                                                                           | Amplitu             | <b>de</b> 11                         | Amplitude Slope           |      |         | Note 12    |
|                                                                           |                     |                                      | dB/MHz                    | 0.01 | 0.02    |            |
|                                                                           |                     | 12                                   | Amplitude Variation       |      |         |            |
|                                                                           |                     |                                      | (dB pk-pk/6 MHz)          | 1.5  | 6       |            |
|                                                                           | (dB pk-pk/24 MH:    |                                      |                           | 3.5  | 8       |            |
|                                                                           |                     | (dB pk-pk/192 MHz)                   |                           |      | 11      |            |
|                                                                           |                     |                                      | (dB pk-pk/Total DS BW)    | 10   | 15      |            |
|                                                                           | Pha                 | Phase 13 Group Delay Variation, nsec |                           |      |         |            |
|                                                                           |                     |                                      | Over 24 MHz               |      |         |            |
|                                                                           |                     |                                      | Mid Band                  | 50   | 100     |            |
|                                                                           |                     |                                      | Band Edge (24 MHz)        | 290  | 340     |            |
| ditional bands TBD                                                        |                     |                                      | Over 192 MHz              |      |         |            |
| 1997 Report                                                               |                     |                                      | Mid Band                  | 400  | 800     |            |
|                                                                           |                     |                                      | Band Edge (24 MHz)        | 640  | 1040    |            |
| ote 10                                                                    | Eci                 | <b>bo</b> 14                         | Echo Profile, dBc         | 99%  | SCTE-40 | Note 13-14 |
|                                                                           |                     |                                      | .5 usec                   | -20  | -10     |            |
| Reference:    1 usec      http://www.ieee802.org/3/bn/public/    1.5 usec |                     |                                      |                           |      | -15     |            |
|                                                                           |                     |                                      |                           |      | -20     |            |
|                                                                           |                     |                                      |                           |      |         |            |
| mar13/howald_3bn_01_0313.pdf 3 usec 4.5 usec                              |                     |                                      |                           | -40  |         |            |
|                                                                           |                     |                                      |                           | -45  | -30     |            |
| ote 11                                                                    |                     |                                      | 5 usec                    | -50  |         |            |
|                                                                           |                     |                                      |                           |      |         |            |
|                                                                           | Spurious Modulation | on 15                                | AM/Carrier hum modulation | 3%   | 5%      |            |





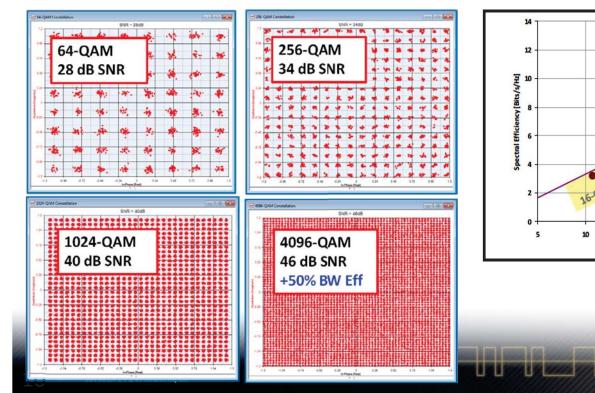
### **Spectrum Evolution Considerations – FDD**

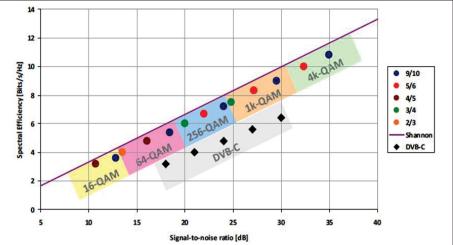


## **Key Shared Technologies**

### OFDM –

Orthogonal Freq Division Multiplexing Widely adopted; large pool of expertise Enables extra wide channels: 24-192MHz Robust – Adapts to different spectrum and plant conditions


