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1. Introduction 
In dense neighborhoods, there are often dozens of homes in close proximity. This can either be a 
tight city-block with many single-family homes (SFHs), or a multiple dwelling units (MDU) 
complex (like a big apartment building or condominium). Each home in such a neighborhood 
(either a SFH or a single unit in a MDU complex) has its own Wi-Fi access point (AP). Because 
there are few (typically 2 or 3) non-overlapping radio channels for Wi-Fi, neighboring homes 
may find themselves sharing a channel and competing over airtime, which may cause bad 
experience of slow internet (long latency, buffering while streaming movies, etc.). Existing APs 
sometimes have smart channel selection features, but because they work independently (the APs 
do not coordinate), this can cause a cascade of neighboring APs constantly switching channels, 
which is disruptive to the connectivity of the homes. Wi-Fi optimization over all the APs in a 
dense neighborhood is highly desired to provide the best user experience.  
 
We present a method for Wi-Fi channel selection in a centralized way for all the APs in a dense 
neighborhood. We describe how to use recent observations to estimate the potential-pain matrix: 
for each pair of APs, how much Wi-Fi-pain would they cause each other if they were on the 
same channel. We formulate an optimization problem – finding a channel allocation (which 
channel each home should use) that minimizes the total Wi-Fi-pain in the neighborhood. We 
design an optimization algorithm that uses gradient descent over a neural network to solve the 
optimization problem. We describe initial results from offline experiments comparing our 
optimization solver to an off-the-shelf Mixed-Integer-Programming solver. In our experiments 
we show that the off-the-shelf solver manages to find a better (lower total pain) solution on the 
train data (from the recent days), but our neural-network solver generalizes better – it finds a 
solution that achieves lower total pain for the test data (“tomorrow”). 

2. Wi-Fi Pain Metric 
To measure the “pain” caused to the users in a dense Wi-Fi space, we define a new Wi-Fi Pain 
Metric. The main cause for Wi-Fi density pain is when a home’s neighbors are using the same 
radio channel and occupying much of its airtime: when my home’s AP senses high interference 
(“others” are using the channel), my home’s devices (including my AP) will have to wait longer 
times before they can send their packets over the radio channel, and this will cause the 
experience of slowness. 
 
However, if my home barely has internet traffic during the night, while my neighbors use the 
same Wi-Fi channel heavily, the interference at night doesn’t cause me any pain. The pain comes 
when my neighbors use the channel heavily while my home tries to use the same channel. 
In addition, my home may have a lot of internet traffic at the same time as another home in my 
apartment building, but because there are five floors separating the two homes, our Wi-Fi signals 
never interfere with each other (the homes cannot “sense” each other – we will define this more 
formally later). 
 
To simplify, we notice that in a dense neighborhood, homes cause each other Wi-Fi pain when 
three conditions are met: the homes can sense each other, they tend to have a lot of internet 
traffic at the same times, and they use the same radio channel. The first two are regarded as given 
conditions of the neighborhood (we can measure or estimate them, but we cannot control them) 
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and the third is the aspect that we can control – which channel does each home use. We treat 
these three components as independent. Let’s now formalize the overall pain mathematically 
with these three components, for a neighborhood with 𝑛𝑛 homes and 𝑛𝑛𝑐𝑐 Wi-Fi channels: 

• The (binary) sensing matrix, 𝑆𝑆𝑏𝑏 ∈ {0,1}𝑛𝑛×𝑛𝑛. 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗 is 1 iff  home 𝑖𝑖 can sense (and be interfered 
by) home 𝑗𝑗. 

• The co-usage matrix 𝑈𝑈 ∈ ℝ+
𝑛𝑛×𝑛𝑛. This describes how much homes tend to have internet traffic at 

the same time. Notice, it doesn’t matter which channel each home is using, and it doesn’t matter 
if the homes can “sense” each other. This component only cares about the behavior patterns of the 
homes’ residents and devices (specifically, the internet-activity patterns). 

• The channel allocation matrix: 𝐶𝐶 ∈ {0,1}𝑛𝑛×𝑛𝑛𝑐𝑐 . For each home (row) which channel is assigned 
to it – exactly one channel (out of the 𝑛𝑛𝑐𝑐 options) has a value of 1. Typically, 𝑛𝑛𝑐𝑐 is 2 or 3. 

 
The pain that home 𝑗𝑗 causes to home 𝑖𝑖 depends on the three conditions we mentioned – this is 
expressed with multiplication: 
 
 ∑ 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗𝑈𝑈𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖,𝑐𝑐𝐶𝐶𝑗𝑗,𝑐𝑐

𝑛𝑛𝑐𝑐
𝑐𝑐=1 .  

