

Automating Testing to Meet Enterprise SLAs

A Technical Paper prepared for the Society of Cable Telecommunications Engineers
By

Alex Henthorn-Iwane
Vice-President, Marketing

QualiSystems
2880 Lakeside Drive

Santa Clara, CA 95054
+1-408-588-1260

alex.h@qualisystems.com

Overview
Network quality affects business. And where quality issues arise is important1. Finding
problems in the field, versus finding problems during testing can make the difference
between customer satisfaction and Service Level Agreement (SLA) payouts. This makes
network testing a critical function, and the effectiveness of network testing a worthy topic
for business analysis. Unfortunately, today testing tends to be both very costly and quite
inefficient due to highly manual, un-automated processes and outmoded architectural
approaches. To paraphrase Tom Demarco’s well-known line from his seminal book on
managing software teams, Peopleware, “While the machines have changed enormously, the
business of [network testing] has been rather static”.

If there isn’t enough reason to evolve for cost savings, time to market, customer satisfaction
and competitiveness reasons, looming technology sea changes should add a good deal more
motivation. Software defined networks (SDNs) and network function virtualization (NFV)
are challenging long-held assumptions about network architecture. They also promise to
make networks more agile and will definitely make them more complex. The sheer change
that these technologies can bring in how networks are built, plus the fact that they are
purpose-designed to enable much higher levels of dynamism in operating networks and
delivering services make it imperative to ensure that network testing has the agility to
ensure quality service delivery.

In short, the time is now to update network testing practices. To do so requires
modernizing two inter-related domains: test lab operations and test automation.
Organizations that make sound investments in automation will reap substantial rewards in
the form of significant capital expenditures (CAPEX) and operations expenditures (OPEX)
savings in their testing organization and infrastructure, accelerated time to market with
new services, and higher service quality that builds customer satisfaction, business
relationships and brand power. This paper delves into the state of test lab infrastructure
management and test automation today, and then explores the state of the art in both
arenas.

Content

The State of Test Lab Infrastructure Processes

Test labs are typically established to serve as a shared, dynamic
infrastructure for development, Quality Assurance (QA), technical support
and field engineers to perform a variety of critical testing tasks. These test
labs centers typically include many instances of multi-vendor equipment
representing the full stack of computing, storage, network, and
virtualization components that are used to deliver services. Two major
categories of test activities tend to dominate these test lab environments:

Interoperability or certification tests to ensure that new products
will work properly in combination with a variety of other products
that are installed in target deployment environments. For service
providers and cable MSO’s, this may include certifying new devices
and software against all relevant production architectures, testing
against common customer deployment architectures, and custom
testing for strategic accounts.
Technical issue replication and fix verification. In this use case, when
a field customer issue is reported, technical support engineers and
must assemble the same scenario and configuration in which the
field problem occurred and replicate it so that escalation engineers
can examine the problem in context. Once a fix is received (typically
from a vendor), support engineers must then verify that the
problematic behavior is resolved in that same configuration before
deploying the fix to the network.

Both of these testing use cases require the dynamic reuse of multi-vendor
equipment and virtual resources in variable configurations or test
topologies. For example, a test may require verifying the interoperability
and performance of a new version of a cable modem termination system
(CMTS) against a test topology consisting of Ethernet switches, Internet
Protocol/Multi-Protocol Layer Switching (IP/MPLS) routers, head-end
servers, home gateway devices and end-user equipment. The simplicity and

speed with which infrastructure can be deployed to support these tests is an
obvious and important factor.

