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Can we talk about cable without mentioning television or residential broadband? Just watch us! 

 

It’s a sign of how our business has expanded that this edition of the SCTE Technical Journal 

talks about how our industry is driving change on the roads, in the workplace, and in corporate 

vehicle fleets – everywhere but in the home. 

 

As SCTE’s Explorer initiative, Energy Management standards subcommittees and other 

programs have helped our members break new ground, the SCTE Technical Journal has 

become increasingly essential as a source of industry knowledge. This month’s edition includes:  

 

• “Practical AI-Powered IoT Solution to Help Cities Solve Traffic Problems,” by 

Charter’s Vishal Gajanan Chopade, Daniel Sjoestroem, Rohith Kumar 

Punithavel, Mohamed Daoud, Charles Hubbard, and Ankita Himanshubhai 

Bhagat. The article discusses how Charter Communications leveraged an off-the-

shelf technology solution that integrates an IoT Edge device with camera and 

radar sensors, Artificial Intelligence, and Computer Vision techniques to detect 

and predict train arrivals and blockage times to reduce issues at at-grade 

crossings. 

 

• "Electric Vehicle Workplace Transition Plan for an SCTE Member Company," by 

Villanova University RISE team members Queen Okon, Priya Arya, Mariah 

Bodine, Ryan Campbell, Yen Leng Chong, and Reid Upthegrove, with faculty 

advisor Karl Schmidt. The article assesses one cable operator’s current inventory 

of internal combustion engine (ICE) vehicles and develops a fleet-level transition 

strategy. 

 

• "Worker Safety: A Robust On-Premise & Cloud Based AI Solution,” by Charter’s 

Rohith Kumar Punithavel, Vishal Gajanan Chopade, Charles Hubbard, and 

Mohammed Daoud. This article details a Proof of Concept (PoC) developed by 

Charter Communications for an industrial application that monitors the safety of 

drill press workers, with a particular focus on the role of AI in businesses and the 

need for on-premise solutions in safety applications. 

 

I am continually impressed by how the willingness of cable technology professionals to share 

knowledge is powering our industry’s expansion into exciting new areas. I hope you all will mark 

your calendars for two important upcoming dates within our community: the September 15 

deadline for abstracts for consideration for the Fall edition of the SCTE Technical Journal, and – 

of course! – SCTE Cable-Tec Expo October 16-19 in Denver.  

Thank you as always for your participation in SCTE and for your support in helping our industry 

continually to forge new paths and make history in telecommunications! 
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1. Abstract 

Many U.S. industrial cities have a large number of at-grade railroad crossings that create unpredictable 

traffic jams for residents and visitors due to numerous freight rail companies not publishing train 

schedules. To solve this problem, Charter leveraged an off-the-shelf technology solution that integrates an 

IoT edge device with camera and radar sensors, artificial intelligence (AI), and computer vision 

techniques to detect and predict train arrivals and blockage times. The pilot test took place in the city of 

Lima, Ohio and deployed nine IoT edge devices on the East-West rail line and observed a significant 

increase in model accuracy with more historical data.  

The paper covers the smart city solution architecture, the IoT apparatus built, data collection process, 

machine learning (ML) models training and inference for train detection and arrival time prediction, 

computer vision techniques, radar and sensor fusion, solution deployment, and operation and maintenance 

insights for the solution in Lima. 

2. Introduction 

2.1. Motivation 

U.S. industrial cities are usually located at major crossroads for several railroad lines; this often results in 

prolonged delays for drivers and commuters trying to get across a city. These railroads are used by freight 

trains that can be a mile or more long and stop for extended times at intersections. 

The railroads do not publicly publish freight train schedules, resulting in major traffic blockages affecting 

citizens and emergency medical services (EMS). Ultimately it becomes extremely hard for people in these 

industrial cities to plan their commutes while city officials spend years looking for a solution to this 

problem. 

Lima, Ohio is an industrial city with more than 40 railroad crossings. The frequent and lengthy trains 

passing through the city cause significant traffic backups and delays, and the lack of alternative routes 

exacerbates the problem. The impact of these delays on the city's economy and quality of life is 

significant, with businesses struggling to receive deliveries and workers finding it difficult to commute to 

their jobs. Furthermore, emergency responders can be delayed, which can have grave consequences.  

Another issue is the lack of alternative routes for drivers to take when trains are blocking roads. The city 

has limited options for detours, which means that traffic can come to a standstill when trains are passing 

through. 
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Figure 1 - Lima, OH Train Crossings 

Although attempts have been made to address the issue, such as discussing scheduling with the rail 

companies, finding a long-term solution to the traffic problems caused by freight trains in Lima remains a 

challenge. 

2.2. Existing solutions 

Various attempts have been made to tackle the issue of train blockages, such as constructing overpasses 

or advising people to utilize less congested intersections. However, none of these endeavors have resulted 

in a viable long-term resolution. Typically, cities opt to build overpasses or underpasses at strategic 

locations to facilitate smooth traffic movement. Nonetheless, obtaining approvals and constructing such 

structures is both expensive and time-consuming. Moreover, during peak hours, when everyone tries to 

avoid train crossings, these overpasses and underpasses can themselves become traffic bottlenecks. As a 

result, cities are now contemplating an alternative solution that would eliminate the need for costly 

overpass construction. They are exploring the concept of a smart city project, which would provide real-

time updates to users regarding intersections and train traffic, ultimately saving costs and improving 

efficiency. 

Charter Communications worked with the City of Lima, OH and several entities to create a long-term 

solution for the train blockage problem based on the latest technology leveraging IoT sensors, machine 

learning, computer vision, and 5G/LTE.
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3. Apparatus 

3.1. Apparatus Description 

The custom-designed apparatus is the crux of this solution. This apparatus is driven by a combination of a 

processing unit, sensors, remote plug, and a modem-router powered by Spectrum Mobile. All components 

are assembled in NEMA 3R enclosures and deployed in proximity to railway crossings on top of poles. 

 

Figure 2 - Apparatus Block Diagram (left) and Custom-Built Apparatus (right) 

3.1.1. Processing Unit 

The processing unit is the brain of any smart application. Single board computers are inexpensive, 

smaller, and may or may not have a GPU.  The embedded edge compute used in this application has 6 

CPU cores and one GPU with 48 Tensor cores and 384 CUDA cores. The presence of a GPU allows the 

apparatus to perform intense computational solutions with negligible latency. 

3.1.2. Camera 

The camera is an optical sensor that captures the scene to which it is focused, then encodes the frame and 

transmits the frames to the processing unit where the decision making occurs. The camera of this 

application runs at 2992x1680 at 5 FPS. These cameras are IP cameras and are powered by PoE (Power 

over Ethernet (PoE) injectors. 

3.1.3. Radar 

Radar is a radio wave sensor which detects motion, speed, direction, and range as a function of the 

transmission and magnitude of radio wave reception. The radar used in this application works in the 24 – 

24.5 GHz band, detects speed in the range of 1 – 200 ft, and communicates over USB interface. 
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3.1.4. Remote Plug 

A remote plug is a kind of electrical plug that can be connected to the Internet, allowing users to control 

the apparatus wirelessly and remotely. 

3.1.5. GPS 

GPS is a satellite-based communication system that returns the location of the apparatus. The receiver is 

operated via a USB interface. 

3.1.6. Modem-Router 

Modem-router allows the apparatus to connect to and provide internet connectivity to all connected 

components. The modem-router component that supports the Charter Spectrum application can handle 

gigabit class LTE connectivity, cloud access, GPS, etc. An external antenna has been added to improve 

transmission and reception. 

3.2. Computer Vision 

3.2.1. The Thought Process 

The aim is to detect the train crossing the intersection and to determine if the junction is blocked or not. 

The initial thought process was to use any existing pre-trained model for the same, avoiding model 

training. If this ready-to-go model is well generalized on all distinct locations, this will reduce a huge 

amount of effort on custom dataset curation, image annotation, and AI model training and model 

management. 

3.2.2. YOLO and Challenges 

You only look once (YOLO) is a real-time object detection algorithm that identifies specific objects in 

videos, live feeds, or images. The YOLO machine learning algorithm uses features learned by a deep 

convolutional neural network to detect an object. YOLO has the advantage of being much faster than 

other networks and still maintains accuracy. Common objects in context (COCO) [2] pretrained weights 

on YOLO-v3 model were utilized for this initial experiment as “train” is already present as one of the 

classes in the COCO dataset. Out of 80 classes detected by COCO pretrained weights, only “train” class 

probability is being considered for train detection. On Nvidia Jetson Xavier NX, this model can process 5 

frames per second during Real Time Streaming Protocol (RTSP) live stream inference.  

The model performs well for some of the train cars; however, the performance is not as expected for 

different types of freight train cars. Also, the model is falsely detecting maintenance vehicles on railway 
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tracks or school buses as a train. This led us to build another more reliable approach that can reduce 

misclassifications. 

 

Figure 3 - YOLO Misclassifications 

3.2.3. ResNet18 

Training or fine-tuning the model on the custom dataset is the solution to resolving the challenges with 

the YOLO model. However, retraining the YOLO object detection model requires bounding boxes to be 

generated for the custom data. This is a time-consuming and resource-intensive process. The better idea 

was to fine tune a classification model in place of the object detection model. Also, fine tuning a smaller 

architecture will help with faster inference during a live camera stream. 

ResNet-18 is a convolutional neural network that is trained on more than a million images from ImageNet 

[3] database. This is an efficient model in image classification. There are only 18 layers present in the 

model architecture, hence it is considered a compact model. The ImageNet pretrained weights were used 

to apply transfer learning on a custom dataset. 

To curate the custom dataset, we utilized the cases generated with the help of the YOLO model, as well as 

manually recorded video instances. The model was struggling to differentiate maintenance vehicles on 

railway tracks from trains, hence the model was retrained with 2 different classes named “train” and 

“other”. Initially, a single ResNet model was used for multiple Lima locations, and data augmentation 

techniques were applied to enhance the dataset. However, augmented images were excluded from the 

dataset due to concerns that the increased diversity was making it difficult for the model to distinguish 

between the target class and other classes. The variations in background from different locations were 

impacting the model's perception and classification capabilities. 
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Evidently one single ResNet model was not generalizing quite well for all Lima locations. The reason was 

different backgrounds and traffic conditions per location. A few locations have buildings in the 

background which nearly match the color and texture of some of the freight train cars. Hence the model 

was confused in classifying such cases and generated false positive predictions. To get rid of such 

instances, multiple models were trained on combined datasets from those locations based on similarity of 

backgrounds.   

For training and deploying the ResNet model, a jetson-inference repository has been utilized. It provides 

Python and C++ APIs for streaming from live camera feeds. For image classification, we have used 

ImageNet vision Deep Neural Network (DNN) library for Nvidia Jetson Xavier NX. It provides an API 

for faster inference with the help of TensorRT (an ahead-of-time compiler to optimize inference 

techniques on NVIDIA GPUs). With this approach, now more than 25 frames could be processed per 

second. The training and validation loss has been reduced significantly and accuracy improved while re-

training the model as shown in Figure 4. 

 

Figure 4 - ResNet Transfer Learning - Loss per Epoch and Top 1 Accuracy per Epoch 

An accuracy score was used as a performance metric for the model as the custom dataset is balanced in 

terms of the train and other classes. Re-training ResNet18 with ImageNet pre-trained weights using the 

Transfer Learning approach achieved more than 98% accuracy score on the custom dataset. 

3.2.4. Tracking Train Movement using Optical Flow 

Train length is measured using a radar sensor deployed in the apparatus device. This data predicts the 

train arriving at a particular Lima junction. However, the signal noise in the data is noticeable during 

windy or rainy weather conditions. The train may appear steady from afar, yet the radar's ability to 

precisely capture its speed is compromised by the disruptive clamor of rain or wind. This resulted in 

inaccurate train lengths captured in the database. To resolve this issue, initially, we experimented with 

SEGNET of the jetson-inference [1] repository to explore the segmentation network. The idea was to 

segment the train from the rest of the scene and to capture the pixel movement in that region, to decide if 

the train is moving or steady. The pre-trained SEGNET model was not giving accurate results and 

generating labeled segmentation data to retrain the model is a time-consuming and resource-intensive 

task. 
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To build the equivalent solution faster, we used OpenCV Dense Optical Flow technique. The 

OpticalFlowFarneback [4] algorithm returns an optical flow object that can be used to estimate the 

direction and speed of the moving object in the video. When a train is crossing the junction there will be 

other traffic movements appearing on the road, which can also be detected by the algorithm. To eliminate 

those movements only ‘X’ axis direction pixel movements were considered and conditioned by a specific 

threshold value to decide if a train is moving or steady. 

3.3. Radar 

3.3.1. Working Off Radar 

Radar, a technology based on radio waves, facilitates object detection and localization within its vicinity. 

Abbreviated from “RAdio Detection And Ranging,” radar systems emit radio waves from a transmitter, 

reflecting off the objects of interest and detecting the reflected waves with a receiver. By examining the 

properties of the reflected waves and calculating the time it takes for them to return, radar systems 

determine several object attributes, including distance, direction, speed, and other position. Radar systems 

find wide-ranging applications across traffic control, navigation, and military surveillance. 

The radar system provides a comprehensive short-range radar (SRR) solution that offers features such as 

motion detection, speed measurement, directional sensing, and range reporting capabilities. This system 

processes all radar signals onboard, and its application programming interface (API) offers processed data 

in a straightforward manner. The radar used in this application allows flexible control over reporting 

formats, sample rates, and module power levels, and its USB output enables easy connectivity to edge 

compute devices. 

The sensor produces data in the JavaScript Object Notation (JSON) form containing key-value pairs, each 

of which represents the range in feet from the sensor and the reflection magnitude at that range (see 

example 1. below). 

1. {"time": "2022-01-05 14:27:30.196996", "input": {"time": "11413.101", "unit": 
"ft", "magnitude": ["267.75", "139.00", "85.02", "80.43", "68.09", "65.14"], 
"range": ["11.42", "16.38", "92.17", "21.45", "81.96", "87.07"]}} 

2. {"time": "2022-01-05 14:27:27.971921", "input": {"time": "11410.827", "unit": 
"fps", "magnitude": "10.06", "speed": "-38.41"}} 

When an object comes into motion within the radar's range, the device calculates the object's speed and 

reflection magnitude (see example 2. above), which is subsequently used in the following equation to 

estimate the object's length: 

Length of train = Length of train + (speed × delta time) 

here, Length of train is always appended and modified by the calculation. 

delta time is the difference between current time and time of previous speed. 

3.3.2. Speed Pattern Filter 

The implemented code incorporates advanced algorithms that eliminate noise to yield highly accurate 

length calculations, extending up to a length of 500 feet. However, the presence of heavy rainfall can 
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challenge radar systems, as they may detect the speed of raindrops (rain fade phenomenon [6] ), which 

could lead to a mistaken interpretation of object speed, such as a train. To mitigate such circumstances, 

we developed a specialized algorithm “Speed pattern filter” based on data gathered over several months 

of rainy conditions. This algorithm is integrated into the system to compare incoming data with average 

values derived from the collected data. If the incoming data falls outside the dynamic bounding boxes 

created by the algorithm, it is considered noise, and if it stays within the bounds, it is deemed valid train 

data. After thorough testing in both controlled environments and field trials, this algorithm has been 

successfully deployed to enhance train detection accuracy by eliminating several types of noise. 

