

UNMANAGED ABR: HOW TO CONTROL THOSE UNRULY TEENAGERS

John Ulm, ARRIS
Fellow of Technical Staff

Co-authors: Amit Eshet, Nir Radian, ARRIS

Managed Adaptive Streaming (MAS) Taking control from Unruly ABR Clients

Managed ABR Video Service Overview

- Unmanaged ABR: Potential Issues
- Previous Findings: DOCSIS QoS, SABR
- MAS Overview

Lab Results

- Unmanaged ABR vs. MAS
- Scaling with Network Capacity: 40 to 80 to 160Mbps
- Behavior with Severe Overload

Conclusions

Potential Issues with ABR Delivery

Instability


QoE Impacts

Unfairness

Multiple types

Inefficiencies

No Admission Control

Challenge – How do we offer a <u>Managed</u> Video Service to ABR Devices with required <u>QoE</u>?

Unmanaged ABR, DOCSIS QoS Conclusions

Managed IP Video Service must address ABR QoE

- Instability, Unfairness, Inefficiencies, Congestion control

DOCSIS QoS

- Requires a Service Rate that is twice max Chunk Bit Rate
- Provides some benefits but <u>does not fix problems</u>
 - Three levels of congestion control: DOCSIS, TCP, ABR
- Potential scaling issues using PCMM
- Not applicable to other network types: wireless, FTTP

Smart ABR (SABR) Conclusions

From "Smart ABR (SABR): The Future of Managed ABR Services", Ulm et al., 2013 Cable Show Technical Forum

SABR centralizes Chunk Bit Rate selections in the cloud

- Provides Stability, Fairness, Improved Channel Utilization
- Graceful degradation during congestion

Intelligent Bit Rate selection

- Improved QoE
- Potentially 30-50% Stat Mux gains

SABR – provides operators with increased video capacity while maintaining consistent QoE across <u>all</u> clients

Managed Adaptive Streaming (MAS)

Cloud Based control of Adaptive Streaming protocols

- Fairly spread available bandwidth across ALL clients
- Video Quality per segment per client
- Support for standard ABR clients, no changes!!

Ideal Managed ABR Solution should leverage:

- Network topology including available bandwidth
- Session Information
 - Subscriber service levels (SLA), device type, screen size
- Content Information
 - Format (e.g. SD/HD), Video Quality (VQ) information

MAS Test Methodology

Content:

Bit Rate & Resolution

Bit Rate (Kbps)	Resolution
360	512x288
1000	640x360
1500	768x432
2800	1280x720

Device Distribution

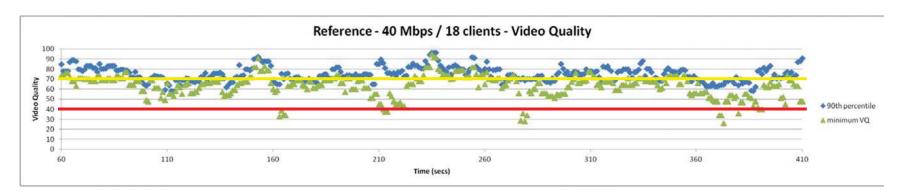
Device	Percentage	Max Bit Rate
HDTV	50%	2800 Kbps
Tablet	40%	2800 Kbps
Hand-held	10%	1000 Kbps

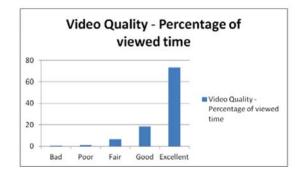
Video Quality Metrics

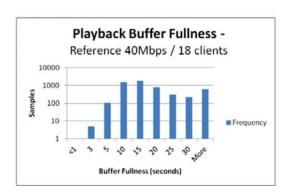
VQ Range	Quality	Impairment
85-100	Excellent	Imperceptible
70-85	Good	Perceptible, not annoying
55-70	Fair	Slightly annoying
40-55	Poor	Annoying
0-40	Bad	Very annoying
Video Freeze	Terrible	Unacceptable

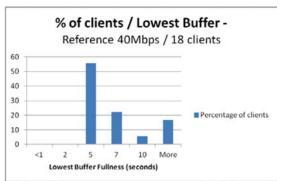
Expectation: 90+% Good/Excellent; >1% Poor, 0% Bad

Client distribution: 18 to 160

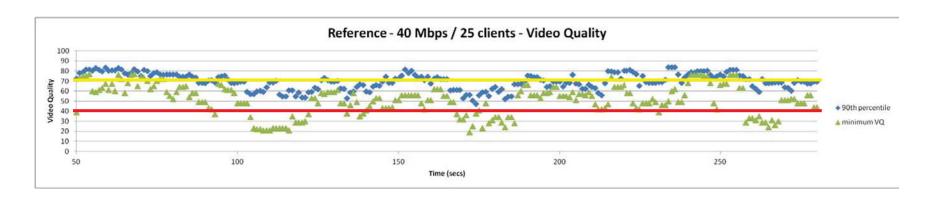

Channel BW: 40, 80, 160Mbps


Unmanaged ABR & MAS tests



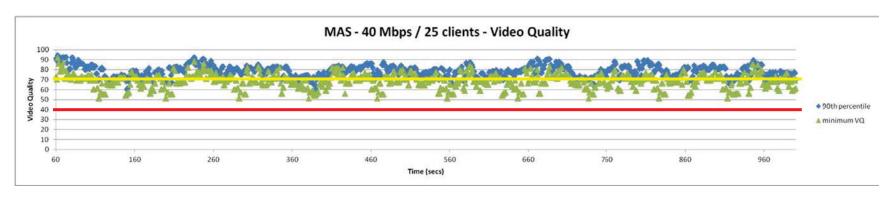


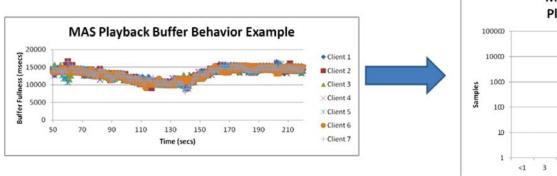
Baseline Reference – Unmanaged ABR 40Mbps, 18 clients