### LDPC –


Low Density Parity Check FEC

Pushes us ever closer to Shannon's Limit

Up to 50% spectral gains

• 4096-QAM down, 1024-QAM up a reality







# **D3.1 & EPoC – Key Differences**

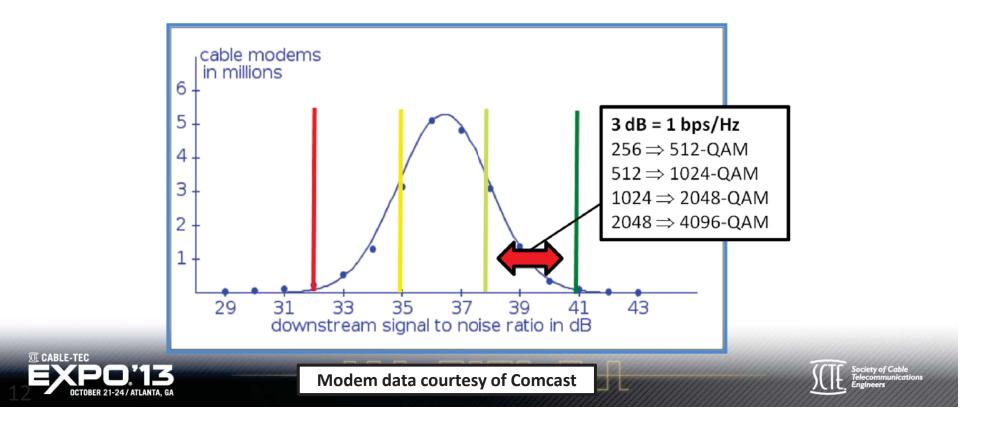
### PHY Layer Considerations

MAC Layer Considerations

Architecture Considerations






# Key Differences – PHY Layer

### FDD/TDD Architecture –

D3.1 only supports FDD: classic HFC EPoC split: supports FDD <u>and</u> TDD

 TDD on passive plant only, MDU oriented

#### Multiple Modulation Profiles – ~33% capacity gains over single profile D3.1 supports MMP EPoC TDD supports MMP EPoC FDD supports <u>single</u> profile



# Key Differences – PHY Channels

### OFDM Channels (downstream)

- D3.1: 2 x 192 MHz
- EPoC: 1 x 192 MHz
- OFDMA Channels (upstream)
  - D3.1: 2 x 96 MHz
  - EPoC: 1 x 192 MHz
- DOCSIS<sup>®</sup> Backwards Compatibility (D3.1 only)
  - 24 '3.0 compatible' Downstream QAM channels
  - 8 '3.0 compatible' Upstream ATDMA/S-CDMA channels
    Operate day one with zero infrastructure changes



# **Key Differences – MAC**

- Channel Bonding D3.1 Only
  - All combinations: 3.0, 3.0 + 3.1, 3.1 OFDM(A) only
  - D3.1:
    - ~<u>4.5Gbps</u> downstream (2x192 + 24x6 bonded)
    - ~<u>250Mbps</u> upstream in 42MHz with 3.0 <u>spectrum sharing</u>
  - EPoC FDD:
    - ~<u>1.4Gbps</u> downstream (1x192, single profile)
    - ~<u>50Mbps</u> upstream in 42MHz with 3.0 <u>co-existence</u>
  - 10+ Gbps with 5 bonded OFDM channels in 1.2GHz

D3.1 potential capacity ≥ 10G EPON





# **Key Differences – MAC**

### QoS – Rich DOCSIS<sup>®</sup> Heritage

- D3.1: H-QoS, 2-D US scheduler, extensive Service Flows
- EPoC: 1-D US scheduler, Limited LLID resources
  - Needs B-RAS to match DOCSIS® QoS capabilities
- Service Group Sizing (distance, subs)
  - D3.1: 100 miles (160km), 100's to 1000's of subs
  - EPON: 20km, 32 subs typical
    - 256 subs possible, but with shorter distances