3.4. Sensor Fusion 

3.4.1. Constraints 

There are situations in which the camera and its AI/ML models do not perform well-enough to detect or 

classify a train in the view. This especially happens in bad light conditions at night, when either there are 

headlights from traffic that blind the camera or the lack of light sources at the scene resulting in a very 

dark view. During daytime, a low standing sun may also interfere with the camera if the angle of 

deployment is in a sun-facing direction. 

Weather conditions such as fog, rain, sleet, or snow partially or even fully blocking the camera lens have 

affected the performance of the camera models. Raindrops on the camera housing window, especially in 

the dark, distort the view heavily and the models can hardly differentiate train cars from other road traffic. 

The radar sensor is also affected by weather conditions. There is a trade-off in radar sensor configuration 

to have it detect indistinct speeds from slowly crawling trains but also not to pick up too many speed 

reports from signal noise, or the raindrop effect. 

Weather conditions observed at the location of an apparatus are utilized by the camera model to confirm a 

train is active in the field of view to help differentiate speed detections caused by heavy rain and the 

actual speed of the train. 

3.4.2. Sensors in Operation 

Whenever radar speed detections form an expected pattern of a large train object, and a certain length of 

an object has been measured, a train entry observation is reported. The camera may help in classifying the 

type of object being present in the view and requires a large field of view for motion to be measured if a 

train is seen. When the radar sensor no longer detects train motion, the camera model may help decide if a 

train object is still sitting at the intersection or if road traffic may cross. 

The utilization of the camera in those situations also differs with the location and mount of the apparatus. 

The time of the day, given there are artificial light sources after sunset, as well as the weather conditions 

are also considered. 

3.4.3. Challenges 

The decision of when to use camera model outcomes has been the biggest challenge in this area, as both 

camera and radar sensors may provide some incorrectness in their output. 
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The local weather conditions at the location of any apparatus are determined through calls to the 

OpenWeather API [5]. The times of various aspects of the sun at that location are also calculated to help 

set the requirements on the camera models. 

Since weather-related factors such as weather, sunrise and sunset times tend to remain consistent for a 

minimum of 24 hours, short term internet connectivity issues may not have a significant impact on the 

device. However, it is important to consider that weather conditions can change rapidly, and reliable 

internet connectivity is crucial for the device to maintain up-to-date weather awareness in any given 

situation for decision making. 

At some remote locations outside of the city where there are no streetlights or other sources of light that 

improve visibility, the apparatus may run, having camera perceptions only as an aid, after the sun has set. 

Contrary to this, at locations within the city that are always illuminated, the requirement on camera 

models would always be enabled and state whether an intersection is open for road traffic or not. 

4. Train Schedule Predictions  

4.1. Event-Based Train Arrival Predictions 

Predicting train schedules can be used to develop efficient ways to advise drivers on wait time at railroad 

crossings, while also providing alternative route suggestions to save time. The train arrival time is 

predicted in minutes and seconds at a specific junction as determined by the current location, direction, 

and length of that train at that given moment. 

The apparatus is pushing the train’s current location, direction, and length to the cloud at regular intervals 

until the train completely disappears at that Lima crossing or stops moving. Each of these events is logged 

with element status as initial, intermediate, or final. The final message contains the most accurate 

information on train length. Initial and intermediate messages will have incremental train length. 

To train the predictive model, the first step was to generate the data which can be used for training. For 

data cleaning and training data preparation, we used a semi-automated approach. For each event on a 

train’s current position, the arrival of that same train to all other apparatus devices needs to be generated. 

This data becomes the ground truth for the model training. 

4.2. Using a Linear Regression Model with an Average Speed 

Another important aspect of a predictive model is to generate meaningful and correlated features with the 

target variable. There are two new features being generated here, Estimated Arrival Time based on the 

current train speed and Estimated Arrival Time based on the average speed of a train on a specific route.  

To generate these features, the distance between two apparatus devices is utilized so the train current 

length is subtracted from this fixed distance to generate the most realistic distance the train has yet to 

cover. The generated remaining distance is then divided by the train speed. If we rely just on the current 

speed of the train to estimate arrival time, we notice the model underestimates the train speed and hence 

predicts the incorrect arrival time. The common rule is that the train usually picks up higher speed after 

crossing the junction. Hence two separate features were generated, one using the current train speed and 

another one with the average train speed for the route. The average train speed for the route was 
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calculated by considering three months of data and outliers were removed before the average speed was 

extracted. 

The target variable, Estimated Arrival Time, now must be predicted as a weighted sum of these two 

newly generated features. The obvious choice was the linear regression model to determine the weights of 

each feature based on its variance. Model training was performed on 3 months of data, as the data 

cleaning and transformation is a time-consuming process; we accumulated only a few months of train 

arrival data using the linear regression model and recorded an error of +/- 4.07 mins for ETA at Lima 

0001, +/- 1.57 mins for ETA at Lima 0002 +/- 2.64 mins for ETA at Lima 0003 on the sampled test data. 

The error rate is high for test data, since occasionally the train might have started towards Lima 0001 but 

was parked somewhere in between. We don’t have access to events happening between the apparatus 

devices. If we exclude the events where trains never arrive at the adjacent junction or took longer than 

usual, the errors will be +/- 3.21 mins for ETA at Lima 0001, +/- 1.47 mins for ETA at Lima 0002, and 

+/- 1.16 mins for ETA at Lima 0003. There is a post-process module, which eliminates negative 

prediction values and adjusts ETA predictions based on a train’s direction. 

4.3. Real World Problem and Challenges 

The above approach works well for the cases in which the train arrives at the adjacent junction according 

to the moving direction and within an expected timeframe. However, there are a few instances when 

trains arrive at the junction with an increased delay of a couple of hours to a couple of days. The 

challenge here is that we don’t have access to the events happening between the apparatus devices and 

hence we don’t have any predictor variables to predict this delay. 

Another issue is varying train lengths. At certain junctions following a rail switching yard, a train can 

append additional cars or remove existing cars, changing the overall length of the train. Hence the 

accurate arrival predictions can only be possible for the next or following adjacent junctions.  

There is no fixed pattern of train schedules due to safety, security, and competitive reasons. Hence 

predicting train schedules far ahead of time is not possible. Event based prediction can be achieved for the 

scope of this project. 

Many times, the train does back-and-forth movements while appending or removing cars. Due to this 

movement, the direction of the train represents continuous changes which makes the prediction of train 

arrival difficult. 

5. Dashboard 

5.1. Data Flow from Apparatus to Cloud 

The data flow from the apparatus to the cloud is shown in the image below. 
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Figure 5 - Data Flow Architecture 

The embedded edge compute module accepts input from the camera, radar, and GPS. The camera and 

radar algorithms work to detect train estimates such as train speed, length, direction, and time to cross the 

intersection. The apparatus generates a data payload that contains metrics associated with the train, the 

GPS location of the apparatus, and hardware-related metrics such as memory usage, GPU usage, 

temperature, etc. These generated payload messages occur at least every 60 seconds when the apparatus 

detects a train. The apparatus transmits instantaneous status update messages if a train suddenly stops or 

changes direction. If no trains have passed, a health check message payload gets generated every 60 

minutes. The message transfer happens with the help of the Message Queuing Telemetry Transport 

(MQTT) protocol. MQTT is a standards-based messaging protocol, or set of rules, used for machine-to-

machine communication. MQTT protocol has a broker which is hosted on the cloud and is the heart of 

this communication protocol, and then there is the client, which can subscribe and publish. A broker can 

have millions of clients connected. The broker is responsible for receiving all messages, filtering them, 

and determining which client should receive them. The messages are directed and filtered by topics. 

The apparatus acts as an MQTT client and transmits payloads on an MQTT topic over LTE. These 

payloads trigger a serverless computing platform, which is another MQTT client hosted on the cloud that 

parses the payload into train and hardware data. For live information, a visualization platform receives the 

train data over an MQTT topic from the serverless compute process. This same process also parses and 

stores the train and hardware data in separate tables in a relational database for analysis. 

 

5.2. Data Visualization 

There are currently nine apparatuses deployed in the field. The data from the apparatus is visualized in 

three ways: 

• Live Data Visualization 



 

 © 2023 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 19 

The payload from the serverless compute process is parsed and displayed on the map in Figure 6. The live 

data visualization lets users know where the train is so they can plan their travel accordingly. Various rail 

lines and their locations can be selected using the drop-down menu at the top to view their train count, 

average time blocked, and total time blocked for the past 24 hours. 

 

Figure 6 - Live Map User Platform Interface 

• Apparatus Health Visualization 

The apparatus health information transmitted from each field unit can be viewed and analyzed. In this, the 

data retrieved from the database is used for analysis. The user can access rail lines and the apparatus 

location from the options on the side. This tab gives information about the status of the apparatus, 

network outage, uptime of the apparatus, software version of the application running, disk percentage, 

memory percentage, CPU usage percentage, and CPU temperature for a range of calendar inputs. The 

chosen numerically-valued hardware variables also show plot visualization at the bottom. The selected 

data points can be exported externally as a CSV or JSON file. 
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Figure 7 - Device Health User Platform Interface 

• Historical Data Visualization 

Data collected and stored from the apparatus is used for data analysis and visualization. This tab will let 

us choose the rail line, apparatus location, date range, direction, if applicable, and analysis parameter. The 

analysis parameters included are Train Count by Hour, Train Count by Day, Train Count Heat Map, Total 

Time Blocked, Average Time Blocked by Hour, and Average Time Blocked by Day. The selected data 

points can be exported externally as a CSV or JSON file. The plots generated are interactive. 

 

 

Figure 8 - Train Count by Day Visualization 
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Figure 9 - Train Count Heat Map Visualization 

 

 

Figure 10 - Average Time Blocked by Day Visualization(X axis: Day, Y axis: HH:MM) 
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6. Conclusions 

In summary, industrial cities in the United States, such as Lima, Ohio, face significant challenges due to 

the high number of railroad crossings. The constant flow of freight train activity, combined with the lack 

of publicly available schedules and alternative routes, leads to prolonged disruptions for drivers, 

commuters, and emergency services. As a result, the economy, standard of living, and public safety of 

these cities suffers negative consequences. To tackle these issues, an innovative approach that integrates 

embedded systems, networking, and artificial intelligence has been pursued. 

By implementing embedded systems supported by advanced networking capabilities and sophisticated AI 

algorithms, it becomes possible to mitigate the adverse effects of traffic blockages, delays, and limited 

detour options. This comprehensive solution aims to improve the overall efficiency and well-being of 

industrial cities. By integrating computing technology into infrastructure elements through embedded 

systems and leveraging robust networking infrastructure, the movement of freight trains can be more 

effectively monitored and managed. Furthermore, the integration of AI algorithms enables the prediction 

and optimization of train schedules, leading to improved traffic management and better coordination 

among transportation networks. 

This project has the potential to scale up and be utilized by local municipalities and individuals, 

particularly benefiting first responders by avoiding delays. Currently, local officials are already testing the 

project, and the MQTT infrastructure can be replaced with more robust and scalable cloud infrastructure 

to process larger amounts of data without interruptions. 

Cable operators can also benefit from this solution as reliable internet connectivity is crucial. As the 

project expands to multiple cities, the network operators' customer base would increase due to the 

growing number of internet-enabled devices. Installing the solution in remote areas can serve as a 

valuable test point for network operators, allowing them to assess network coverage, latency, and 

consistency. 

Effectively addressing these challenges requires a comprehensive strategy that combines technological 

innovation, collaboration with railway authorities, and engagement with local stakeholders. By deploying 

embedded systems, leveraging networking capabilities, and harnessing AI, industrial cities can strive to 

create a more streamlined and efficient transportation ecosystem. This approach promotes economic 

growth, enhances quality of life, and ensures public safety for all residents. 
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7. Abbreviations and Definitions 

7.1. Abbreviations 

AI artificial intelligence 

API application programming interface 

COCO common objects in context 

CPU central processing unit 

CUDA Compute Unified Device Architecture 

DNN Deep Neural Network 

EMS emergency medical services 

FPS frames per second 

ft feet 

GHz gigahertz 

GPS Global Positioning System 

GPU graphics processing unit 

IoT internet of things 

IP Internet Protocol 

JSON JavaScript Object Notation 

LTE Long Term Evolution 

ML machine learning 

MQTT Message Queuing Telemetry Transport 

NEMA Natural Electrical Manufacturers Association 

PoE power over Ethernet 

radar radio detection and ranging 

ResNet residual network 

RTSP Real Time Streaming Protocol 

SRR short range radar 

USB universal serial bus 

YOLO you only look once 

7.2. Definitions 

No definitions are applicable. 
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1. Introduction 

1.1. Transportation’s Contribution to Climate Change  

The transportation sector is one of the major sources of anthropogenic U.S. greenhouse gas (GHG) 

emissions as it accounted for 28% of total U.S. GHG emissions in 2021. The majority of GHG emissions 

from transportation are carbon dioxide (CO2) resulting from the combustion of petroleum-based products, 

such as gasoline and diesel fuel in internal combustion engines. The largest sources of GHG emissions are 

light-duty vehicles (37%), and medium-heavy-duty vehicles (23%), and the remainder are passenger cars, 

aircraft, rail, pipelines, ships, and boats. 

 

Figure 1: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2021 

Many global and major companies are starting to set targets and take actions to shift their fleets to electric 

vehicles (EVs) and install charging stations to pursue a net zero emission pathway. According to the 

International Energy Agency (IEA), there are more than 100 global companies in 80 markets committed 

to using electric vehicles by 2030. By 2020, these companies had already deployed 169,000 zero-

emission vehicles, double from the previous year. Even though companies had difficulty in identifying 

EV equivalents for commercial vans and heavy-duty vehicles, the number of commercial electric vehicles 

rose 23% in 2020, including a threefold increase in electric trucks [2].  

1.2. Villanova University & SCTE RISE Partnership 

SCTE is a global nonprofit professional association for the advancement of the deployment of 

technology, technical standards, and workforce development education in the cable telecommunication 

industry. SCTE has also been a long-time RISE forum member in partnership with Villanova University’s 

graduate Sustainable Engineering program. In the RISE program, engineering students work on real-
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world problem-solving solutions to help advance the sustainability goals of the participating partner 

organizations. 

2. Objectives  

2.1. Goal & Scope  

In this project, one of the member companies of SCTE has set a climate goal, which it hopes to achieve 

partly by gradually transitioning its operating fleet to electric vehicles. The goal of this study has been to 

assess the company’s current inventory of internal combustion engine (ICE) vehicles and to develop a 

fleet-level transition strategy. This necessitated a rather broad research scope, spanning financial and 

policy-level enablers, current infrastructure and technological capabilities, existing and upcoming EV 

options, and possible emissions and financial savings. While all of these items were in-scope for the 

internal evaluation, the company name and state-location information are omitted from this paper for the 

sake of maintaining company anonymity. Instead, a more general roadmap of fleet electrification is 

explored for other companies interested in employing a similar electrification strategy. Various factors 

that play a crucial role in transitioning the corporation fleet to EVs are highlighted in this study, such as 

geographic locations, national infrastructure development, state, and federal incentives, total cost of 

ownership (TCO), EV selection, and many others. After considering all factors, results and analysis are 

presented with recommendations for implementing the transition successfully in the future.  

