

DISTRIBUTED NETWORK ARCHITECTURES FOR NEXT-GENERATION CABLE ACCESS

OCTOBER 21-24 / ATLANTA, GA

by Niki Pantelias

Associate Technical Director, Broadband Technology Group

Broadcom Corp.

Tweet about today's session on Twitter 🕑 #scteExpo

Why Distribute the CMTS?

Distributed CMTS concepts have been considered for a long time, but integrated platforms still dominate the market. Why reconsider distributed architectures now?

- Replacement of analog lasers with digital links can improve plant SNR and reduce cost
- Some operators foresee pressure to reduce headend/hub space and power requirements
- Technology marches on! A complete bidirectional digital channel lineup can now be generated in a fiber node.
 - Chip densities have increased
 - Direct digital synthesis of the downstream is becoming common
 - Power consumption per megabit has decreased

Integrated CMTS Architecture

Note use of Ethernet as a many-to-many interconnect for the MAC-PHY interface internal to the CMTS

- This is common in many existing platforms

"Remote DAC/ADC" Distributed Architecture

- DAC and ADC are located in the node
- Samples representing the RF signal are transferred across a digital fiber link

- Analog RF signals are present only on coaxial segments
- The resulting SNR improvement is common to all distributed architectures considered in this paper
- Current example: "Digital return" technologies/products

"Remote PHY" Architecture

- Complete downstream and upstream PHYs are moved to the node along with DAC and ADC
- Ethernet switching interface currently internal to the CMTS is extended across the fiber link to the node
 - Takes advantage of a logical "breakpoint" inside the CMTS
- Current example: DOCSIS[®] Modular Headend Architecture (MHA) (aka M-CMTS)

"Remote MAC-PHY" Architecture

- Node also contains DOCSIS[®] MAC, including upstream and downstream schedulers and related message processing
 - Different versions locate upper-layer MAC, Management, and Layer 3 functions in various places
- Current examples: C-DOCSIS I and C-DOCSIS II architectures from C-DOCSIS (China DOCSIS) specification

Comparison of Required Network Throughput

- Data throughput requirements are an important cost driver for the digital link in a distributed system
- Remote PHY and Remote MAC/PHY require network capacity approximately equal to the peak line rate of services delivered (plus protocol overhead, say up to 10%)
- Remote DAC/ADC must transfer digital samples of sufficient resolution (14/12 bits), taken at a rate >2x the RF bandwidth
- Required network throughput is much higher for Remote DAC/ADC

Maximum Possible Downstream Rate:Remote DAC/ADC44100 Mbits/secondRemote PHY and Remote MAC-PHY12601 Mbits/secondMaximum Possible Upstream Rate:Remote DAC/ADC9450 Mbits/secondRemote PHY and Remote MAC-PHY2578 Mbits/second

DOCSIS Round-Trip Time Comparison

DOCSIS Round-Trip Time impacts system performance:

- Largest component of the DOCSIS[®] network's contribution to end-toend latency for business or gaming services
- Affects "access latency" seen at startup of TCP protocol; high values can hurt TCP performance for web browsing and similar activities
- Request-Grant path for Integrated architecture is shown below

Round-Trip Time For Remote MAC-PHY

- Same CMTS components traversed, but over coax segments only
- Round-Trip Time is reduced by the propagation delay of the fiber
- Possible performance improvement depending on fiber link distance

Round-Trip Time for Remote PHY and Remote DAC/ADC

Same as integrated case *IF* network topology of Ethernet link over fiber is unchanged from internal topology of Integrated architecture

Network Topology and Planning

- If the topology assumption from the previous slide does not hold, then careful network planning is required
 - Characterize and shape all traffic on the link
 - Calculate and bound maximum possible queueing delays at all potential congestion points
- Network jitter is a particular concern
 - For Remote PHY, jitter causes delay due to head-of-line blocking
 - For Remote DAC/ADC, excess jitter may cause buffer underruns, with potentially catastrophic results (e.g. dropped modems)
- In planning the network, jitter should be treated as another delay component and added directly to the delay budget

Allowing uncontrolled/uncharacterized traffic on this link is NOT recommended!

Protocol Complexity

- In general, simpler protocols are easier to standardize, implement, and deploy, provided they are adequate for the task at hand
- In the control plane, the Remote MAC-PHY architecture carries the most information, while Remote DAC/ADC carries the least
- In the data plane, Remote MAC-PHY may require little to no additional tagging of packets to carry required per-packet information
 - Example: C-DOCSIS II CDT protocol
- The Remote PHY data plane requires an extra layer of Ethernet/IP headers to tunnel packets between headend and node, plus more per-packet information
 Data Plane Control Plane
 - Example: DEPI

	Data Plane	Control Plane
Simplest		
I	Remote DAC/ADC	Remote DAC/ADC
I	Remote MAC-PHY	Remote PHY
I	Remote PHY	Remote MAC-PHY
\bigvee		
Most Complex		

Conclusion

- On the points of comparison studied here, there is no clear winner each approach has its pros and cons
- All approaches are technically viable and potentially useful in various ways
- Comparing classes of architectures and examining existing examples of each can be instructive in understanding future proposals

EXPO[®] **13**

Niki Pantelias

Broadcom Corp. nikip@broadcom.com

+1-770-232-0018

BROADCOM

Tweet about today's session on Twitter 😏 #scteExpo

30th