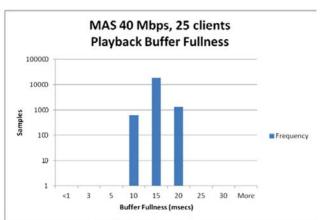



90th Percentile falls below Good;1.3% Poor, 0.3% Bad; No Video Freezes Overall QoE: acceptable for OTT, *marginal* for Managed Video Service

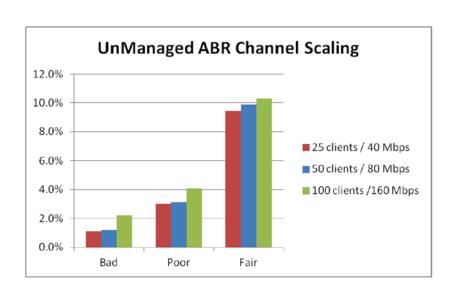
Unmanaged ABR – 40Mbps, 25 clients

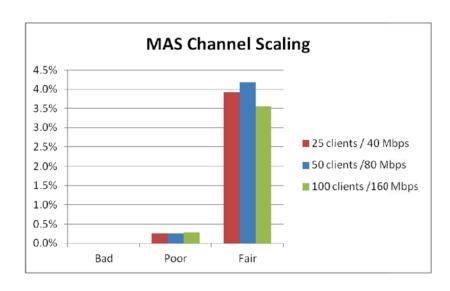

90th Percentile falls below Good; 3% Poor, 1.1% Bad; 28% had Video Freezes


Overall QoE: <u>Unacceptable</u>!!

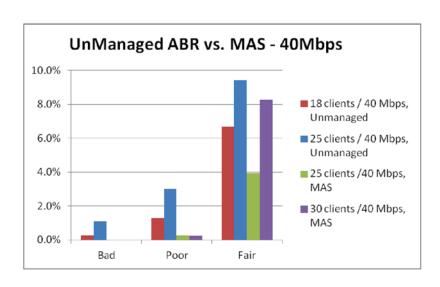


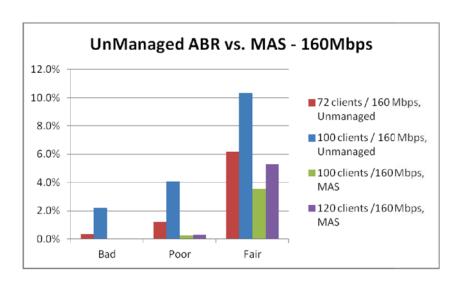
MAS – 40Mbps, 25 clients


90th Percentile stays above Fair; 0.3% Poor, 0% Bad; No Video Freezes

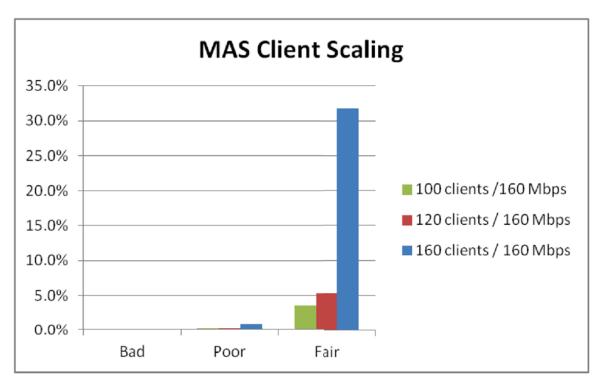

Overall QoE: Good-to-Excellent!!

Scaling with Network Capacity 40Mbps, 80Mbps, 160Mbps




- Unmanaged ABR: worse with increased capacity
 - Video freezes jumps from 28% to 38% to 64% of all clients
- MAS remains stable with slight gains, scales linearly
 - Seems that most stat mux gains comes before 25 clients

Unmanaged ABR vs. MAS 40Mbps, 160Mbps



- ▶ 40Mbps: MAS @ 30 better than Unmanaged @18
 - Even MAS @ 40 was better behaved
- ▶ 160Mbps: MAS @ 120 better than Unmanaged@72
 - MAS @ 120 clients also shows reduced Fair segments

MAS Behavior under severe Overload 160 clients @ 160Mbps

- MAS remains very stable under severe overload
 - No Video freezes; No Bad; >1% Poor
 - Bandwidth shared fairly among clients, 67% Good/Excellent

Conclusion: MAS takes Control of Unruly 'Teenage' ABR Clients

- Unmanaged ABR has significant QoE issues
 - MAS tests confirms SABR results video freezes, instability, poor QoE
 - DOCSIS QoS, Bigger capacity pipes are not the answer
- Cloud based MAS solves QoE issues
 - Provides fairness across clients; constant QoE across content
 - Almost 2:1 throughput improvement over unmanaged ABR
 - Stable buffers bodes well for live content
 - Scales well with network capacity
 - Easily handles severe overload condition; no admission control needed

Managed ABR Video Service QoE Requires Cloud based MAS

John Ulm

john.ulm@arrisi.com