2.2. Approach  

The approach employed for this project consisted of several steps. The first task was to collect and 

understand qualitative insights regarding the best strategies to evaluate large commercial fleets of light-to-

heavy duty vehicles from literature, company staff, and expert interviews. With this information it was 

then possible to conduct an analysis of the best opportunities for electrification of fleet by location. After 

geographic prioritization, the team turned its attention towards vehicle-type, and utilized company-

provided fleet data and a review of available research electric vehicle equivalents to understand 

electrification opportunities by vehicle class. At this point, key metrics were used to prioritize vehicle 

replacement and to develop preliminary replacement recommendations by vehicle class and location for 

the company. To maintain the confidentiality of the company’s identity, the company’s name and states 

of operation are not mentioned in this study. 

3. Methodology 

3.1. Strategy Development 

To collect company-specific information and develop an effective fleet transition strategy, interviews 

with company staff and industry experts were conducted along with a thorough literature review. The 

interview topics included understanding company goals related to overall emissions, the top KPIs for 

decision-making, and how the pace of transition would affect the CAPEX and OPEX budgets. The 

literature review topics included successful fleet electrification plans in other industries; the national and 
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state-level contexts for EVs; identification of states that are the most “EV-friendly” through incentives, 

policies, and infrastructure; concerns around range; and the distribution of different charger types. 

With this insight, three strategies were considered for this study on transitioning the company’s 

commercial fleet to all-electric. The first strategy is based on identifying current vehicle leases that are 

nearing the end of their term of contract and would make for a seamless transition. The second strategy is 

based on in-place procurement contracts or established goals or partnerships with specific vehicle 

manufacturers. Without proper timing of these leases and contracts there are potential penalties and 

termination negotiations to consider proceeding. The third strategy calculates the projected total cost of 

ownership (TCO) of the ICE vehicles and recommends phasing out from highest to lowest. This 

calculation considers all costs associated with a vehicle over a specific length of time, including estimated 

total costs of depreciation, insurance, fuel, maintenance, repairs, and taxes and fees. Since the member 

company had no standing leases or contracts in place, this study proceeded with the TCO strategy. 

3.2. Geographic Prioritization 

As a telecommunications provider, the SCTE member company operates in many locations across the 

United States. To prioritize geographic areas for the phased rollout of fleet electrification, a hierarchy of 

influential factors was developed. Each state was evaluated for key components in four categorical tiers to 

understand the feasibility of electric vehicle transition in that state. Tier 1 starts with examining current 

contracts and obligations that directly influence the ability to make fleet changes as well as the realistic 

timeline to prepare for implementation and forthcoming regulations. This step includes evaluating 

existing agreements with suppliers, current local mandates for electrification, and any established state-

wide sustainability commitments.  

Tier 2 evaluates the available infrastructure and technologies to understand the current and near-future 

capacity to support electric vehicles within the state. This is done by identifying the total number and 

average distributions of charging stations and ports per population and per land area coverage. This tier 

also includes any available projections for the pace of technology transition to facilitate a higher future 

grid demand.  

Tier 3 explores current financial incentives to accelerate electrification by identifying the state-level 

financial subsidies as well as private or utility financial enablers to be factored into the final cost 

calculations.  

Finally, Tier 4 determines the energy mix by percent renewable to understand the energy source for 

electricity generation and therefore the relative positive impact from electrification. 

The states that fulfilled the most categories, had the strongest infrastructure and energy mix, and/or were 

states of high interest for the company were chosen to be analyzed for this study. Through this analysis 

three states were identified as the optimal locations to proceed and serve as a model for future electric 

vehicle rollout.  
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3.3. Fleet Data Collection  

3.3.1. ICE Vehicle TCO Calculations 

Once the preferred states were identified, information was gathered on the current fleet in those areas. 

Vehicles were characterized by make, model, year, class, and VIN number to then calculate TCO over a 

five-year period. These calculations were done through a combination of the three different tools below, 

based on the available data for each, as none of the tools had sufficient databases for all vehicle types. 

The TCOs were then ranked from highest to lowest to identify which vehicles should be transitioned first 

in a cost-effective manner.  

Table 1: TCO Calculation Tools for ICE Vehicles 

Tool Inputs Outputs Assumptions Challenges 

Department of 
Energy (DOE) 
Alternative Fuel 
Data Center 
Vehicle Cost 
Calculator* 

Average Annual 
Mileage 

Fuel and/or 
Electricity Cost and 
Use 

City & highway 
fuel economy is 
retrieved from 
fueleconomy.gov with 
data sourced from 
Edmunds 

Database did not 
include all makes and 
models 

Percentage City 
Driving 

Cost/Mile Emission factor is 
selected per fuel mix 
per state 

The cost of purchase 
and installation of a 
charging system is not 
included in this tool 

Make Annual Emissions 
of CO2 

The default electricity 
price used is the 
regional average based 
on state 

 

Vehicle Year Annual & 
Cumulative TCO 
over 15 years (but 
we only need the 
TCO for the first 5 
years for this 
analysis) 

The average costs 
listed below are based 
on study by American 
Automobile Association 
(AAA) [3]: 
• Tires + maintenance = 
¢5.38/mi 
• Insurance + license + 
registration = 
$1,616/year 
• Financed 90% of the 
vehicle price, five-year 
loan at 6% interest  
• Year One includes the 
10% down payment  

 

Number of days 
per Week 

Vehicle Price  

Number of 
weeks per year 

  

Days Model 
(Transmission, 
Drivetrain, & 
Engine) 

  

  The tool does not 
consider the vehicle 
trade-in value. 

 

  For this analysis, it was 
assumed that: 
• Average daily driving 
distance = 40.816 miles 

 

https://fueleconomy.gov/
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Tool Inputs Outputs Assumptions Challenges 

• Number of days per 
week = 5 
• Number of weeks per 
year = 49  
• Percentage highway = 
45% 
The above results in: 
• An annual driving 
distance of 10,000 
miles 
• An annual city 
mileage of 5500 miles 
• An annual highway 
mileage of 4500 miles.  

Edmunds Inc. 
True Cost to 
Own Pricing 
System** 

Zip Code True Cost to Own Operating costs are 
estimated for a 5-year 
period [4] 

Only included vehicles 
for 2017 and newer 

Make  Total Cash Price  Average annual 
mileage is 15,000 miles 
[4] 

The average annual 
mileage was manually 
adjusted to 10,000 
miles 

Model Ownership Costs: 
5-Year Breakdown 

The vehicle is assumed 
to be traditionally 
financed and not 
leased 

The cost of purchase 
and installation of a 
charging system is not 
included in this tool 

Year A breakdown of 
the TCO into the 
following seven 
cost categories:  
 
• Depreciation 
• Taxes and Fees 
• Financing 
• Fuel 
• Insurance 
• Repairs 
• Maintenance 

An above-average 
credit rating was 
assumed for the 
purpose of determining 
finance rate [4] 

  

Style (Includes 
number of 
doors, 
transmission, 
drivetrain,  
engine etc.) 

 
A10% down payment 
was assumed at 
purchase [4] 

 

  
Loan term is assumed 
to be 60 months [4] 

 

  Federal tax credit 
where applicable is 
applied 

 

VINChecker.Info 
Reports 

Average Annual 
Mileage 

Average market 
Value 

Does not consider 
financing 

Does not offer state-
specific fuel cost 
customization 
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Tool Inputs Outputs Assumptions Challenges 

Ownership Cost 
Calculator*** 

Current 
Mileage: 
Recalculated 
mileage from 
year of 
manufacture to 
date 

Cost per mile  
 

Does not offer state-
specific electricity cost 
customization 

VIN  Annual & 
Cumulative TCO 
over 5 years 

 
Occasional data 
discrepancies 

Time period 
(For this 
analysis, we 
choose a 6-
month span) 

Estimate Certainty 
 

  

 
A breakdown of 
the TCO into the 
following six cost 
categories:  
• Depreciation 
• Taxes and Fees 
• Fuel 
• Insurance 
• Repairs 
• Maintenance 

  

 
Vehicle 
Specifications 

  

* https://afdc.energy.gov/calc/ 

**https://www.edmunds.com/tco.html 

***https://vincheck.info/check/report-summary.php?vin=1FDUF5GY2KEF90695 

3.3.2. EV Equivalent Identification  

The next step was to identify appropriate EV equivalents to those currently in the fleet. The company 

stated preferences for OEMs with wide networks, as well as for vehicles manufactured in the latest model 

year available. The company also specified a preferred daily range of 200-300 miles.  In order to match 

electric vehicles to those already in the fleet, the EV models should be equivalent to the existing model or 

should slightly exceed the rating, such as gross vehicle weight rating (GVWR), but mostly for light-duty 

to medium trucks, which will be discussed below. As such, the vehicle class was first determined by 

GVWR through a combination of the company-provided data, the DOE tool, and the Badger Truck & 

Auto Group Classification guide [5]. Then the class was inputted along with preferences for year, 

technology (electric, plug-in hybrid electric, or hybrid electric), and OEM into one of the available 

alternative vehicle search tools. These tools were selected based on the user interface’s ease of use to 

search for available EVs by global region, desired class, function, fuel type, and OEMs. A combination of 

the DOE’s Alternative Fuels Data Center (AFDC) Alternative Fuel and Advanced Vehicle Search 

platform, the Green Cars Buyer’s Guide, and the Zero-Emission Technology Inventory (ZETI) were used. 

A range of tools was needed for EV selection because of their respective databases of vehicles of different 

classes. For example, ZETI is a tool specific for medium- and heavy-duty EV vehicle searches only. The 

https://www.edmunds.com/tco.html
https://vincheck.info/check/report-summary.php?vin=1FDUF5GY2KEF90695
https://afdc.energy.gov/vehicles/search/
https://www.badgertruck.com/heavy-truck-information/truck-classification/
https://www.badgertruck.com/heavy-truck-information/truck-classification/
https://afdc.energy.gov/vehicles/search/
https://afdc.energy.gov/vehicles/search/
https://buyers-guide.greencars.com/?gclid=CjwKCAjwitShBhA6EiwAq3RqA48A9LlEQytN0QFxGmxgMKjHZvUEnDTI1FHlFcEhBYx3JTQceBRNKhoCMlcQAvD_BwE
https://globaldrivetozero.org/tools/zeti/
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resulting vehicles were then compared to the original ICE vehicle for payload, dimensions, and daily 

mileage range to ensure all specifications were commensurate, when possible, in comparison to the 

original ICE vehicles.  

3.3.3. EV TCO Calculations 

The TCO was then calculated for each identified EV equivalent utilizing the same tools as for the ICE 

vehicles when results were available. For vehicles that could not be found with the previously mentioned 

tools, two additional tools were utilized. 

Table 2: TCO Calculations for EV and Hybrid Vehicles 

Tool Inputs Outputs Assumptions Challenges 

Atlas Public Policy Fleet 
Procurement Analysis 
Tool 
https://atlaspolicy.com/flee
t-procurement-analysis-
tool/  

Zip Code 
NPV Vehicle 
Total Cost 

Federal Tax 
credit is 
assumed to be 
the total price 
of $7,500 

It has less 
vehicle 
specificity of 
the model 
specification 
details 

Gasoline Price 
NPV Cost/ 
Mile  

It is more 
limited in the 
range of 
OEMs it 
offered 

Diesel Price 

Wheel-to-Well 
CO2 Fuel 
Emissions per 
mile  

Many of the 
inputs or 
additional 
factors 
cannot 
standardized 
against other 
TCO tools. 

Electricity 
Cost 

Total Wheel-
to-Well CO2 
Fuel 
Emissions  

Limited to 
Light-, 
Medium- and 
Heavy-Duty 
Vehicles 
only 

Public 
Charging 
Price    
Vehicle 
drivetrain type, 
class, year, 
make, model    

Annual 
Mileage    

https://atlaspolicy.com/fleet-procurement-analysis-tool/
https://atlaspolicy.com/fleet-procurement-analysis-tool/
https://atlaspolicy.com/fleet-procurement-analysis-tool/
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Tool Inputs Outputs Assumptions Challenges 

Expected 
Years of Use    

Percentage 
City Driving     
Expected 
Years of Use    
Percentage 
Annual miles 
City Driving     

Fuel Economy    

Federal Tax 
credit    

Zero-Emission 
Technology Inventory 
(ZETI)  

Fuel Type  Range  

Limited to 
Light-, 
Medium- and 
Heavy-Duty 
Vehicles 
only 

Year Payload   
Vehicle 
Platform/ type 

Energy 
Capacity   

Manufacturer 
First available 
year   

Model 
Incentive if 
considered   

3.4. Overall Fleet Data Analysis 

Once TCOs, emissions, and other relevant vehicle specifications were calculated for EV equivalents, 

adjustments were made for charger and installation cost, upfitting (where necessary), and available 

incentives to effectively compare with ICE vehicles in Table 3. More specifically, the only incentive 

applied to the EVs is the Commercial Electric Vehicle and Fuel Cell Electric Vehicle Tax Credit from the 

Inflation Reduction Act (IRA) [6]. 

Table 3: Company-Provided Additional Costs of EVs beyond TCOs and Initial Purchase 

Cost Type Cost Source Cost Amount ($) 

Charger Purchase 800 

Charger Installation 2395.81 

Upfit Car - Car 0 

Upfit SUV - SUV 0 

Upfit Truck - Bucket Truck 135,000 

Upfit Truck - Cargo Box Truck 0 
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Cost Type Cost Source Cost Amount ($) 

Upfit Truck - Construction Bucket Truck 135000 

Upfit Truck - Construction Truck 135000 

Upfit Truck - Fiber Bucket Truck 135000 

Upfit Truck - Light Truck 6,000 

Upfit Truck - Specialty Truck 0 

Upfit Truck - Underground Construction truck 135000 

Upfit Truck - Utility Body Truck 135000 

Upfit Truck - Utility Body-Flush 135000 

Upfit Van - Bucket van 15000 

Upfit Van - Fiber Bucket van 15000 

Upfit Van - Full size 12 pass van 15000 

Upfit Van – Full-size cargo van 15000 

Upfit Van - full size SVC van 15000 

Upfit Van - Passenger minivan 0 

Upfit Van - Service Minivan 0 

State and private company incentives were not included in the scope of this analysis for the purchase of 

EVs. In addition, incentives were not included for charger purchase and installation due to lack of 

eligibility confirmation regarding the company’s preferred model of residential charging at the homes of 

employees through company-sponsored charger purchase and installation. Further, it is currently 

unknown which employees own their home, and thus, can approve or deny charger installation at the 

home. 

3.4.1. Fleet Data Overview 

Ultimately, 1,625 data points were provided by the company to represent a portion of the vehicles in three 

of the six states of interest shared on the onset of this project. Those states include States A, B, and E. It is 

important to note that some of these datapoints are excluded for various reasons in various parts of the 

analysis. One example is: of the fleet data, three items are definitively excluded from all analysis. One 

item represented a piece of equipment rather than a vehicle. The other two vehicles were not analyzed due 

to their information not being available to the tools used to determine TCOs of the vehicles in the current 

fleet. Another example addresses the fact that the existing fleet consists of predominantly ICE vehicles, 

but also includes 47 hybrid vehicles. Hybrids, though evaluated for their TCOs and annual emissions 

whenever possible, were not included in the data and results section because it is assumed that these 

vehicles would not be prioritized for full electrification. The remaining number of vehicles after those two 

examples of exclusions are 1,574. Also, 13 additional vehicles were excluded due to the lack of data 

available in the tools used to determine the TCO. Those vehicles consist of three light-duty vehicles and 

10 heavy-duty vehicles. Furthermore, three vans do not have data regarding the state of operation and 

were also excluded. As a result, a total number of 1,558 vehicles remain for analysis, including the 

following: 

Table 4: Vehicles analyzed from overall company-provided fleet data 

Vehicle Type Count 

Cars 101 
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Vehicle Type Count 

SUVs (41) & Minivans (9) 50 

Light-Duty Bucket Trucks 446 

Medium-Duty Bucket Trucks 263 

Heavy-Duty Bucket Trucks 0 

Cargo Trucks (7) & Specialty Trucks (1) 8 

Vans 690 

Specialty and cargo trucks were excluded from the analysis due to their representing less than 1% of the 

dataset. Heavy-duty trucks -representing less than 1% of the fleet- were excluded due to data 

unavailability. Also, three light duty vans did not have state allocation data in general. 