Unfortunately, in the vast majority of test labs today, the process to deploy
costly resources into test topologies is anything but simple and fast.
Ironically, the networking, storage and computing technology that is being
tested is increasingly virtualized, agile and software-controlled. Yet, the
typical test lab’s infrastructure management setup provisioning processes
are resoundingly manual in nature. This can be seen in a number of ways:

Absence of inventory visibility. In most test labs, equipment
inventory is not tracked in a way that provides visibility to engineers.
While most organizations perform asset tracking for financial
purposes, what passes for the inventory management used by
engineers is a spreadsheet that is often ill-maintained. As a result, it
is difficult to tell without exhaustive work what equipment exists, is
being used by whom and what is truly available.
Offline test topology design. Since there is no usable inventory
visibility, it follows that test topology design is done completely
offline without regard for resource availability. Visio or other
diagramming tools are most common, and basically produce the
electronic version of a paper drawing, which is usually then printed
to aid in a time-consuming manual hunt for relevant equipment.
Chaotic connectivity management and costly errors. Once inventory
is found that is at least apparently available, engineers must
manually re-cable connections between the equipment. With
multiple people making adds, moves and changes, typically without
up to date documentation, errors such as disconnecting someone
else’s test inevitably occur. Test breaks are a sadly common reality in
most test labs today.
Manual provisioning. Once an engineer has painstakingly assembled
a physical topology, (s)he must then perform a variety of further
time-consuming device and logical provisioning steps. For example:
loading a particular hyper-visor version, changing operating system
(OS) images on networking equipment, setting up logical
connectivity between servers and virtualized storage devices, and
instantiating virtual machines. Test engineers may be highly
educated on the components they are testing, but they spend the vast
majority of their time on low level provisioning tasks.

The result of these manual setup processes can be encapsulated in one
word: inefficiency. The waste of space, equipment and power is evident
through a number of indicators:

Large ratio of test setup to actual testing. Test engineers can easily
spend a week in the setup process for a test that takes less than a day
to run.
Hoarding and poor resource sharing. Given the time that engineers
often have to put into physically locating, connecting and
provisioning test resources into a ready-to-use test topology, it is
understandable that they don’t want others to cause any changes.
This time-consuming setup process also makes it literally too costly
to release resources if a test isn’t immediately ready to start, meaning
that costly networking or other components may sit idle, most often
powered up and consuming power, for days or even weeks until the
test is ready to run.
Very low device utilization. Tens of millions of dollars in test lab
capital equipment are typically only 15% to 20% utilized.
Excessive power usage. The low percentage of time that devices are
productively utilized belies the fact that most devices are still left
powered on nearly 100% of the time, which adds up to a lot of
wasteful power consumption. Test lab managers have reported
experiences where proactive power downs of large test
environments have resulted in only a few test engineers complaining,
leading them to wonder why all the other equipment was powered
on continuously in the first place.

There are significant implications to the level of waste created by manual
operating processes in test labs. To begin with, a device utilization of under
20% means that as demands for testing grow with the deployment of new
services, devices and software, the pace of investment in test lab capacity
will rise at a rapid rate. With test labs costing anywhere from $1K to $3K
per square foot inclusive of equipment costs, this can lead to huge,
unnecessary CAPEX outlays over time. Wasted power costs due to so much
equipment not being utilized productively yet still powered up are also
daunting. Assuming a modest $50.00 annual power cost per square foot for
a typical 50 KW/square foot data center facility3, the expansion of capacity
needed to accommodate low device utilization can lead to hefty additional
OPEX.

Above and beyond the bottom-line of wasted test data center capacity due
to manual processes, there is also the top-line issue of slower business
velocity. When setup to testing ratios are as high as 80:20, this means that
testing cycles are longer, which either delays service releases or causes
organizations to compromise test coverage and quality which leads to
higher incidences of problems found in the field that are much costlier to fix

after products are released. Lower network quality leads to higher
incidences of SLA payouts, damage to customer satisfaction and key account
relationships, and lower overall competitiveness.