# **Key Differences – Architecture**

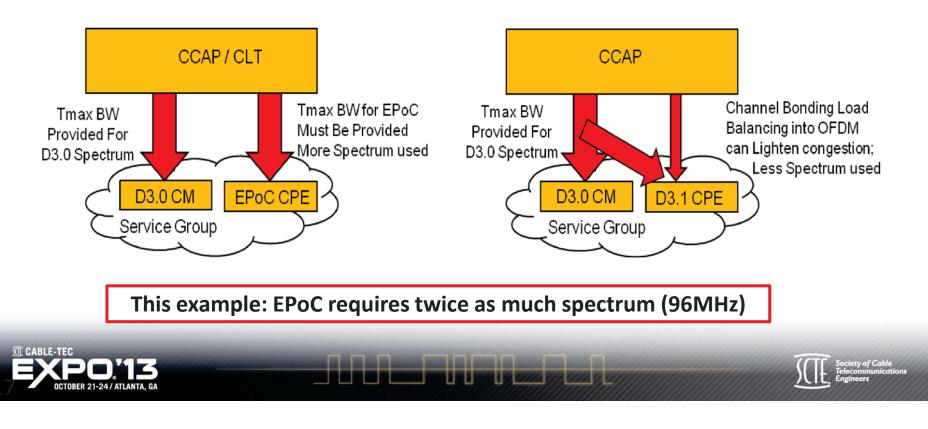
### CCAP Migration Strategy

- D3.1 provides CCAP investment protection
  - Dynamic mixing of legacy video & HSD services on 1 RF port
  - Some D3.1 components may even be a soft upgrade
  - Keeps Fiber nodes PHY agnostic
- Remote PHY (Distributed Access) Considerations
  - D3.1: optionally supports distributed architecture when and if MSO needs it (e.g. highly competitive/congested nodes only)
  - EPoC: could force distributed architecture from beginning
    - Requires HFC infrastructure investment before deploying





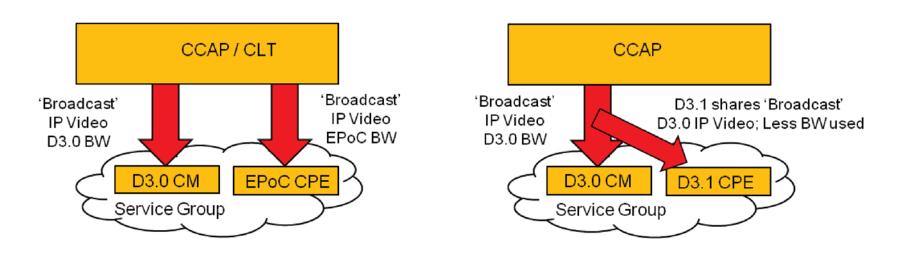
## **Key Differences – Spectrum Tax**


### EPoC -

Requires Full spectrum for Services E.g. 1.8 Gbps rate requires 192MHz

### D3.1 –

Shares 3.0 BW; reduced spectrum need


1.8 Gbps rate requires 96MHz OFDM bonded with 24 3.0 channels



## **Key Differences – IP Simulcast Tax**

### EPoC – Requires Full simulcast for IP Video Multicast

### D3.1 – Shares IP Video Multicast from 3.0 channels



This example: EPoC requires IP Simulcast Overhead; D3.1 has none





### **Operator Perspective – Considerations** What to Choose?

### DOCSIS<sup>®</sup> Investment Protection

- 100's of million of modems, CCAP, back office infrastructure
- Backwards compatibility let's critical mass of D3.1 modems deployed

### Service Tier Offerings

- Initial D3.1 modems will have almost triple capacity of EPoC
- Future D3.1 modems can match or exceed 10G/1G EPON

### Spectrum Evolution, HFC Migration Strategies

- D3.1 defers HFC investments, minimizes spectrum needs
- D3.1 + CCAP flexibility enables changing legacy video service mix
- FDD migration, will it ever reach 100% N+0? No need for TDD