3.5. Carbon-Pricing Scenarios Analysis 

After evaluating the overall sample set, the next part of the analysis entailed developing a crude baseline 

model of carbon pricing scenarios, more specifically involving a carbon proxy price, also known as a 

shadow carbon price [7]. A shadow carbon price is an internal cost that does not involve exchange of 

funds, but rather “is incorporated into cost analyses, as follows: the estimate of any emissions associated 

with a financial decision is multiplied by a carbon price and this figure is added to the costs” [7]. In other 

words, when considering fleet electrification, a carbon shadow price “attaches a dollar value to the carbon 

emissions that are saved by driving the electric vehicle” [8]. This tool adds value in modeling financial 

risks from future carbon regulations, helps set a value to the cost to society from damages, and aligns 

decisions with organizational goals [8].  Such prices can also be factored into lifecycle cost (LCC) 

assessments which consider more than just initial purchase costs, ultimately altering the overall LCC and 

payback periods as well [8]. 

Company prices for carbon have ranged from $2/ton to more than $800/ton of carbon dioxide emissions, 

but for the purposes of this report, two scenarios are explored with internal prices of carbon [9]. The first 

scenario involves setting the shadow carbon price at $51/ton of carbon emissions, which is from the 

Biden Administration [10]. The second scenario has the carbon shadow price set to the November 2022 

recommendation from the Environmental Protection Agency (EPA) of $190/ton of carbon emissions [10]. 

This exercise was performed to develop a preliminary sense of the financial risks and opportunities of 

electrification of the fleet if carbon prices were adopted internally and/or mandated externally over the 

five-year period of the TCOs evaluated. Because the analysis requires that the current vehicles considered 

have both TCO and emissions data estimates, as well as determined EV equivalents with TCO and annual 

emissions data available, this exercise only uses a subset of the fleet sample set.  This subset consists of 

477 vehicles, just under a third of the total sample set. Those vehicles consist of: 

Table 5: Vehicles included in Carbon Pricing 

Vehicle Type Count 

Cars 79 

SUVs (37) and Minivans (9) 46 

Light-Duty Bucket Trucks 352 

Thus, medium-duty and heavy-duty bucket trucks as well as vans are not part of this exercise because of 

the data gaps. 
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4. Results and Analysis 

During the analysis, a range of data gaps as well as inconsistency of sourcing and assumptions arose 

along the various steps of the data analysis process, as outlined below. 

4.1. Assumptions, Data Gaps, Challenges 

4.1.1. Strategy Development 

Significant assumptions and data unavailability or quality challenges did not occur during this phase. 

4.1.2. Geographic Prioritization 

Significant assumptions and data unavailability or quality challenges did not occur during this phase. 

4.1.3. ICE TCO Determination & Emissions 

The ICE TCO determination phase presented several challenges. One challenge, as mentioned in section 

3, Methodology is that there is no single tool that has data on every single vehicle in the fleet subset, and 

so multiple tools had to be employed, even though they have different built-in assumptions. For example, 

one tool may have an assumed value for the aggregate of insurance and tax costs while another tool might 

outline these costs individually, the sum of which does not match the aggregate from the other tool. In 

other words, the assumed amount of the costs that comprise the TCO for the same vehicle may differ 

from one tool to the next. These inconsistencies are aggregated in the overall analysis because it assumed 

that the inconsistencies are not significant enough in the data sourcing and subsequent embedded 

assumptions to prevent the observation of relevant trends in ICE and EV TCO comparisons. Further, the 

only tool employed that offers annual emissions estimates is the DOE’s AFDC Vehicle Cost Calculator 

tool mentioned in Section 3. 

4.1.4. EV Equivalent Determination 

The most significant challenge faced was that available EV and hybrid vehicle models are often outside of 

the scope of the company’s preferred manufacturers. As a result, there were instances, especially for 

higher GVWR class vehicles, in which alternative manufacturers and retrofitting options, such as those of 

the company, SEA Electric, were considered to find a possible EV equivalent and potentially determine 

an EV TCO. 

4.1.5. EV TCO Determination & Emissions 

Other than facing a significantly smaller number of EV and hybrid alternatives available on the market, 

the assumptions, data gaps, and data quality challenges mirror those of the ICE TCO and emissions 

determination. In addition to the DOE tool, the Atlas Fleet Procurement Analysis Tool version 1.31 is the 

only other tool that offers both TCO estimates and annual emissions estimates, especially for higher 

weight class EVs not included in the DOE tool. 

4.2. Geographic Prioritization Results 

Based on the geographic prioritization hierarchy developed in section 0, three states out of the six selected 

states were prioritized for phased roll-out of the company fleet. These states are namely States A, B and 
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E, and they are highlighted in shades of green in Table 6 below. These states were selected based on their 

respective electrification and associated infrastructure presence and enablers. For example, mandates are 

drivers and federal, state, and financial incentives are enablers. 

Table 6: Attributes of States of Operations that are Barriers or Enablers to Electrification 
and Emissions Reduction 

 

State B is a prudent and necessary selection because of a mandate driving electrification. The feasibility 

of complying with this mandate is supported by having the highest number of charging stations in this 

state of the sample of states selected, and.one of the highest renewable energy relative contributions to the 

overall energy mix. However, State A and E were selected based on company preference. 

4.3. Overall Fleet Analysis 

For this analysis, TCO was estimated for the below-listed vehicle types in all 3 states (A, B and E) 

excluding specialty, cargo vans, heavy-duty trucks, and 3 light duty vans that did not have state allocation 

data in general. This analysis also considers financial incentives offered by the Inflation Reduction Act 

(IRA) [11]. This federal incentive offers up to $7,500 as tax credit for vehicles that are less than 14,000 

pounds and offers up to $40,000 for vehicles above 14,000 pounds [6]. It is assumed that full credit is 

available for all EV equivalents considered in this project. The overall portion of the company’s fleet that 

was evaluated consists of the following: 

Table 7: Number of Vehicles in Fleet by Vehicle Type 

Vehicle Type Count 

Cars 144 

SUVs (42) & Minivans (9) 51 

Vans 694 

Light-Duty (LD) Bucket Trucks 448 

Medium-Duty (MD) Bucket Trucks 263 

Heavy-Duty (HD) Bucket Trucks 9 

Cargo Box Trucks (MD & HD) 8 

Specialty Truck (LD) 1 
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4.3.1. TCO Trends in States A, B & E: Cars 

4.3.1.1. State A - Cars 

There are no cars in the fleet operated in state A.
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4.3.1.2. State B - Cars 

Figure 2: Comparison of ICE TCO to EV TCOs with and without additional costs and applied IRA subsidies for all cars in 
fleet in State B
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The primary interpretation of the value of this graph is that the Ford Fusion and Ford Focus models are 

more expensive to replace with the 2023 Ford Mustang Mach-E. Thus, the best vehicles to prioritize for 

transition in State B are the 2023 Chevrolet Bolt EVs, which can help decrease the gap between the Ford 

Fusion/Focus and Ford Mustang Mach-E TCO. Even though upfront costs may be higher for EVs, they 

generally have cheaper TCOs over their lifetime compared to their ICE vehicles counterparts. This is due 

to fewer operations and maintenance requirements such as oil changes or new air filters because of fewer 

moving parts, resulting in savings. Thus, when choosing an EV equivalent, the IRA Tax Credit can help 

decrease the TCO as observed in Figure 2, but it is possible to further decrease the EV TCO by 

considering state, utility, and private incentives for EVs and charging infrastructures. Table 1Table 8 

contains a list of recommended EVs for the company regarding this analysis.  

Table 8: List of EV equivalents for ICE Cars Referenced in Figure 2 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Malibu (2010, 2013, 2017) 2023 Chevrolet Bolt EVs 

Ford Focus (2012-2013) 2023 Ford Mustang Mach-E 

Ford Fusion (20120, 2012-2015) 2023 Ford Mustang Mach-E 
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4.3.1.3. State E - Cars 

 

Figure 3: Average ICE and EV TCO Comparisons for Cars by Make, Model, and Year in State E
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The primary interpretation of the value of this graph is that all the models are less expensive to replace 

with an equivalent EV model. Even though the EV TCO obtained for this analysis is less than that of the 

ICE vehicle, the EV TCO will further decrease over its lifetime making it a cheaper alternative. This is 

due to less operations and maintenance requirements such as oil changes or new air filters because of 

fewer moving parts which adds up in savings. Thus, when choosing EV equivalents, the IRA Tax Credit 

can help decrease the TCO as observed in Figure 3 but it is possible to further decrease the EV TCO by 

considering state, utility, and private incentives for EVs and charging infrastructures. Table 9 contains a 

list of recommended EVs for the company regarding this analysis. 

Table 9: List of EV equivalents for ICE Cars referenced in Figure 3 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Malibu (2013, 2015, 2016) 2023 Chevrolet Bolt EVs 

Ford Taurus (2013) 2023 Chevrolet Bolt EUV 

4.3.2. TCO Trends in States A, B, & E: SUVs & Minivans 

4.3.2.1. State A 

There are not any SUVs or minivans in the current fleet that are operated in State A. 
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4.3.2.2. State B SUVs & Minivans 

 

Figure 4: Average ICE and EV TCO Comparisons for SUVs and Minivans by Make, Model, and Year in State B 

3
5

,4
3

3
.0

0

4
9

,0
0

0
.0

0

4
5

,5
0

0
.0

0

4
4

,0
0

0
.0

0

4
5

,0
0

0
.0

0

7
7

,5
7

1
.0

0

7
7

,5
7

1
.0

0

7
7

,5
7

1
.0

0

7
7

,5
7

1
.0

0

3
2

,0
6

2
.0

0

3
8

,0
7

6
.0

0

4
6

,0
0

0
.0

0

4
8

,0
0

0
.0

0

7
7

,5
7

1
.0

0

4
6

,5
0

0
.0

0

6
8

,0
0

0
.0

0

6
8

,0
0

0
.0

0

6
8

,0
0

0
.0

0

6
8

,0
0

0
.0

0

6
8

,0
0

0
.0

0

6
7

,9
0

0
.0

0

6
7

,9
0

0
.0

0

6
7

,9
0

0
.0

0

6
7

,9
0

0
.0

0

6
8

,0
0

0
.0

0

6
8

,0
0

0
.0

0

7
2

,6
0

0
.0

0

6
8

,0
0

0
.0

0

7
7

,6
0

0
.0

0

6
8

,0
0

0
.0

0

7
1

,1
9

5
.8

1

7
1

,1
9

5
.8

1

7
1

,1
9

5
.8

1

7
1

,1
9

5
.8

1

7
1

,1
9

5
.8

1

7
1

,0
9

5
.8

1

7
1

,0
9

5
.8

1

7
1

,0
9

5
.8

1

7
1

,0
9

5
.8

1

7
1

,1
9

5
.8

1

7
1

,1
9

5
.8

1

7
5

,7
9

5
.8

1

7
1

,1
9

5
.8

1

8
0

,7
9

5
.8

1

7
1

,1
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,5
9

5
.8

1

6
3

,5
9

5
.8

1

6
3

,5
9

5
.8

1

6
3

,5
9

5
.8

1

6
3

,6
9

5
.8

1

6
3

,6
9

5
.8

1

6
8

,2
9

5
.8

1

6
3

,6
9

5
.8

1

7
3

,2
9

5
.8

1

6
3

,6
9

5
.8

1

T
R

A
IL

B
L

A
Z

E
R

E
Q

U
IN

O
X

E
Q

U
IN

O
X

E
Q

U
IN

O
X

E
Q

U
IN

O
X

G
R

A
N

D
 C

A
R

A
V

A
N

C
A

R
A

V
A

N

C
A

R
A

V
A

N

C
A

R
A

V
A

N

E
S

C
A

P
E

F
L

E
X

T
R

A
N

S
IT

 C
O

N
N

E
C

T

E
S

C
A

P
E

E
X

P
L

O
R

E
R

E
S

C
A

P
E

2 0 0 6 2 0 1 3 2 0 1 7 2 0 1 8 2 0 1 9 2 0 1 2 2 0 1 5 2 0 1 7 2 0 1 8 2 0 0 8 2 0 1 1 2 0 1 3 2 0 1 6 2 0 1 8

C H E V R O L E T D O D G E F O R D

A
V

ER
A

G
E 

TC
O

 (
$

)

MODEL

YEAR

MAKE

AVERAGE ICE AND EV TCO COMPARISONS FOR SUVS AND MINIVANS BY 
MAKE, MODEL, AND YEAR IN STATE B

Average of ICE TCO Average of EV TCO (w/out incentives)

Average of EV TCO Adjusted for Fittings + Charger + Charger Installation Average of EV TCO Adjusted for Fittings + Charger + Charger Installation w/ Subsidy



 

 © 2023 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 48 

The primary interpretation of the value of this graph is that all the models are expensive to replace with an equivalent EV 

model. This increase can be attributed to the initial high MSRP (Manufacturer’s Suggested Retail Price) of the equivalent 

EV and the upfitting cost to the EV TCO and the purchase and installation cost of the charger. Even though upfront costs 

may be higher for EVs, they generally have cheaper TCOs over their lifetime compared to their ICE vehicles counterparts. 

This is due to fewer operations and maintenance requirements such as oil changes or new air filters because of fewer 

moving parts resulting in savings. Thus, when choosing EV equivalent, the IRA Tax Credit can help decrease the TCO as 

observed in Figure 4, but it is possible to further decrease the EV TCO by considering state, utility, and private incentives 

for EVs and charging infrastructures. Table 10 contains a list of recommended EVs for the company regarding this 

analysis. 

Table 10: List of EV equivalents for ICE Cars Referenced in Figure 4 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Trailblazer (2006) 2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Chevrolet Equinox (2016, 2017, 2018, 
2019) 

2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Dodge Grand Caravan (2012) 2023 Chrysler Pacifica Hybrid (6cyl 2.6L Automatic Plug-in 
Hybrid) 

Dodge Caravan (2015, 2017, 2018) 2023 Chrysler Pacifica Hybrid (6cyl 2.6L Automatic Plug-in 
Hybrid) 

Ford Escape (2008, 2016, 2018) 2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Ford Flex (2011) 2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Ford Transit Connect (2013) 2023 Ford E-Transit Cargo Van 

Ford Explorer (2016) 2023 Explorer HEV RWD 6cyl 3.3L Automatic 10-spd 
Hybrid 
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4.3.2.3. State E SUVs & Minivans 

 

Figure 5: Average ICE and EV TCO Comparisons for SUVs and Minivans by Make, Model, and Year in State E 
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The primary interpretation of the value of this graph is that all the models are expensive to replace with an equivalent EV 

model. This increase can be attributed to the initial high MSRP (Manufacturer’s Suggested Retail Price) of the equivalent 

EV and the upfitting cost to the EV TCO and the purchase and installation cost of the charger. Even though upfront costs 

may be higher for EVs, they generally have cheaper TCOs over their lifetime compared to their ICE vehicles counterparts. 