The State of Test Automation Processes

Test lab infrastructure management is not the only aspect of the testing
process that commonly suffers from inefficiencies. Many network tests
today are performed manually, rather than in a software automated fashion.
Even in cases where automation is applied, automation projects themselves
often experience difficulties in delivering on their promises because they are
based on a script-based architecture. Scripting is a necessary and useful
programming method for creating automation. However, “script-based
architectures”, meaning collections of lengthy script documents, suffer from
a number of significant drawbacks that impact efficiency:

Dependence on programmers and high maintenance costs – scripts
are typically coded to automate a multistep process, generating lengthy
files of TCL, Perl, Python or other scripting language. These files are
lengthy, complex, and thus difficult to maintain, update or repurpose as
conditions in the testing environment change. Since only programmers
create or update scripts, the entire automation process becomes very
tied to individual programmer knowledge. If there is a change that
makes scripts out of date, programmers must then spend significant
amounts of time to create new version of the scripts. In many cases,
scripts are written without any comments, so if the original script
developer is no longer available, it may be impossible for new engineers
to adapt or update the script and force them to write it again from
scratch. This process is costly in terms of programmer time and becomes
a bottleneck in the productivity of the majority of non-programmer
testing personnel.

No scalability, low penetration – due to the high cost of maintenance
and because most testing environments experience regular changes that
demand continuous and time-consuming script revisions, scalability is
very difficult to achieve. As a result, many automation projects never go
above 10% penetration of testing processes.

Script bloat – over time, a large number (in fact, the majority of
generated scripts) cover only a minority of testing functions. This core of
automated tests exists in a multitude of versions that cover minor
variations in the ever-changing test environment. The proliferation of
scripts becomes a logistical and revision-control problem, which

requires the introduction of source version control (SVC) tools. This
further burdens programming staff with additional administrative
overhead.

Vulnerability to disruptions due to changes in personnel – since the
content of the scripts is only known to and maintainable by the
programming staff and often only by the actual developer, there is very
little systematized knowledge. If programmers change their job or role,
their expertise is lost and the viability of the automation project may be
threatened.

High total cost of ownership (TCO), low return on investment (ROI),
and project fatigue – programmers are specialized staff, and therefore
expensive. Never-ending, heavy programming requirements make the
TCO of traditional automation projects unacceptably high. Project costs
become more glaring since due to the low penetration of automation
into the body of testing tasks, the overall testing process does not
accelerate significantly. This means that the return on investment is
poor. Lacking the penetration to reach positive ROI and burdened with a
high TCO, automation projects risk losing funding and sustainability.

Automating the Test Lab

The state of the art for test lab automation has advanced dramatically.
Modern lab management automation software should deliver a broad range
of capabilities that enable the following capabilities:

Centralized, live infrastructure and resource inventory that is
customizable to make it easily searchable
Inventory-aware test topology design
Shared, calendar-based resource and topology reservation
Connectivity mapping and automated connectivity control
Easy to create automated provisioning tasks
Non-programmer friendly automation workflow creation based on a
library of highly reusable test objects that can be created from a wide
variety of sources and leveraged to create:

o Auto-discovery, auto base-lining and other automated
maintenance routines

o Full test automation workflows

Another important concept for sustainable automation is that the platform for
managing the test lab should avoid the pitfall of using monolithic and fragile script-

based approaches to automation, which cannot scale due to their high maintenance
costs. An object-oriented platform that captures and manages all inventory
resources, test topologies, provisioning actions and testing tasks in a library of
highly re-usable, easy to update object building blocks is the only architecture that
ensures automation scalability and long-term and cost-effective sustainability of
Lab as a Service (LaaS) cloud administration.

Best Practices for Test Lab Infrastructure Management

To achieve a successful test lab infrastructure automation roll-out, best in breed
technology is critical but must be accompanied by best practice methodologies:

Highly Automated Physical Layer Connectivity:
Software-based automation benefits from a structured, documented, and easy to
operate physical connectivity environment. The state of the art practices in LaaS
consolidation include deployment of Layer 1 switching to virtually eliminate
manual cable patching. Of course, Layer 1 switching should be combined with
sound, TIA and SCTE standards-compliant data center, headend, and hub layout
and structured cabling2 so that the entire physical environment can flex to
changing requirements over time.