### **Operator Perspective – Considerations** What to Choose?

- Global Market Economies of Scale
  - Universal D3.1 worldwide
  - EPoC market fractured: FDD/TDD; possible regional variants

### Time to Market

- D3.1 spec in 2013
- EPoC spec in 2015, maybe, lots of risk
- Plant Characterization + Maintenance
  - Extensive DOCSIS<sup>®</sup> tools; InGeNeOs<sup>®</sup>; new D3.1 hooks
  - EPoC: no tools available today
- Robust Upstream
  - D3.1 2 x 96MHz OFDMA: one optimized for noise, one for thruput



# **Conclusion – D3.1 or EPoC?**

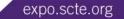
On just about every front, D3.1 wins hands down:

- Migration Path with DOCSIS<sup>®</sup> Backwards Compatibility
- Investment Protection
- Maximize HFC capacity
- Service Tier Offerings: rates that compete with 10G EPON
- Services: Best in Class QoS
- Efficient Spectrum Evolution strategy
- Global Market, Economies of Scale
- Operations: Tools to manage & maintain HFC plant
- Fastest Time to Market

**DOCSIS® 3.1 – the Sensible Choice for Today's Cable Operators** 








### John Ulm

### john.ulm@arrisi.com



Tweet about today's session on Twitter 😏 #scteExpo



30<sup>th</sup>

# **D3.1 v. EPoC Comparison Summary 1**

| Attribute                                       | Comment                                                |  |  |  |
|-------------------------------------------------|--------------------------------------------------------|--|--|--|
| Backward Compatibility                          | DOCSIS 3.1 Yes, seamless migration; EPOC No            |  |  |  |
| Leverage CCAP Investment                        | DOCSIS 3.1 Yes, some SW upgrade; EPOC No               |  |  |  |
| RF port integration for simplified HE operation | MPEG-TS & D3.1 share CCAP RF port; EPoC is Overlay     |  |  |  |
| Spectrum plans: FDD / TDD                       | D3.1: FDD only; EPoC market split: TDD, FDD            |  |  |  |
| Multiple Modulation Profiles                    | DOCSIS 3.1 Yes; EPoC TDD Yes, FDD No                   |  |  |  |
| Spectral Efficiency (FDD)                       | Same OFDM/LDPC, but D3.1 uses MMP for more bits/sec/Hz |  |  |  |
| Bandwidth Expansion                             | D3.1 bonding ≥ 10G EPON; EPoC 1x192MHz                 |  |  |  |
| Spectrum + Simulcast Tax                        | EPOC requires more spectrum for identical services     |  |  |  |
| Initial Downstream capacity                     | D3.1 ~4.5 Gbps; EPoC ~1.5 Gbps                         |  |  |  |
| 42MHz US capacity with 3.0                      | D3.1 ~250 Mbps; EPoC ~50 Mbps                          |  |  |  |
| EXPO.'13                                        | Society of Cable<br>Telecommunications<br>Engineers    |  |  |  |



# D3.1 v. EPoC Comparison Summary 2

| Attribute                  | Comment                                                                                                 |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Flexibility of MAC, QoS    | DOCSIS <sup>®</sup> rich QoS, services; EPON 1D scheduler                                               |  |  |
| Service Flows, SG Size     | D3.1 large SG, many SF; EPoC very limited SG, SF                                                        |  |  |
| HFC Analog Optics          | Both compatible with existing AM HFC Optics                                                             |  |  |
| Digital Optics, HE to Node | Both D3.1 and EPoC may operate over Digital Optics                                                      |  |  |
| Distributed Access Arch    | D3.1 optional as needed; EPoC likely Remote PHY from start                                              |  |  |
| Spec Control               | D3.1 CableLabs controlled; IEEE: individuals                                                            |  |  |
| Time To Deployment         | D3.1 is on fast track; EPoC languishing                                                                 |  |  |
| Overall Costs              | EPoC needs OLT + B-RAS for comparable functions<br>CPE delta small due to Moore's Law, Economy of Scale |  |  |