This is due to fewer operations and maintenance requirements such as oil changes or new air filters because of fewer 

moving parts resulting in savings. Thus, when choosing EV equivalents, the IRA Tax Credit can help decrease the TCO as 

observed in Figure 5, but it is possible to further decrease the EV TCO by considering state, utility, and private incentives 

for EVs and charging infrastructures. Table 11 contains a list of recommended EVs for the company regarding this 

analysis. 

Table 11: List of EV equivalents for ICE Cars Referenced in Figure 5 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Captiva (2012 – 2013) 2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Chevrolet Equinox (2015, 2018) 2023 Ford Mustang Mach-E AWD Automatic (A1) EV 

Dodge Caravan (2017) 2023 Chrysler Pacifica Hybrid (6cyl 2.6L Automatic Plug-in 
Hybrid) 
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4.3.3. TCO Trends in States A, B, & E: Light-Duty Bucket Trucks 

4.3.3.1. State A Light Duty Bucket Trucks 

 

Figure 6: Average ICE and EV TCO Comparisons for Light-Duty Trucks by Make, Model, and Year in State A
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The primary interpretation of the value of the Figure 6 graph is that all the models are less expensive to replace with an 

equivalent EV model. Even though the EV TCO obtained for this analysis is less than that of the ICE car, the EV TCO 

will further decrease over its lifetime making it a cheaper alternative. This is due to fewer operations and maintenance 

requirements such as oil changes or new air filters because of fewer moving parts, resulting in savings. Thus, when 

choosing EV equivalent, the IRA Tax Credit can help decrease the TCO as observed in Figure 6, but it is possible to 

further decrease the EV TCO by considering state, utility, and private incentives for EVs and charging infrastructures. 

Table 12 contains a list of recommended EVs for the company regarding this analysis. 

Table 12: List of EV equivalents for ICE Vehicles Referenced in Figure 6 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Ford 150 (2016 - 2018) 2023 Ford F-150 Lightning 4WD 
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4.3.3.2. State B Light-Duty Bucket Trucks 

 

Figure 7: Average ICE and EV TCO Comparisons for Light-Duty Bucket Trucks by Make, Model, and Year in State B
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The primary interpretation of the value of the Figure 7 graph is that the F250 and F350 models are more expensive to 

replace with an equivalent EV model because they are Class 2b and Class 3 vehicles respectively. Their EV equivalents 

tend to be fewer in the number of available models, and thus, significantly more expensive. For example, the F250s and 

F350s were placed with the SEA Electric retrofit power trains which cost more. Thus, the best vehicles to prioritize for 

transition in State E are the Class 1 and 2 vehicles, which are the Chevrolet vehicles and the Ford F150 vehicles.  

Table 13: List of EV equivalents for ICE Vehicles Referenced in Figure 7 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Silverado 2500 (2011, 2013) Ford F150 Lightning 

Chevrolet Colorado (2008, 2012, 2015,2016) Ford F150 Lightning 

Ford F-150 (2016-2022) Ford F150 Lightning 

Ford F-250 (2015-2017, 2019) Ford E-350 SEA Electric retrofit power trains 

Ford F-350 (2017) Ford E-350 SEA Electric retrofit power trains 
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4.3.3.3. State E Light-Duty Bucket Trucks 

 

Figure 8: Average ICE and EV TCO Comparisons for Light-Duty Bucket Trucks by Make, Model, and Year in State E 
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The primary interpretation of the value of Figure 8 is that the F250 and F350 models are more expensive 

to replace with an equivalent EV model because they are Class 2b and Class 3 vehicles respectively. Their 

EV Equivalents tend to be fewer in the number of available models, and thus, significantly more 

expensive. For example, the F250s and F350s were placed with the SEA Electric retrofit power trains 

which cost more. Thus, the best vehicles to prioritize for transition in State E are the Class 1 and Class 2 

vehicles, which are the Chevrolet vehicles and the Ford F150 vehicles. 

Table 14: List of EV equivalents for ICE Vehicles Referenced in Figure 8 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Chevrolet Silverado 2500 (2011, 2013) Ford F150 Lightning 

Chevrolet Colorado (2012, 2015) Ford F150 Lightning 

Ford F-150 (2016-2022) Ford F150 Lightning 

Ford F-250 (2015-2018) Ford E-350 SEA Electric retrofit power trains 

Ford F-350 (2018) Ford E-350 SEA Electric retrofit power trains 

4.3.4. TCO Trends in States A, B, & E: Medium-Duty Trucks 

4.3.4.1. State A -  Medium-Duty Bucket Trucks 

There are not any medium duty bucket truck vehicles operated in State A. 
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4.3.4.2. State B Medium-Duty Bucket Trucks 

 

Figure 9: Average ICE and EV TCO Comparisons for Medium-Duty Bucket Trucks by Make, Model, and Year in State B 
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The primary interpretation of the value of Figure 9 is that the F450 and F550 models are more expensive 

to replace with an equivalent EV model because they are Class 4 and Class 5 vehicles. Their EV 

Equivalents tend to be fewer in number of available models, and thus, significantly more expensive. For 

example, the F450s and F550s are placed with the SEA Ford 450-650 Electric retrofit power trains which 

cost more. Even though upfront costs may be higher for EVs, they generally have cheaper TCOs over 

their lifetime compared to their ICE vehicles counterparts. This is due to fewer operations and 

maintenance requirements such as oil changes or new air filters because of fewer moving parts resulting 

in savings. Thus, when choosing EV equivalent, the IRA Tax Credit can help decrease the TCO as 

observed in Figure 9, but it is possible to further decrease the EV TCO by considering state, utility, and 

private incentives for EVs and charging infrastructures. Table 15 contains a list of recommended EVs for 

the company regarding this analysis. 

Table 15: List of EV equivalents for ICE Vehicles Referenced in Figure 9 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Ford F450 (2004, 2006, 2018, 2020 – 2022) SEA Ford 450-650 Cutaways 

Ford F550 (2011 - 2013, 2016 - 2020) SEA Ford 450-650 Cutaways 
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4.3.4.3. State E – Medium-Duty Bucket Trucks 

 

 

Figure 10: Average ICE and EV TCO Comparisons for Medium-Duty Bucket Trucks by Make, Model, and Year in State E
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The primary interpretation of the value of Figure 10 is that the F450 and F550 models are more expensive to replace with 

an equivalent EV model because they are Class 4 and Class 5 vehicles. Their EV Equivalents tend to be fewer in the 

number of available models, and thus, significantly more expensive.  For example, the F450s and F550s are placed with 

the SEA Ford 450-650 Electric retrofit power trains which cost more. Even though upfront costs may be higher for EVs, 

they generally have cheaper TCOs over their lifetime compared to their ICE vehicles counterparts. This is due to fewer 

operations and maintenance requirements such as oil changes or new air filters because of fewer moving parts, resulting in 

savings. Thus, when choosing EV equivalents, the IRA Tax Credit can help decrease the TCO as observed in Figure 10, 

but it is possible to further decrease the EV TCO by considering state, utility, and private incentives for EVs and charging 

infrastructures. Table 16 contains a list of recommended EVs for the company regarding this analysis. 

Table 16: List of EV equivalents for ICE Vehicles Referenced in Figure 10 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Ford F450 (2018, 2020 – 2022) SEA Ford 450-650 Cutaways 

Ford F550 (2011 - 2012, 2015 – 2017, 2019) SEA Ford 450-650 Cutaways 

Ford F550 (2005) 2022 Freightliner 

4.3.5. TCO Trends in States A, B, & E: Vans 

4.3.5.1. State A Vans 

There are not any vans in the fleet that are operated in State A.
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4.3.5.2. State B Vans 

 

Figure 11: Average ICE and EV TCO Comparisons for Vans by Make, Model, and Year in State B 
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The primary interpretation of the value of the Figure 11 graph is that all the models are expensive to replace with an 

equivalent EV model. This increase can be attributed to the initial high MSRP (Manufacturer’s Suggested Retail Price) of 

the equivalent EV, the upfitting cost to the EV TCO, and the purchase and installation cost of the charger. Even though 

upfront costs may be higher for EVs, they generally have cheaper TCOs over their lifetime compared to their ICE vehicles 

counterparts. This is due to fewer operations and maintenance requirements such as oil changes or new air filters because 

of fewer moving parts, resulting in savings. Thus, when choosing EV equivalents, the IRA Tax Credit can help decrease 

the TCO as observed in Figure 11, but it is possible to further decrease the EV TCO by considering state, utility, and 

private incentives for EVs and charging infrastructures. Table 17 contains a list of recommended EVs for the company 

regarding this analysis. 

Table 17: List of EV equivalents for ICE Vehicles Referenced in Figure 11 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Ford Transit 250 (2015 – 2019, 2021 - 2022) Ford E-Transit Cargo Van 

Ford Transit 350 (2018) Ford E-Transit Cargo Van 

Mercedes-Benz Sprinter 2500 (2011-2013, 
2015) 

E-Transit - Passenger Van XL, E-Transit (T350) 
Chassis Cab (350 High Roof 3dr Van w/148" WB), E-
Transit Cargo Van (350 High Roof 3dr Ext Van w/ 
148" WB (electric DD)) 

Mercedes-Benz Sprinter 3500 (2011-2013) E-Transit (T350) Chassis Cab (350 High Roof 3dr 
Van w/148" WB), E-Transit Cargo Van (350 High 
Roof 3dr Ext Van w/ 148" WB (electric DD)) 
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4.3.5.3. State E Vans 

 

Figure 12: Average ICE and EV TCO Comparisons for Vans by Make, Model, Year in State E  
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The primary interpretation of the value of the Figure 12 graph is that all the models are expensive to replace with an 

equivalent EV model. This increase can be attributed to the initial high MSRP (Manufacturer’s Suggested Retail Price) of 

the equivalent EV and the upfitting cost to the EV TCO and the purchase and installation cost of the charger. Even though 

upfront costs may be higher for EVs, they generally have cheaper TCOs over their lifetime compared to their ICE vehicles 

counterparts. This is due to fewer operations and maintenance requirements such as oil changes or new air filters because 

of fewer moving parts, resulting in savings. Thus, when choosing EV equivalents, the IRA Tax Credit can help decrease 

the TCO as observed in Figure 12, but it is possible to further decrease the EV TCO by considering state, utility, and 

private incentives for EVs and charging infrastructures. Table 18 contains a list of recommended EVs for the company 

regarding this analysis. 

Table 18: List of EV equivalents for ICE Vehicles Referenced in Figure 12 

ICE Vehicle from Original Fleet EV Equivalent considered for TCO calculation 

Ford Transit 250 (2015 – 2020, 2022) Ford E-Transit Cargo Van 

Ford E250 (2005) E-Transit Cargo Van (350 High Roof 3dr Ext Van w/ 148" 
WB (electric DD)) 

Mercedes-Benz Sprinter 2500 (2010, 
2012 - 2015) 

E-Transit - Passenger Van XL, E-Transit (T350) Chassis 
Cab (350 High Roof 3dr Van w/148" WB), E-Transit Cargo 
Van (350 High Roof 3dr Ext Van w/ 148" WB (electric DD)) 

Mercedes-Benz Sprinter 3500 (2012-
2013) 

E-Transit (T350) Chassis Cab (350 High Roof 3dr Van 
w/148" WB) 

4.4. Carbon Shadow-Pricing Scenario Analysis 

With the subset of data available, an analysis of both carbon pricing scenarios was done for the following classes of 

vehicles: cars, SUVs and minivans, and light-duty bucket trucks.  As mentioned in the Methodology section, the analysis 

was not completed for vans and medium-duty trucks due the absence of one or more of the following data points: the ICE 

vehicle TCO; the ICE vehicle’s annual emissions; the EV vehicle’s TCO; and/or the EV vehicle’s emissions.  The two 

scenarios evaluated are internal carbon pricing scenarios evaluated at the Biden Administration’s latest price of $51/ton 

carbon emissions [10] and again at the EPA’s recommended price of $190/ton of carbon emissions [10].  As previously 

mentioned, the largest sources of emissions are light-duty trucks, according to the EPA.  Furthermore, of the three classes 

of vehicles within this subset, only the light-duty bucket trucks have upfitting costs in addition to charger purchasing and 

installation costs to consider. For these two reasons, in this section, the carbon pricing scenarios are shown below for 

light-duty bucket trucks in states A, B, and E. The equivalent graphs for the cars, as well as the SUVs and minivans, are 

included in Appendix A {Section 7.1] for reference.
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4.4.1.  State A – Light-Duty Bucket Trucks 

 

Figure 13: State A Light-Duty Bucket Trucks: Comparisons of Average ICE and EV TCOs with and without Carbon Shadow Pricing 
Scenarios 

7
7

,5
7

1
.0

0

7
9

,0
5

6
.6

3

8
3

,1
0

5
.7

0

5
7

,6
9

5
.8

1

5
7

,7
5

2
.9

6

5
7

,9
0

8
.7

1

A

2 0 1 7

A
V

ER
A

G
E 

TC
O

 (
$

)

YEAR OF MAKE OF ICE VEHICLES BEING COMPARED TO 2022 OR 2023 EV EQUIVALENTS

STATE A LIGHT-DUTY BUCKET TRUCKS: COMPARISONS OF AVERAGE ICE AND  EV 
TCOS WITH AND WITHOUT SHADOW CARBON PRICING SCENARIOS

Average of ICE TCO
Average of ICE TCO - Adjusted for internal proxy/shadow carbon price of: SCC - $51/ton per 2021 U.S. Fed. Govt.
Average of ICE TCO - Adjusted for Nov. 2022 EPA estimate of $190/ton
Average of EV TCO Adjusted for Fittings + Charger + Charger Installation w/ Subsidy
Average of EV TCO - Adjusted for Fittings + Charger + Installation + internal proxy/shadow carbon price of: SCC - $51/ton per 2021 U.S. Fed. Govt. w/ Subsidy
Average of EV TCO - Adjusted for Fittings + Charger + Installation + Cost of Emmisions at Nov. 2022 EPA estimate of $190/ton w/ Subsidy



 

 © 2023 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 66 

In Figure 13, there is a comparison of six average TCOs. As seen from the horizontal axis, for light-duty 

bucket trucks operated in State A, the TCOs are averaged for ICE models from the same year; the TCOs 

of the corresponding EV models for those vehicles are also averaged. The ICE TCOs are represented in 

various shades of red. They represent the average of ICE light-duty bucket truck TCOs, the adjusted ICE 

TCO in a shadow carbon price scenario of $51/ton of carbon emissions, and the adjusted ICE TCO in a 

shadow carbon price scenario of $190/ton of carbon from left to right respectively. The EV TCOs are 

represented in various shades of blue. They represent the average EV TCO price with all the additional 

costs of upfitting, charger purchase, and charger installation, as well as with the savings from the IRA tax 

credit; the EV TCO including all additional costs and tax credit in a carbon shadow price scenario of 

$51/ton; and the EV TCO including all additional costs and tax credit in a carbon shadow price scenario 

of $190/ton of carbon emissions from left to right respectively. 

