
MASTERING THE IPV6 TRANSITION

Jeremy Schmeichel

Network Engineer

IBBS (Integrated Broadband Services)

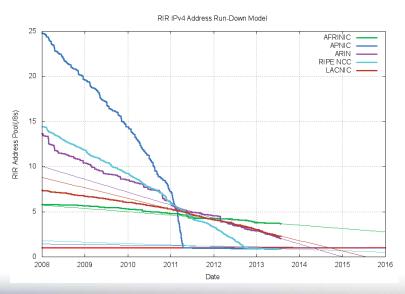
Tweet about today's session on Twitter 😏 #scteExpo

30

Introduction

Placeholder for Introduction Video

Video will be embedded in presentation. For reference, video can be viewed online -<u>http://www.youtube.com/watch?v=HEKZpV125SM</u>



IPv4 Exhaustion Is Real

IPv4 is in its last days

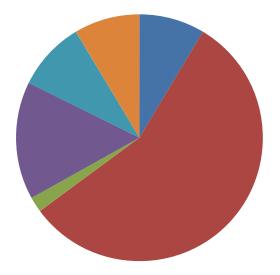
- ▶ IANA officially out as of February 3, 2011
- ARIN has just over 2 /8's available
- ETA to doomsday: January 1, 2015

Service Provider Challenges

- The complexity of IPv4 exhaustion
- Content/demand concerns
- Compliance concerns
- Upstream carrier concerns
- Knowledge gap
- Budget

IPv4 vs. IPv6

Address Comparison


Difference at the bit level

- IPv4
 - 192.168.1.1
- IPv6
 - 2001:0050:0000:0000:0000:0AB4:1E2B:98AA
- Number of IPv4 Addresses:
 - 4,294,967,296
- Number of IPv6 Addresses:
 - 340,282,366,920,938,463,463,374,607,431,770,000,000

IPv6 Transition Issues

Consumer devices primary hurdle Estimated OS Distribution as of July 2013

- Windows 8
 Windows 7
 Windows Vista
 Windows XP
- Mac OS X
- Other

Other issues – Consumer routers Outdated firmware Businesses needs Lack of content

*Other OS: All Windows Server OS, Linux, and Mobile Devices

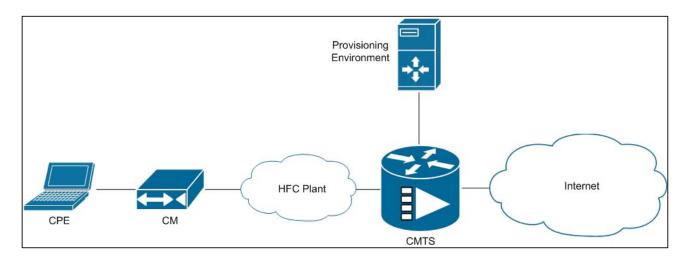
Brokering

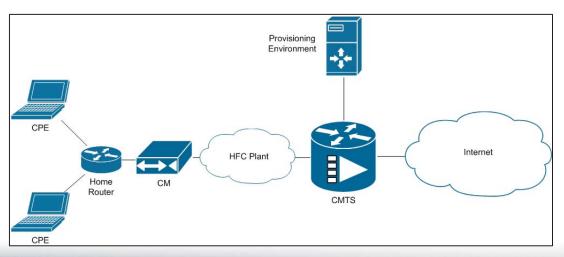
- IPv4 Brokering
 - ARIN STLS
 - Listers
 - Seekers
 - Facilitators
 - Legacy IPv4 Resources
- Pros/Cons
 - Simple IPv4 solution
 - No direct path to IPv6

Reclamation

Not all devices require public IPs

- MTAs/Cable Modems
- Public IPv4 space = premium service
 - Customers can pay for a public address
- Pros/Cons
 - Allows redeployment of ineffectively utilized IPv4 resources
 - Process intensive, CALEA/Subpoena issues, no direct path to IPv6


Software NAT


Software-based Network Address Translation

- Network Address Translation performed at CMTS/Edge
- Hardware dependent
- Scaling/Application concerns
- Pros/Cons
 - Mitigates IPv4 exhaustion, relatively inexpensive, can be used to provide path to IPv6
 - Hardware/Software intensive, causes issues with ALGs, not scalable, not CALEA/Subpoena compliant

Hardware NAT

Hardware-based NAT Implementation

- Carrier Grade or Large Scale NAT (CGN/LSN)
- Separate physical box processing NAT requests
- Various implementations
- Pros/Cons
 - Mitigates IPv4 exhaustion, scalable, compliance with CALEA/Subpeona, can be used to provide path to IPv6
 - Expensive, additional point of failure, introduces additional configuration complexities, storage concerns

Implementing IPv6

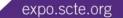
- Protocol differences
 - Header changes
 - Removal of Broadcast/ARP
- Differences in implementation
 - SLAAC vs. DHCPv6
 - Prefix Delegation

Implementing IPv6

- Important steps to take
 - Allocation from RIR
 - Bandwidth provider IPv6 capable?
 - Internal network deployment
 - Cable bundle deployment
 - 2 Prefixes
 - Prefix size
 - Test functionality

Summary

- IPv6 deployment does not fix IPv4 exhaustion
- ► IPv6 small percentage of total internet traffic
- IPv4 will be here for awhile
- IPv6 is the future
- Assimilation is inevitable
- Deploy IPv6!


EXPO. 13 OCTOBER 21-24/ATLANTA, GA

Jeremy Schmeichel

Phone: 678-399-9513 Email: jeremy.schmeichel@ibbs.com

Tweet about today's session on Twitter 😏 #scteExpo

30