Resourcing the Automation Infrastructure Service
The most successful lab automation deployments involve dedicating personnel
resources with data architecture and programming skills to build and maintain the
object library of inventory resources, test topologies, provisioning and shared
testing objects and workflows. The broader user community can then leverage this
library to build and reserve topologies, easily perform provisioning, and progress
into test automation as the library is built out. Dedicating resources to maintaining
the object library as an infrastructure service is strongly recommended, since if the
utility and ease of use of the object library is not maintained at high levels, users
will abandon the automation system, wasting the investment.

A Phased Approach:
Successful lab automation is typically built in phases, where each phase aims for a
visible productivity gain and return on investment in a reasonably short time in
order to build user engagement and momentum and create realistic expectations.
Generally speaking, achieving “hands-off” visibility and reservation of lab resources
using Layer 1 switching and automation software is the first major goal. This level
of automation allows remote users to be on an equal productivity footing with local
users, and promotes deep buy-in of all user groups with the consolidation

initiatives. Any LaaS consolidation project should ensure that the centralized data
center is designed with this in mind.

The second automation phase is to free testers from the time-consuming tyranny of
low-level device provisioning tasks. This involves turning manual provisioning
processes into easy to invoke, menu-driven tasks from the automation graphical
user interface (GUI). The best practice in this stage is to ensure the sustainability
of the system, by avoiding reliance on fixed scripts. While it may be relatively easy
to create a first set of provisioning scripts for some usage scenarios, the time-
consuming nature of script maintenance will too often cause the provisioning
capabilities of the system to become out of date. The negative experience of using
scripts that don’t work will end up alienating users and deepen their reliance on
manual processes. Automation of provisioning tasks typically start with the basic
provisioning steps needed to get the devices under test (DUTs) to a particular state,
such as uploading OS images or applying patches. More advanced provisioning
tasks involve common configuration steps to ready the logical layer of a test
topology, such as configuring virtual local area networks (VLANs), routing
adjacencies, or tunnels on physical or virtual switches. These automated
provisioning objects help test engineers more easily accomplish the routine tasks
that often dominate their workdays, and allows them to focus more on higher order
thinking to achieve maximal test coverage.

A third phase of test lab infrastructure automation that is short of full test
automation is to create automated maintenance routines. Examples include auto-
discovery, which helps keep the inventory up to date, and auto-base lining returns
devices back to their default provisioning states on a timed basis. These types of
routines require development of a comprehensive set of device control/interface
automation objects for all necessary devices in the test infrastructure, so that they
can be leveraged across multiple maintenance automation processes.

Tiered Resource Domain Access:
In a large, shared LaaS cloud, not all users are created equal, which means that
there needs to be a way to offer varied tiers of access to lab resources to different
types fo users such as:

Global administrators who should have access to all resources
Domain administrators who have purview over a sub-set or domain of the
lab
Power users—who are given visibility to one or all domains, and who have
both visibility, topology design and resource reservation rights
External users—such as contractors or third-party testing organizations
who may have visibility to a domain of resources, but must request resource
reservations rather than

Self-service users— such as sales engineers or even customers, who are only
offered a pre-set menu of reservable topology resources for pre-defined
purposes such as technology demonstrations or proof of concept tests

The Path to Testing Velocity—Object-Oriented Test Automation

A modern test lab automation software platform will go beyond hands-off test
topology design and automated provisioning. It will also provide the way to
implement full test process automation. Like lab infrastructure management, test
automation has advanced considerably compared to traditional script-based
architecture approaches. Testing organizations can gain a large improvement
relative to the high TCO and low ROI of traditional test automation by
implementing an object-oriented model. Instead of creating long, monolithic, hard
to maintain scripts, an object-oriented approach enables the capture of all
automation elements as building block objects. This includes objects for interfacing
with test lab infrastructure resources (compute, storage, network, virtual, cloud),
provisioning actions (such as loading OS images), and testing tasks (such as
running a traffic load test). An object-oriented architecture offers a quantum leap in
maintainability compared to scripts:

The limited scope of automation objects means that they are easy to
capture, maintain, and refactor to meet the requirements of a changing
test environment
A shared library of resource, provisioning and testing objects can be
maintained in a systematic fashion. While programmers and data
architects are the ideal personnel to build the library, the easy
maintainability of the object library reduces risk because there is a
greater balance between the expertise residing in the system vs. that in
programmers’ brains.
Automation objects can be tagged with arbitrary labels so that they can
be easily searched and leveraged by many users from a shared library.

The greatest results come from combining a highly reusable object library
with powerful GUI tools. Together, they allow for much more productive and
efficient automation processes and practices:

Automation driven team wide – non-programmers can easily use the
object library and powerful GUI tools to drive all day-to-day automation
processes. Key automation GUI tool capabilities include:

Drag-and-drop test topology design using physical and virtual
test infrastructure resource objects

Right-click menu-driven provisioning actions from the test
topology visualization GUI that leverages provisioning objects
Drag-and-drop automation workflow design using a library of
user-generated testing objects, and out-of-the-box automation
logic objects

Of course, better results can be had if test engineers are offered training
in software development principles, since this will promote the
development of the most elegant, well-tagged and scalable automation
code and objects.
High levels of reuse – not only is the object library highly reusable, but
generated test topologies, provisioning and test workflows can be saved
and shared across teams, promoting a higher level of reuse
‘Object transfer’ vs. knowledge transfer – going beyond the simple
notion of 'sharing' between peers in the same department, an object
library approach means that test topologies and workflows provide a
highly accurate and efficient method of handing off precise scenarios
between developers, architects, QA teams, operations, technical support,
field personnel and even customers. This is a huge time saver, as
knowledge transfer processes based on verbal descriptions, text write-
ups, and static diagrams are time consuming and error prone.
Automation of results analysis – one of the most time-consuming
aspects of testing is sorting through the results. An object-oriented
approach can ensure that test results are ordered and recorded in the
most digestible format to feed reporting systems so that analysis reports
are quick and easy to produce.

These vastly improved processes revolutionize test automation leading to
lower TCO and higher ROI:

Programmer time is maximized, restraining ongoing costs and lowering
TCO
Automation of testing tasks accelerates and achieves very high degrees
of penetration – 80% to 90% of tests can be automated
Testing cycles accelerate speed and expand coverage, leading to a strong
ROI, faster time to market and higher quality
Costly test infrastructure resources are optimally used through
improved sharing, leading to huge CAPEX and OPEX savings

A Global 500 Telecommunications Telephony Case Study

Customer Profile:

A Global 500 telecommunications service provider operates worldwide, with
revenues in the tens of $billions, and tens of thousands of employees. Service
offerings include:

Local and long distance voice telephony services
Broadband Internet services
Enterprise-class business data services
Internet Protocol Television (IPTV)
IP Telephony/Voice over IP (VoIP)
Outsourced Information Technology (IT) and managed network
services

Business Challenge:

The telecom operator provides managed IP and analog telephony services
and equipment to enterprise customers, who expect flawless performance
of their voice services. The managed telephony service must support a
variety of different phones, such as VoIP desk phones and mobile IP phones.
As new feature versions are released, this matrix of supported equipment
must be extensively tested for a variety of use cases, including new phone
deployments.

The engineering team responsible for service deployments faced competing
pressures to release new feature sets and new phone support to customers
in a timely fashion, but at the same time, to ensure the highest quality and
prevent costly downtime or feature malfunctions. A significant challenge
was that pre-deployment testing was very time-consuming and costly,
requiring hiring multiple external contractors due to the heavy task load
when performing regression testing for new feature releases or major new
deployments.