In the scenario in which the company adopts the Biden Administration’s carbon price of $51/ton or in 

which it is externally mandated, the average ICE TCO increases by nearly $1,500, while the average EV 

TCO -with all additional costs included- increases by less than $100. In a scenario where the EPA’s 

recommended price of $190/ton is adopted internally and/or is externally mandated, the average ICE TCO 

increases by approximately $5,500 while the average cost of EVs increases only slightly over $213 over a 

five-year period. Not only is the financial risk and impact of EV adoption less in the face of carbon 

regulations, with all costs and the IRA tax credit considered, but the average TCO is less as well. Without 

carbon shadow pricing, the ICE light-duty bucket truck average TCOs in this state are nearly $20,000 

more expensive than that of the EV equivalent. With carbon pricing, that gap only expands, reaching over 

$21,000 in a $51/ton scenario, and over $25,000 in a $190/ton scenario. 
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4.4.2.  State B – Light-Duty Bucket Trucks 

 

Figure 14: State B Light-Duty Bucket Trucks: Comparisons of Average ICE and EV TCOs with and without Shadow Carbon Pricing 
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In Figure 14, there is a comparison of six average TCOs for years ranging from 2008 to 2022. As seen 

from the horizontal axis, for light-duty bucket trucks operated in State B, the TCOs are averaged for ICE 

models from the same year and the TCOs of the corresponding EV models for those vehicles are also 

averaged. The ICE TCOs are represented in various shades of red. They represent the average of ICE 

light-duty bucket truck TCOs, the adjusted ICE TCO in a shadow carbon price scenario of $51/ton of 

carbon emissions, and the adjusted ICE TCO in a shadow carbon price scenario of $190/ton of carbon 

from left to right respectively for each year. The EV TCOs are represented in various shades of blue. 

They represent the average EV TCO price with all the additional costs of upfitting, charger purchase, and 

charger installation, as well as with the savings from the IRA tax credit; the EV TCO including all 

additional costs and tax credit in a carbon shadow price scenario of $51/ton; and the EV TCO including 

all additional costs and tax credit in a carbon shadow price scenario of $190/ton of carbon emissions from 

left to right respectively for each year. 

In both scenarios, the EV TCOs (which are all based on 2023 Ford F-150 Lightning EVs), including 

additional costs and the IRA tax credit, are not always exceeded by ICE TCOs, such as seen in the 

average TCOs of the models in 2008, 2012 and 2015, despite the fact that the average ICE TCOs increase 

by over $1,000 in the $51/ton scenario, and by over $4,000 in the $190/ton scenario in these years. For 

2008, the average TCOs are only based on one vehicle in that year from the dataset due to previously 

mentioned data gaps for ICE and EV TCOs and emissions.  Thus, it is possible that the comparison may 

differ with a larger sample set of light-duty bucket truck vehicles from 2008 models in the fleet. The 2012 

average is based on the conversion of twelve of the same make and model vehicles from that year, and 

thus, the gap may simply be due to the age of the vehicles, which likely are not experiencing significant 

depreciation losses. Ultimately, the reason(s) is/are an area of further exploration to be considered in 

future research. The 2015 average is based on six vehicles of the same make and model as those of the 

2012 vehicles and is less than the average EV TCOs in all scenarios, though to a much lesser extent, such 

that, especially in the $190/ton scenario, the prices are nearly the same based on conversion. 

For the average TCOs for models in 2016 and onward, the trend shifts. In 2016, there are 24 Ford F150s 

and four Chevy Colorado vehicles. The remaining years consists of averages of varying numbers of Ford 

F150 vehicles in the original fleet, with 33 in 2017, 51 in 2018, 17 in 2019, eight in 2020, 21 in 2021, and 

two in 2022. 

The average EV TCOs are significantly less than those of the ICE vehicles in the original fleet – 

approximately $13,000 vs. approximately $18,000 in a carbon pricing scenario of $0/ton.  

In the scenario in which the company adopts the Biden Administration’s carbon price of $51/ton or in 

which it is externally mandated, the average EV TCO is approximately $15,000 less than the average ICE 

TCO in 2016 and is approximately $18,000 less than the average ICE TCOs of the remaining years 

through 2022. 

In a scenario where the EPA’s recommended price of $190/ton is adopted internally and/or externally 

mandated, the average EV TCO is approximately $19,000 less than the average ICE TCO in 2016 and is 

approximately $21,000 or $22,000 less in the remaining years through 2022. 

Again, overall, not only is the financial risk and impact of EV adoption less in the face of carbon 

regulations, with all costs and the IRA tax credit considered, the average TCO is less as well, as observed 

in State A. 
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4.4.3. State E – Light-Duty Bucket Trucks 

 

Figure 15: State E Light-Duty Bucket Trucks: Comparisons of Average ICE and EV TCOs with and without Shadow Carbon Pricing 
Scenarios 
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In Figure 15, there is a comparison of six average TCOs for years ranging from 2012 to 2022. As seen 

from the horizontal axis, for light-duty bucket trucks operated in State B, the TCOs are averaged for ICE 

models from the same year and the TCOs of the corresponding EV models are also averaged. The ICE 

TCOs are represented in various shades of red. They represent the average of ICE light-duty bucket truck 

TCOs, the adjusted ICE TCO in a shadow carbon price scenario of $51/ton of carbon emissions, and the 

adjusted ICE TCO in a shadow carbon price scenario of $190/ton of carbon from left to right respectively 

for each year. The EV TCOs are represented in various shades of blue. They represent the average EV 

TCO price with all the additional costs of upfitting, charger purchase, and charger installation, as well as 

with the savings from the IRA tax credit; the EV TCO including all additional costs and tax credit in a 

carbon shadow price scenario of $51/ton; and the EV TCO including all additional costs and tax credit in 

a carbon shadow price scenario of $190/ton of carbon emissions from left to right respectively for each 

year. All the EV equivalent vehicles considered for these ICE light-duty bucket trucks are 2023 Ford 

F150 Lightning vehicles. 

In both scenarios, as observed for State B, the EV TCOs, including additional costs and the IRA tax 

credit, are not always exceeded by ICE TCOs. This is apparent for the average TCOs of the models from 

2012 and 2015. The 2012 average ICE TCO is based on 34 Chevy Colorado and the 2015 average ICE 

TCO is based on 18 Chevy Colorado vehicles. As in the case of ICE light-duty trucks in States A and B, 

these average EV TCOs are based on switching these vehicles to Ford F-150 Lightning EVs. As 

mentioned in the State B analysis, the average ICE TCO for the 2012 models is around $16,700 less 

expensive than that of the average EV TCO, and even in the more expensive carbon pricing scenario of 

$190/ton of carbon emissions, the average ICE TCO is still over $11,000 less than that of the average EV 

TCO with all additional expenses and the IRA tax credit in this scenario. In the 2015, the difference is 

less, with average ICE TCOs ranging from $8700 less expensive than the average EV TCOs in a $0/ton of 

carbon emissions price to approximately $3,400 less expensive in a carbon pricing scenario of 

$190/ton/ton of carbon emissions. Again, the reasons for this difference should be further explored to 

determine their significance to vehicle prioritization in each state. 

For the average TCOs for models in 2016 and onward, just as observed with vehicles in State B, the trend 

shifts. There are 17 vehicles from 2016, 19 from 2017, 61 from 2018, 11 from 2019, two from 2020, three 

from 2021, and two from 2022. The average EV TCOs are always significantly less than those of the ICE 

vehicles in the original fleet. 

In the carbon pricing scenario of $0/ton of carbon emissions, the average EV TCO is 

approximately$19,300 less than the average ICE TCO for vehicles manufactured in the 2015-2022 range. 

In the scenario in which the company adopts the Biden Administration’s carbon price of $51/ton or in 

which it is externally mandated, the average EV TCO is approximately $20,000-$21,000 less than the 

average ICE TCO in 2016 through 2022. 

In a scenario where the EPA’s recommended price of $190/ton is adopted internally and/or externally 

mandated, the average EV TCO is approximately $24,000 to over $25,000 less than the average ICE TCO 

in 2016 through 2022. 

Again, overall, not only is the financial risk and impact of EV adoption less in the face of carbon 

regulations, with all costs and the IRA tax credit considered, the average TCO is less as well, as observed 

in State A. 
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4.4.4. Summary 

Overall, light-duty bucket trucks, which represent about a quarter of the fleet’s vehicles in States A, B, & 

E, are a significant opportunity to reduce emissions through electrification, due to being one of the highest 

emitting vehicle types in the transportation sector according to the EPA [1];  they bring significant 

economic savings for each ICE vehicle replaced in most cases, particularly for those vehicles 

manufactured in 2016 and onward. Using shadow carbon pricing scenarios of $51/ton of carbon 

emissions and $190/emissions provide insight into how this can bring EV price parity with ICE vehicle 

TCOs and can show that the EV TCOs become less than that of the ICE TCOs. As regulations develop 

and advance, it is possible that the TCO trends observed from the carbon pricing scenarios no longer 

remain hypothetical. 

5. Conclusion 

5.1. Electrification Strategy and Research Process Considerations 

The key takeaways from this project touch every phase of fleet vehicle procurement. The state of the data 

was foundational to this project, as publicly available tools were relied upon to make informed decisions 

on vehicle replacements. The team found that, overall, the data across the identified TCO calculators is 

robust, with recorded data for true cost of ownership (TCO), and sometimes for annual emissions and cost 

per mile. Uniformity across calculators, however, is a bit trickier, with similar fundamentals of TCO 

calculation for each tool, but different assumptions. These differences manifest in assumed depreciation, 

fuel spend, etc., and can be adjusted in the data processing phase, but it highlights the need for more 

clearly stated assumptions with TCO calculators and use of consistent assumptions across all calculations.  

Vehicle availability is another factor significant to this analysis. The electric vehicle market is actively 

developing as technology improves and demand increases, and more new options for fleet electrification 

are being rolled out year after year. With that said, it can be difficult to project future availability of 

electric vehicles, and working only with existing information is useful, but can lead to unavoidable 

differences in projections against reality. For example, while there is a developed consumer market for 

electric sedans, SUVs, and pickup trucks, with a variety of identified alternatives from large OEM’s, any 

vehicles above a Class 2 GVWR, like medium- and heavy-duty trucks and full-size vans, have limited 

replacement options, and few, if any, are produced by OEMs with large service and maintenance 

networks. Some OEMs have begun to announce short-term deadlines for electrification of larger vehicles 

[12], but cost and widespread availability cannot be assumed and, as such, it is difficult to predict required 

investment for transitioning vehicles without a large existing market. 

To ensure continuous development of low-carbon solutions for fleet vehicles, several supply chain 

impacts must be explored. Electric vehicle sales have increased significantly over the past several years, 

comprising close to 10% of all vehicles sold globally [13]. The manufacturing of batteries relies on 

several critical materials and metals, such as lithium, cobalt, and graphite, that are found in a few mineral-

rich countries, and over half of the global supply of these minerals are processed and manufactured in 

China [14]. The commodities are subject to price fluctuation based on geopolitical factors, as evidenced 

by price increases observed globally because of the Russia-Ukraine war. While these materials do not 

contribute as heavily to global GHG emissions as traditional fossil fuel extraction and use, they are still 

exhaustible resources, and continued unabated extraction can further exacerbate supply chain issues. As 

such, technologies that reduce the use of critical materials, such as manganese or sodium iron cathodes, as 

well as hydrogen powered batteries, should continue to be developed and explored. Beyond material 
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criticality, the construction and deployment of charging infrastructure is crucial to the success of 

widespread vehicle electrification. The states prioritized in this project have the highest concentration of 

charging infrastructure, but with many companies moving Net-Zero goals up to 2035 from 2050, 

nationwide infrastructure will have to improve to achieve electrification across stateside operations. 

5.2. Vehicle Prioritization Recommendations for Replacement with EVs 

Through this process, a robust understanding of the company's fleet was achieved. This understanding 

includes an abundance of information regarding the complexion of the fleet, i.e., make, model, year, 

function, TCO, emissions, state of operation, vehicle class, etc. These details inform conclusions 

regarding which vehicles have a variety of readily available alternatives and, as such, are the easiest to 

replace, and which vehicles may not have electric alternatives from large OEMs on the market today. An 

understanding of which vehicles also present the best economic case for replacement with EV equivalents 

(including additional costs for upfitting, charger purchase, and charger installation, as well as the IRA tax 

credit) resulted from this work with respect to TCOs evaluated over a five-year period.   

For cars, it is recommended that all the Chevrolet Malibu vehicles in both States B and E and the 2013 

Ford Taurus vehicles be prioritized for replacement first from this vehicle type category because of the 

emissions and IRA incentives resulting in TCO savings. Replacing the Malibu vehicles with EV 

equivalents may save anywhere from $5,300-$9,800 per vehicle while replacing the Taurus vehicles may 

save approximately $12,000 per vehicle. 

For SUVs and minivans, again, found only in States B and E from the company fleet data provided, it is 

recommended that all the Dodge Caravan and the 2016 Ford Explorer vehicles be prioritized for 

replacement first from this vehicle type category because of the emissions and TCO savings that may 

result. It is estimated that replacing the Caravans will save anywhere from over $13,800 to over $16,500 

per vehicle and replacing the 2016 Ford Explorer vehicles may save over $4,200 per vehicle. 

Light-duty bucket trucks are found in States A, B, and E from the company fleet data provided. It is 

recommended that all Ford F150 vehicles in all three states and the Ford F250 vehicles in State B be 

prioritized for replacement first in this vehicle type category because of the combination of the emissions 

and TCO savings that may result. In State A, replacing Ford F150s could save approximately $19,800 per 

vehicle. In State B, replacing Ford F150 vehicles is estimated to save approximately $16,800 per vehicle 

and replacing the 2017 Ford F250 vehicles is expected to save approximately $2,400 per vehicle. Finally, 

in State E, replacing the Ford F150 vehicles may save over $19,000 per vehicle. 

Medium-duty bucket trucks are found in States B and E according to the company fleet data provided. 

Due to the limited number of medium-duty electric trucks available on the market, it is not recommended 

to prioritize replacing these vehicles without conducting more research and exploring options, such as 

retrofitting electric power systems into vehicles. Though replacement of these vehicles will have a 

positive impact on emissions reductions, the EVO TCOs determined in this analysis, even with the IRA 

tax credit factored in, range from two to over five times the amount of the average ICE TCOs. It was not 

possible to evaluate the impacts of carbon pricing on the relative ICE and EV TCOs due to the lack of 

emissions data availability for this class of vehicles. 

Vans, found in States B and E, represent a little over 40% of the overall company-provided fleet data for 

States A, B, and E. When only factoring the IRA tax credit, it is not recommended to prioritize 

replacement of any of the vans in any of the states due to the EV TCOs being significantly higher than the 

ICE TCOs. With the help of additional incentives, such as other state, utility and private rebates or tax 
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credits, the 2013 Sprinter 3500, the 2014 Sprinter 2500, and the 2015 Sprinter 2500 vehicles may be able 

to achieve parity with the ICE TCOs or even become less than them especially when considering the 

vehicle’s lifetime. Currently, their EV equivalent TCOs are approximately $1,600 more expensive. 

Should emissions estimates be available in the future through the tools used to determine TCO, or should 

calculations be carried out for these vehicles, whether shadow carbon pricing may further reduce the EV 

TCOs may also be verified. 

These vehicle prioritization recommendations may be confirmed through ongoing research, especially as 

TCO and annual emissions estimates’ data availability increases, as carbon pricing regulations advance, 

as eligibility for state and local incentives are specifically applied to vehicles in the dataset, and as the EV 

market expands to offer more options, especially for medium and heavy-duty electric vehicles. Related 

recommendations are explored in the next section. 

In summary, it is recommended that any company should follow the same process to transition its ICE 

fleet to EVs with the following seven step listed below: 

• Determine a transportation emission baseline for your company and establish an emission 

reduction goal with identification reduction on Scope 1 or 3. 

• Establish a yearly budget for EV transition. 

• Research and develop a hierarchy of priorities for determining which states receive priority in 

scale rollout. 

• Review ICE fleet inventory for selected states: Identify vehicle leases that are nearing end of term 

of contract and existing procurement contracts. 

• Identify electric vehicle candidates for ICE replacement using available online tools. 

• Compare TCO, cost/mile, and, if possible, annual emissions of ICE and EV fleet. 

• Transition vehicles at end of lease first before transitioning ICEs with the highest TCOs and 

emissions. 

6. Recommendations  

For future projects, it is recommended that the company verifies the respective state, utility and/or private 

subsidies/incentives that are available down to the local/district level in addition to the IRA subsidies 

from the Commercial EV and FCEV Tax Credit. It is necessary that the company also verifies that the 

selected EVs meet the minimum battery capacity requirements for the federal tax credit. For vehicle types 

or classes that have limited EV equivalent options, the company is encouraged to explore other OEMs 

and retrofitting options that switch ICE vehicles to electric ones, such as through companies like SEA 

Electric, though these options may come at an additional cost. It is also advised that the company explore 

the possibility of setting a shadow carbon price. This can demonstrate to investors that the company 

understands its exposure to future regulation, as well as make the economic case for pursuing 

sustainability-driven projects internally. The company can also explore emissions evaluations including 

other GHGs and factor and update its TCO evaluation accordingly, especially in carbon-pricing scenarios. 

Ultimately, the conclusions drawn in this study are based on limited data. Thus, the final recommendation 

is that the company verifies the validity of these conclusions by filling TCO and annual emissions data 

gaps with its own internal data. It is possible that the trends discovered in this analysis will parallel those 

of this study, but it is also possible that new insights may be discovered as well. 
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7. Appendices 

7.1. Appendix A – Carbon Pricing Analysis 

7.1.1. Cars 

There are a total of 79 fleet cars in this analysis with TCO and annual emissions data available for both 

the ICE vehicle and the researched EV equivalent.  

7.1.1.1. State A – Cars 

There are not any cars in the subset of the fleet sample set that are operated in State A. 
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7.1.1.2. State B - Cars 

 

Figure 16: Comparison of Average ICE TCOs per Year of Models to EV Equivalent TCOs with and without Shadow Carbon Pricing for Cars 
Operated in State B 
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7.1.1.3. State E - Cars 

 

Figure 17: Comparison of Average ICE TCOs per Year of Models to EV Equivalent TCOs with and without Shadow Carbon Pricing for Cars 
Operated in State E 
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7.1.2. SUVs & Minivans 

There are 46 vehicles of this type in this data subset, 37 of which are SUVs and nine of which are minivans. 

7.1.2.1. State A – SUVs & Minivans 

There are not any SUVs and minivans in this data subset that are operated in State A.
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7.1.2.2. State B – SUVs & Minivans 

 

Figure 18: Comparison of Average ICE TCOs per Year of Models to EV Equivalent TCOs with and without Shadow Carbon Pricing for 
SUVs and Minivans Operated in State B 
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7.1.2.3. State E – SUVs & Minivans 

 

Figure 19: Comparison of Average ICE TCOs per Year of Models to EV Equivalent TCOs with and without Shadow Carbon Pricing for 
SUVs and Minivans Operated in State E 
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9. Abbreviations and Definitions 

9.1. Abbreviations 

 

AFDC alternative fuel data center vehicle cost calculator* 

DOE  Department of Energy 

EV electric vehicle 

GHG greenhouse gas  

GVWR gross vehicle weight rating 

ICE internal combustion engine 

IEA International Energy Agency  

IRA Inflation Reduction Act  

KPI key performance indicators 

MSRP manufacturer’s suggested retail price 

MSSE Master of Science in Sustainable Engineering  

OEM  original equipment manufacturer 

RISE Resilient Innovation through Sustainable Engineering  

SCTE Society of Cable Telecommunications Engineers 

TCO total cost of ownership 

ZETI zero-emission technology inventory  

AP access point 

bps bits per second 

FEC forward error correction 

HFC hybrid fiber-coax 

HD high definition 

Hz hertz 

SCTE Society of Cable Telecommunications Engineers 

9.2. Definitions 

None applicable to this document. 
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1. Abstract 

Businesses and their requirements have evolved over the years. Businesses have begun to rely heavily on 

artificial intelligence (AI) to solve their problem statements due to the low cost and competitive 

availability of compute-intensive solutions. The primary ingredient in using AI solutions is quality data, 

and its collection is made easier due to the implications of digital transformation. Businesses usually not 

only target solutions that are cost-effective and accurate, but also rely on how the solution can address 

real-time data traffic, recovery, and reliability. 

Charter Communications developed a Proof of Concept (PoC) for an industrial application that monitors 

the safety of drill press workers. Safety related applications are often scrutinized for latency and 

reliability. In this paper, we briefly discuss the role of AI in businesses and the need for on-premise 

solutions in safety applications. Second, we discuss Machine Learning (ML) model development and 

deployment. Then, we describe in detail the evolution of the worker safety application, addressing 

software, hardware, and both wired and wireless links. Third, we understand the latency and resource 

utilization. Finally, we demonstrate this application in lab test conditions and discuss current plans to 

scale the solution from running on-premise to running in a centralized data center on different hardware 

types. 

2. Introduction 

AI has revolutionized businesses by automating and streamlining processes. The latest AI tools help 

provide valuable insights into customer behavior, market trends, and internal operations, guiding strategic 

decision-making and enhancing profits. The evolution of chatbots and recommender systems has helped 

deliver precise and personalized content to customers, thus improving customer service and marketing 

sectors. In supply chain management, AI has optimized inventory management, demand forecasting, and 

logistics planning, thus reducing operating costs and improving delivery times. Predictive maintenance in 

manufacturing industries aids in improving equipment efficiency and minimizing costly downtime. AI 

will continue to enable greater automation, predictive analytics in financial sectors, and efficient 

diagnosis, treatment, and better outcomes in healthcare industries. 

Industry 4.0 is driven by AI, which has significantly improved manufacturing efficiency. The data 

gathered from smart sensors and AI algorithms have optimized manufacturing processes, minimized 

waste, and enhanced quality control. The development of AI-powered industrial robots and automation 

has not only boosted productivity but also reduced the involvement of humans in repetitive and hazardous 

tasks. Big data analytics is another critical component of Industry 4.0, allowing manufacturers to identify 

trends, predict demand, and optimize their supply chains. Nonetheless, implementing Industry 4.0 

technologies necessitates substantial investments and expertise, while organizations must overcome 

challenges such as data security and privacy concerns and upskilling the workforce. 

The safety and well-being of employees are paramount concerns for responsible businesses. Safety 

monitoring applications enhance workplace safety by monitoring potential hazards that could lead to 

accidents or injuries. In industrial settings where heavy machinery is utilized, these applications can 

monitor machinery performance, workplace hazards, natural disasters, etc., to alert workers and facilitate 

quick and effective emergency responses. Without safety monitoring applications, workers in industrial 

settings face increased risks of accidents and injuries from various hazards. Improperly maintained or 

operated machinery and exposure to hazardous chemicals or substances can cause burns, cuts, or other 

worker injuries. In severe cases, accidents may result in permanent disability or loss of life. Implementing 
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safety monitoring applications allows businesses to proactively prevent accidents and safeguard 

employees while avoiding code violations, workstation stoppages, costly fines, and legal liabilities. 

Investing in safety monitoring applications creates a secure and safe workplace, enhancing productivity 

and employee satisfaction and reducing accidents and injuries. 

3. Worker Safety Use Case 

3.1. Connected Safety in Work Environments 

Workplaces are often described as interactions between electric equipment and worker(s). In industrial 

sectors, workers are exposed constantly to occupational risks, while a range of human behavioral factors 

causes most workplace accidents. In most cases, labor shortages due to accidents impact the 

organization's productivity, making it difficult to meet financial goals. Over the years, network 

connectivity and infrastructure have evolved, and industries have shifted towards reliable mobile digital 

infrastructure, the backbone of Industry 4.0. During this evolution, the industries started initiatives to 

formulate a plan to incorporate manufacturing equipment, Internet of Things (IoT) sensors, cameras, and 

a network to connect all components into an ecosystem. This ecosystem will allow an organization to 

monitor, control, and enhance safety and productivity anytime and anywhere globally. 

The solution discussed in this paper will provide a notable example of a workplace that uses drill presses. 

The designed solution minimizes the number of accidents caused to workers using the drill press and 

provides an ecosystem for the organization to monitor and control its workplace remotely. This 

application will rely on many sensors that work around the clock to build a thriving ecosystem. 

3.2. How the Use Case Works? 

The worker safety PoC setup is an excellent example of connecting various technologies for a single 

application. This use case detects the worker and checks if the worker is wearing necessary safety gear 

such as a hard hat, safety vest, gloves, and goggles. If the worker is wearing all the safety gear, he is 

classified as a green worker and can operate the drill press; otherwise, he is classified as a red worker and 

will not be permitted to run the drill press. This use case shuts off the machine when a red worker 

approaches a green worker while operating the drill press. In addition, this use case also prevents the 

green worker from injuring his hands when working the drill press. 

3.3. Components 

3.3.1. Drill Press 

The drill press is a stationary tool used to drill holes for household or industrial purposes. The drill hole 

sizes vary depending on the size of the drill bit, and the goal determines the type of drill press used. 
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Figure 1 - Drill Press 

3.3.2. Camera 

The camera is the eye of this application. The camera sensor functions to capture the visual scene within 

its focal range and uses a Real Time Streaming Protocol (RTSP) to stream the video over the network. A 

Power over Ethernet (PoE) port or injector powers the camera. For this application, the camera runs with 

a resolution of 1280x720 at 60 frames per second (FPS) and each frame is encoded using the H.264 

standard. The sensor size contributes to the dynamic behavior of the camera. Some cameras require an 

external lens to focus and adjust the light in the field of view; the measurement of the lens used for this 

testing is 1/1.8 inch. 

 

Figure 2 - Camera and Lens 

3.3.3. Graphics Processing Unit (GPU) 

GPUs are specialized computer cores capable of parallel processing/computation. The main advantages of 

using GPUs are higher memory bandwidth and shared memory; this significantly helps in processing 

higher resolution images or enabling shorter training duration for ML models trained over large datasets. 

For ML model training a NVIDIA V100 GPU was used, which has 5120 CUDA cores. The first test 

iteration of this application used Volta Xavier GPU, which has 384 Nvidia CUDA cores. For further tests, 

Tesla T4, and GeForce RTX 2080Ti were used. The Tesla T4 has 2560 CUDA cores, and the 2080Ti has 

4352 CUDA. 

 

Figure 3 - GPU 
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3.3.4. Raspberry Pi 

Raspberry Pi is a tiny, affordable single-board computer and an integral IoT device. Raspberry Pi 4 has a 

64-bit Cortex-A72 processor and supports 1/2/4/8G of RAM. It has 40 general-purpose input/output 

(GPIO) pins that can provide 5V maximum voltage. They can operate over a range of temperatures 

between 0℃ and 50℃. 

3.3.5. Light Emitting Diode (LED) 

LEDs are semiconductor devices that emit light due to the current flow. These are utilized 

primarily for visual representation in the workplace. 

3.3.6. Buzzer 

A buzzer is an audio signaling device. The buzzer sends audio signals in intervals when an accident or 

non-compliant scenario occurs in the workplace. 

3.3.7. IoT Relay 

Relays are switches that are operated based on electrical signals. The GPIO ports of embedded IoT 

devices can control IoT relays, and based on the signal from the ports, the relay is either switched on or 

off. This relay acts as a switch for the drill press. 

 

Figure 4 - Raspberry Pi, LED Strip, Buzzer, IoT Relay 

3.3.8. Ethernet Cables 

An ethernet cable is a medium through which components are connected in a network. 

3.3.9. PoE Injector/Port 

A PoE injector is an adapter that provides power to PoE devices. In our case, we use a PoE injector to 

power IP cameras present in the network. In some cases, routers themselves will have a PoE port that can 

power PoE devices. 

3.3.10. Multi-Access Edge Computing (MEC) 

Multi-access edge compute assists in moving the compute traffic and services from a centralized cloud to 

the edge of the network and closer to the customer. Instead of transmitting data to the cloud, MECs can 

store, analyze, and process data on premises. Using MECs, data collection and processing can now be 

achieved with lower latency, bringing real-time performance to high-bandwidth applications. 
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Figure 5 - MEC Unit 

3.3.11. Network 

The network acts as a bridge between all components of this application. The network allows all the 

components to communicate and share data. The worker safety application was tested over a local, 

private, and edge network. 

3.4. Machine Learning Model 

Artificial Intelligence (AI) applications have taken over our everyday activities in recent years. These 

activities include using facial recognition on phones, text prediction in messages/search engines, stock 

market prediction, weather forecasting, road traffic prediction, and beyond. The abundant availability of 

data and model development resources in a physical or virtual medium contribute to this significant 

growth. This factor influenced us to develop a custom AI solution to help mitigate accidents in a drill 

press station. ML and computer vision are the essential subsets of AI. Deep Learning is a subset of ML 

that consists of combinations of neurons termed artificial neural networks (ANN). The PoC addressed in 

this paper is a classic example of combining deep learning and computer vision. 

 

Figure 6 - Specialization Subset Diagram 

3.4.1. Neural Networks 

The neural network is inspired by how the human brain works and is considered one of the most 

significant breakthroughs in AI. This innovation provided the world a pathway to turn imagination into 

algorithms. A neural network consists of several layers, and each layer can have any number of 

nodes/neurons interconnected between layers. These interconnections may or may not exist between 

every neuron. The first layer is called the input layer, and the last is called the output layer. The layers 

between input and output are called hidden layers. The input layer accepts input for the model. The 



 

 © 2023 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 90 

hidden layer is either a single layer or a combination of layers that perform transformations with the help 

of a non-linear activation function. The application determines the number of neurons and output function 

in the output layer. 

 

Figure 7 - Simple Neural Network 

3.4.2. Choice of Machine Learning Model 

In this PoC, the ML model must recognize and classify objects for five classes: worker, safety vest, hard 

hat, gloves, and goggles. The input video stream may contain multiple objects, which doesn't give any 

idea of where the things are. Hence our model should not only perform object classification but also 

localize where those detections are. This localization task helps the algorithm determine if each worker 

detected wears all the safety equipment. Since this task is associated with images, convolutional neural 

networks (CNN) is a better choice. CNNs are used predominantly in applications involving images. Some 

of the applications of CNNs are image classification, image and video recognition, image segmentation, 

etc. In CNN, the hidden layer performs convolution and pooling accompanied by non-linear activation 

functions. The other hidden layers in CNNs are fully connected layers, a collection of neuron units 

followed by a non-linear activation function. The output is a Softmax layer with units equal to the number 

of classification classes.  

There are several open-source CNN models present. You Only Look Once version 4 (YOLOv4) is chosen 

based on existing research [4]. 