The engineering team needed a test automation solution that could meet the
following requirements:

Ability to handle commercial voice test tools such as those provided
by Ixia Communications, Spirent Communications, Empirix, GL
Communications, and others, as well as open-source tools such as
Wireshark/Tshark packet capture tools
Ability to test GUI interactions such as the registration of VoIP
phones on a web-based provisioning application
End-to-end call testing

Test and lab Automation Software Applied

The telecom provider implemented a test and lab automation software solution to
address lab management, device provisioning and test automation capabilities in
order to optimize the entire testing lifecycle, including:

Managing lab inventory including physical DUT and testing equipment, L1
switches, and virtual resources such virtual machines and switches in a live,
searchable database tagged with testing attributes, eliminating manual
searching for equipment in racks
Test topology design via a drag and drop GUI environment that matches
available inventory
Calendar-based resource and test topology scheduling and automated
device provisioning that dramatically cuts down on test setup time and
increases costly device utilization
Test automation including the ability to leverage existing automation scripts
and integrate with management applications, as well as the ability to offer
automation functions in an easy to use GUI workflow design environment so
that non-programmers can boost their test automation efficiency.

Engineers were able to fully meet their technical requirements and have been able
to automate test workflows such as the following:

Phone provisioning testing
o Register the phone with a web-based provisioning application GUI

Setup and initiate packet capture tool
Call flow testing

o Configure and launch test to start a Session Initiation Protocol (SIP)
call and answer

o Configure and launch test to start an analog call
o Test tools answer call, capture digits, analyzes digits and reports

Stop the packet capture
Analysis: Perform deep packet inspection analysis of packet capture traces

o Pass/fail criteria for tests/regressions based on message sequencing
and timing thresholds

Phone de-provisioning test
o Unregister the phone

Business Value

After adopting the test and lab automation solution, the engineering team has been
able to achieve 80% automation in critical test areas, leading to the following
benefits:

Reduced dependence on external test contractors, resulting in significant
cost savings
Acceleration of testing processes through much higher efficiency, resulting
in the capacity to consider adding another service feature release annually
which makes the telephony service more competitive and satisfying to
customers

In addition, test lab infrastructure management software dramatically increased
efficient utilization of costly capital equipment in test labs, leading to significant
savings since new capital purchases could be deferred.

The engineering team calculated that based on cost savings alone, a positive return
on investment (ROI) on the investment was realized within 12 months of
deployment.

Conclusion

Testing organizations have historically suffered from a lack of attention. With the growing
complexity of networks driving ever higher levels of investment in test lab infrastructure
and personnel, cable operators can no longer afford to neglect automation. Wise
investments in automation test lab infrastructure management and testing processes will
yield improved customer satisfaction, top line performance and bottom-line efficiency and
profitability. For cable operators seeking to meet the increasingly stringent requirements
of enterprise customers, automating testing can ensure SLA achievement and successful
long-term positioning within the enterprise telecom services market.

References

Understanding and Controlling Software Costs
1. Understanding and Controlling Software Costs, B.W. Boehm and P.N. Papaccio,

IEEE Transactions on Software Engienering, Volume 14 Issue 10, October 1988
2. TIA-942, Telecommunications Infrastructure Standard for Data Centers
3. http://slashdot.org/topic/datacenter/why-you-should-build-datacenters-in-the-u-s-

power-costs/

Abbreviations and Acronyms

CAPEX Capital Expense
CMTS Cable Modem Termination System
DUT Device Under Test
GUI Graphical User Interface
IP/MPLS Internet Protocol/Multi-Protocol Label Switching
LaaS Lab as a Service
NFV Network Function Virtualization
OPEX Operating Expense
OS Operating System
QA Quality Assurance
ROI Return on Investment
SDN Software Defined Network(ing)
SVC Source Version Control
Tcl Tool Command Language
TCO Total Cost of Ownership
TIA Telecommunications Industry Association
VLAN Virtual Local Area Network