 

Figure 8 - AP vs FPS for Models 

From the above figure, EfficientDet achieves higher average precision (AP) but runs at a lower FPS. You 

Only Look Once version 4 (YOLOv4) also achieves good and consistent AP at higher FPS, thus making 

it real-time. Object detection models consist of two main components: backbone and head. The backbone 
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does the feature extraction  in any task to detect objects, and the head classifies the objects and gives its 

bounding box coordinates. In the YOLO model, the backbone is one stage detector, while in other 

models, they are either two or more stage detectors, thus making them slower. The previous YOLO model 

generates a feature pyramid network for an image and performs detection in each of the small units in a 

top-bottom fashion. YOLOv4 additionally utilized two methods to improve the detector's accuracy: Bag 

of Freebies (BoF) and Bag of Specials (BoS). 

 

Figure 9 - YOLOv4 Architecture [5]  

The BoF method affects the training cost (time) but not the inference cost. This method alters the training 

methodology. The popular way to modify the training data is using augmentation, but other methods are 

applied here: CutOut and Random Erasion. In CutOut, areas of pixels are masked randomly, and in 

Random Erasion, the areas of the pixels are randomly erased. Two network regularization methods are 

applied to avoid overfitting while training: DropOut and DropBlock. The mean squared error function is 

not a suitable  evaluation metric for dropout regularization, and the model used the Intersection over 

Union (IoU) loss metric to improve detection accuracy. 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠
 

 

Figure 10 - IoU Diagram 

The BoS method slightly increases the inference cost and helps improve the detection accuracy. YOLOv4 

uses spatial pyramid pooling (SPP) - this removes the dependency on fixed input size and performs robust 

pooling to images of different sizes, keeping the pooling output as a fixed-length representation. YOLOv4 

also uses the Path Aggregation Network (PAN): once the feature pyramid is generated for detection, each 

pyramid level is concatenated to the next level to account for feature predictions. Non-max suppression 
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(NMS) – DIoU-NMS removes multiple detections for a single object. Distance Intersection over Union 

non-max suppression, or DIoU-NMS is a loss function to reduce the distance between the central points 

of the detected and ground truth bounding boxes. YOLOv4 uses rectified linear unit ReLU, leaky-ReLU, 

parametric-ReLU, and Mish activation functions. 

ReLU activation function 

𝑓(𝑦𝑖) = max(0, 𝑦𝑖) +  𝑎𝑖  × min (0, 𝑦𝑖) 

 ai = 0, it becomes ReLU 

 ai > 0, it becomes leaky ReLU 

 If ai is a learnable parameter, it becomes parametric-ReLU 

Mish activation function, 

𝑓(𝑥)  =  𝑥𝑡𝑎𝑛ℎ(𝑙𝑛(1 +  𝑒𝑥)) 

 Loss Function is given as, 

𝐿𝑂𝑆𝑆 =  𝐿𝑐𝑖𝑜𝑢 +  𝐿𝑐𝑜𝑛𝑓 +  𝐿𝑐𝑙𝑎𝑠𝑠 

  Lciou is Boundary loss function – IoU for bounding boxes. 

  Lconf is Confidence loss function. 

  Lclass is Classified loss function. 

 

Figure 11 - Loss Function [10]  

For worker safety, transfer learning is predominantly used where the YOLOv4 model architecture is 

retained, and a few layers are modified based on the number of output units. ML model development 

follows a cycle where a set of events flow between the development and deployment of the model. 
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Figure 12 - ML Process Flow Diagram 

3.4.3. Data Collection 

The data collection is an integral part of the development as it will help decide the quality of the model. In 

our case, we collected data from a public dataset and captured frames around the workspace to generate 

our custom dataset. Data collection is balanced to overcome model bias. Around 10,000 images were 

captured. 

3.4.4. Data Annotation 

Data annotation is an underestimated task in ML development. Data annotation helps teach the model 

what and how to learn and to draw bounding boxes for the detected objects. The majority of time spent in 

the model development cycle is for data collection and annotation. For annotating images, well-defined 

rules are established based on the problem statement. We used a cloud service and online annotation tools 

for our dataset. The image size in our dataset may vary, and the annotated bounding box dimensions are 

normalized to the image size to keep them uniform (see Figure 13). 

 

Figure 13 - Worker, Annotated Worker, Classes, and YOLO Coordinates 

3.4.5. Training 

Training of an ML model requires bigger GPUs to reduce the total training time. In our case, we utilized a 

cloud platform to create an Ubuntu-based virtual machine. The training for the proposed model has over 

60 million parameters to train. The training is completed by randomly selecting 85% of images from the 

dataset, with the following parameters: batch size = 64, input size = 416x416, and number of epochs = 

25000 on V100 GPU. The rest 15% of the images were used to test and validate the model. The training 

used backpropagation to optimize the loss function and tune the parameters. The average loss is estimated 

to be 1.5387. 
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Figure 14 - Loss Curve 

Because of batch training, the plot of loss vs. iterations is not a smooth curve; instead, the loss curve's 

trend is considered to determine model underfitting. The above figure shows that the curve dips as we 

train for longer epochs; hence the model is not overfitting. This trained model is then accelerated using an 

open-source framework called TensorRT. 

3.4.6. Result Metrics 

After training, the weight files are checked and validated. Two metrics are considered to understand the 

model's behavior: mean average precision (mAP) and frame rate benchmark. The frame rate benchmark 

tells us how many frames our model can handle per second, which will help set FPS on the stream. 

Precision gives us the quality of positive predictions made. Precision is the number of true positives 

divided by the total number of positive detections.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

For object recognition and localization tasks, the precision is estimated based on the accuracy of the 

detected class and IoU of the detected bounding box against ground truth. There are five classes in our 

case, so average precision (AP) is calculated for all the detections grouped for each class against the 

ground truth value. The mAP value is obtained by taking the average AP for each class. For the trained 

model with input size 416x416, the benchmarked FPS is 72 FPS, and the mAP @ IoU = 0.75 is 0.7238 or 

72.38%. We also observed from the benchmarked results that with a change in the input size, there is an 

increase in mAP and a reduction in the frame rate. 

3.4.7. Model Deployment 

The trained model is converted to Open Neural Network Exchange (ONNX) format. ONNX is a 

middleware framework that converts models from one framework to another. The ONNX file with weight 

and model information is then converted to TensorRT format. TensorRT is a highly optimized and 

accelerated ML framework that helps you achieve faster inferences. TensorRT runs on the CUDA Cores 

of the GPU. The accelerated model benchmarked at 96 FPS. 
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Figure 15 - Model Inference 

This trained model performs object detection, and the developed computer vision algorithm checks if the 

worker is wearing all safety equipment based on the spatial coordinates of detected objects. If a worker 

wears all safety equipment, the worker is classified as a green worker, otherwise a red worker. In 

addition, the computer vision algorithm also shuts off the drill press if the worker's glove(s) (hand) is 

close to the pointed tip of the drill press. 

3.5. Evolution of Worker Safety Use Case 

3.5.1. Embedded Edge Compute 

The first iteration of this application ran on a Volta Xavier GPU-powered single-board computer. The 

embedded edge device was compact and contained 384 CUDA cores. The board connected the buzzer, 

LED, and relay through GPIO pins. A network connected the edge device and camera, and the RTSP 

protocol fetched frames from the camera. The application processed every input frame, making decisions 

based on the output. This setup was straightforward, and all connections were wired connections.  

 

Figure 16 - Architecture with Embedded Edge Compute 

3.5.2. High-End GPU Computer 

The next iteration ran on a powerful computer. The GPU used was 2080Ti consisting of 4352 CUDA 

cores. This setup introduced a low-cost Raspberry Pi 4 computer, connecting the buzzer, LED, and relay. 
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A network connected the GPU server, camera, and Raspberry Pi. The GPU server processed camera 

frames, and the output was transmitted over a wireless channel to reach the Raspberry Pi to present the 

outcomes.  

 

Figure 17 - Architecture with High-End GPU Computer 

3.5.3. Multi-Access Edge Compute 

The last iteration of the proposed solution ran on edge computing. The choice of edge computing was to 

tackle response time, latency, security, and scalability. This setup was like the previously referenced 

High-End GPU computer, except for the computer. The MEC was configurable, and GPU units could be 

stacked, enabling scaling. Tesla T4, which has 2560 CUDA cores, was used. 

 

Figure 18 - Architecture with Multi-Access Edge Compute 

3.6. Observations and Results  

To test this application, a trained worker ran all application use cases in a closed environment. Since the 

cameras operate at 720p with 60 FPS over the network, it would raise questions regarding congestion and 

traffic. The cameras used a higher compression performance of the H.264 standard, thus reducing the 

network throughput by an enormous scale. 

Raw video streams usually don’t have a fixed size. It varies with the resolution, frame rate, number of 

channels, etc. We decided to use 1280x720 resolution at 60 FPS for our application. 
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Raw video: 

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 = 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 𝐹𝑃𝑆 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 

= 1280 × 720 × 60 × 3 × 8 = 1,327,104,000 𝑏𝑝𝑠 

= 1327.104 𝑀𝑏𝑝𝑠 

 

Figure 19 - Camera Software Settings 

Profile Two was considered to set the stream output on the camera hardware interface, and it used 

variable rate H.264 encoding Figure 19. This profile achieved higher resolution and lower bitrate. The 

maximum bitrate for every reference frame for encoding was limited to 8 Mbps. The settings imply that 

the earned compression ratio was in the order of 100s. 

At maximum bitrate, 

 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑎𝑤 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 

𝑀𝑎𝑥 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐵𝑖𝑡𝑟𝑎𝑡𝑒
=  

1327.104

8
= 165.888 ≅ 166  

The camera did not consistently achieve this compression rate, which is variable to facilitate lower bitrate 

consumption. The camera used intra-coding techniques, and the value of the instantaneous bitrate of the 

frame decided the compression ratio. 

3.6.1. Embedded Edge Compute 

On the embedded edge compute, the binary files of the trained ML model ran at 5 FPS, whereas the 

accelerated model for this application ran at 15 FPS. Due to functional limitations, the hardware setup 

supported only one drill press up to 15 FPS for the accelerated model. The presence of physical 

connections minimized output response time. Fewer frames captured the information only for the whole 

second when the camera was at a lower frame rate. There was still a significant delay between obtaining 

frames averaging 35ms. The generated output responses were choppy and not consistent with real-time 

processing. If the solution needed to be scaled, it would require multiple units of embedded edge compute 

processors and would be challenging to maintain. The overall end-to-end latency was around 700ms. 
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3.6.2. High-End GPU Computer  

The migration to a GPU computer was to enable scaling, allowing it to handle four drill presses 

simultaneously. The accelerated model supported 15 FPS and above. This setup introduced wireless link 

delay in addition to camera frame fetch delay. The wireless link delay corresponded to a delay in the 

transmission of processed output responses from the GPU to Raspberry Pi. The frame fetch delay for this 

setup was estimated between 7ms and 8ms for 60 FPS. The GPU computer handled the maximum frame 

rate capacity of the camera available, 60 FPS, and output responses were smooth and looked real-time. 

The overall end-to-end latency was around 300ms. 

3.6.3. Multi-Access Edge Compute 

The MEC unit was scalable and could accommodate multiple GPU units. The accelerated model 

supported 15 FPS and above. This setup also added wireless link delay and camera frame fetch delay. The 

frame fetch delay for this setup was between 7ms and 8ms for 60 FPS. The MEC unit also handled the 

video streams at 60 FPS; output responses were smooth and looked real-time. The estimated overall end-

to-end latency was 300ms. 

4. Conclusions 

Our groundbreaking approach to worker safety, utilizing the combined power of AI and embedded 

systems, yielded exceptional outcomes. By integrating advanced technology into the workplace, we 

reassured workers operating near machinery and significantly elevated overall safety standards across the 

work environment. Through AI, our system can analyze real-time data collected from various sensors 

deployed throughout the workplace. This capability enables us to train AI algorithms to swiftly identify 

potential hazards and risky situations, empowering us to take proactive measures to prevent accidents and 

injuries. Also, the embedded systems perfectly harmonize with AI, creating a network of interconnected 

devices that constantly monitor the work environment. These systems detect abnormalities or deviations 

from standard safety protocols, triggering immediate responses such as automated machine shutdowns or 

alerts to nearby workers. 

Furthermore, our project can scale up its operations by integrating multiple cameras connected to a 

centralized server for efficient data processing. This scalability allows us to gather information from 

various points within the workplace and relay it back to the relevant machines. This approach ensures 

comprehensive worker safety coverage and provides valuable insights into machine runtime and 

maintenance records. This newfound capability allows us to proactively identify potential machine issues 

before they arise, minimizing downtime and optimizing maintenance processes. As a result, our project 

not only prioritizes worker safety but also contributes to improved machine performance and longevity. 

By combining the power of AI and embedded systems, we have not only revolutionized worker safety but 

also nurtured a culture of awareness and accountability. These advanced technologies instill a sense of 

responsibility among workers, motivating them to adhere to safety guidelines and remain vigilant. 

This solution's impact extends beyond individual workers' safety, creating a ripple effect of safety 

throughout the workplace. By establishing a safer working environment, we protect the workers directly 

involved in machinery operation and their colleagues around them. This comprehensive approach to 

safety fosters a positive work culture, boosts productivity, and saves lives; also, by proactively reducing 

risk, liability and workmen’s compensation insurance coverage can be minimized. 
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This solution presented in this paper revolutionizes worker safety by providing real-time monitoring, 

proactive hazard detection, and immediate response capabilities. Through the fusion of technology and 

security, we have prioritized the well-being of individual workers and high safety standards throughout 

the workplace, leading to increased productivity, peace of mind, and prosperity. 
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5. Abbreviations and Definitions 

5.1. Abbreviations 

AI artificial intelligence 

ANN artificial neural networks 

AP average precision 

Avg average 

BoF Bag of Freebies 

BoS Bag of Specials 

Bps bits per second 

℃ Celsius 

CBRS Citizens Broadband Radio Service 

CNN convolutional neural network 

FPS frames per second 

GPIO general purpose input/output 

GPU graphics processing unit 

IoT Internet of Things 

IoU  Intersection over Union 

IP Internet Protocol 

LED light emitting diode 

LTE long-term evolution 

mAP mean average precision 

Max maximum 

Mbps megabits per second 

MEC multi-access edge computing 

Min minimum 

ML machine learning 

ms millisecond 

NA not applicable 

NMS non-max suppression 

ONNX Open Neural Network Exchange 

p pixels 

PAN Path Aggregation Network 

PoC proof of concept 

PoE Power over Ethernet 

RAM random access memory 

ReLU rectified linear unit 

RTSP Real Time Streaming Protocol 

SPP spatial pyramid pooling 

V voltage 

YOLO You Only Look Once 

YOLOv4  You Only Look Once version 4 
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5.2. Definitions 

CUDA Parallel computing platform and programming model developed by 

NVIDIA for general computing on GPU 

EfficientDet Machine Learning model that detects and classifies objects within an 

input image by extracting features and perform feature fusion 

techniques to build feature pyramid network  

Mish An activation function which is a combination of identity, hyperbolic 

tangent and softplus. It is defined as 𝑓(𝑥) = 𝑥 tanh 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) , 
where 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln(1 +  𝑒𝑥)   

ONNX ONNX is an intermediary machine learning framework used to 

convert between different machine learning frameworks. 

ReLu A piecewise activation function that will output the input directly if it 

is positive, otherwise, it will output zero. 

Softmax Mathematical function that converts a vector of numbers into a vector 

of possibilities, where probabilities of each value are proportional to 

the relative scale of each value in the vector. 

TensorRT A deep learning inference optimizer and runtime library developed by 

NVIDIA. It is developed to optimize and accelerate the inference 

process on NVIDIA GPUs. 
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