 
Notice, that we use matrix 𝐶𝐶 twice in the formula and inside a sum over the possible channels (𝑐𝑐) 
– this is to capture if the two homes are using the same channel: if the two homes are not on the 
same channel, the whole sum will be 0, but if they are on the same channel, the sum will have a 
single non-zero element 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗𝑈𝑈𝑖𝑖,𝑗𝑗. Similarly, if the two homes don’t even sense each other 
(𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗 = 0), the whole sum will be 0 (even if they are using the same channel) – this can describe 
two homes that are physically far away from each other in the neighborhood, or have many walls 
between them, so the radio signal doesn’t travel from one to the other. We assume additivity: the 
pain that home 𝑖𝑖 senses from the neighborhood is the sum of the pain that it senses from all the 
neighborhood’s homes:  
 
𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖 = ∑ ∑ 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗𝑈𝑈𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖,𝑐𝑐𝐶𝐶𝑗𝑗,𝑐𝑐

𝑛𝑛
𝑗𝑗=1

𝑛𝑛𝑐𝑐
𝑐𝑐=1 . 

 
To simplify the formula, we combine the two components that we cannot control and define the 
potential-pain matrix 𝑃𝑃 = 𝑆𝑆𝑏𝑏 ∘ 𝑈𝑈 (elementwise multiplication). 𝑃𝑃𝑖𝑖,𝑗𝑗 = 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗𝑈𝑈𝑖𝑖,𝑗𝑗 describes the 
pain that home 𝑗𝑗 would add to home 𝑖𝑖 if they were using the same channel. The total pain in the 
neighborhood is a sum over the homes: 
 

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � � 𝑆𝑆𝑏𝑏𝑖𝑖,𝑗𝑗𝑈𝑈𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖,𝑐𝑐𝐶𝐶𝑗𝑗,𝑐𝑐

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

𝑛𝑛𝑐𝑐

𝑐𝑐=1

= � � 𝑃𝑃𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖,𝑐𝑐𝐶𝐶𝑗𝑗,𝑐𝑐

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

𝑛𝑛𝑐𝑐

𝑐𝑐=1

 

 
And we can express it in matrix form: 
 

𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �[𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶]𝑐𝑐,𝑐𝑐

𝑛𝑛𝑐𝑐

𝑐𝑐=1

= 𝑇𝑇𝑇𝑇(𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶) 
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Figure 1 – Channel Allocation for a Dense Area 

Figure 1 illustrates part of a made-up dense neighborhood (right image) – a floor plan with 8 
apartments in an apartment building, and the potential-pain matrix for the 8 homes (left image), 
where darker shades of gray represent higher potential-pain value. The floor plan in the figure 
has two colors to the APs in the homes, representing a possible channel-allocation to two 
channels (blue and green). 
 
Homes 101 and 104 are far away from each other (see the floor plan), so their APs never sense 
each other – this explains why they have a blank (0) value in the matrix – they have 0 potential to 
cause each other pain. This also explains why a smart channel allocation may allocate the same 
channel (green) to these two homes. 
 
Home 106 represents a heavy internet user (most of the day has a lot of traffic), so it has the 
potential to cause much pain (darker shade in the matrix) to the homes that can sense it and 
typically have internet traffic at the same times (103, 104, 105). Homes 101 and 102 can sense 
home 106, but they may have internet traffic at different times of the day than home 106, so they 
have lower potential pain from 106 (medium gray shade). It makes sense to put home 106 on the 
blue channel and isolate it from homes 103, 104, and 105 (allocated the green channel). 

3. Optimization Problem and Solvers 
We can now define the main optimization problem as follows: 
 

𝐶𝐶∗ = 𝑝𝑝𝑇𝑇𝑎𝑎 min
𝐶𝐶∈{0,1}𝑛𝑛×𝑛𝑛𝑐𝑐

𝑇𝑇𝑇𝑇(𝐶𝐶𝑇𝑇𝑃𝑃𝐶𝐶)

𝑠𝑠. 𝑡𝑡.

∀𝑖𝑖 ∈ {1 …𝑛𝑛}: �𝐶𝐶𝑖𝑖,𝑐𝑐

𝑛𝑛𝑐𝑐

𝑐𝑐=1

= 1
 

 
This problem assumes we know (or estimate from recent data) the potential-pain matrix 𝑃𝑃 – it is 
the conditions of the neighborhood, the potential of homes to cause Wi-Fi pain to one another. 
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The task of the optimization is to select a good combination of per-home channels, to minimize 
the overall pain that the homes cause each other. One of the reasons for this centralized channel 
selection approach is to avoid too many channel changes – frequent changes can be disruptive to 
the users’ connectivity experience. So, a typical use would be to solve this optimization problem, 
set the selected channels to all the neighborhood’s APs, and keep the channels fixed for a while 
(e.g., a whole day, a whole week). 

3.1. MIQP Problem Solver 
We note that our optimization problem is a mixed-integer quadratic programming (MIQP) 
problem: the search parameter 𝐶𝐶 appears in the objective function (the formula for total pain) in 
a quadratic form, and its values are constrained to be integers. This is a non-convex problem, and 
we don’t have an algorithm that can guarantee finding the global optimum (the very best 
combination of per-home channels) in reasonable time. 
 
There are commercially available solvers, like Gurobi (Gurobi Optimization, 2022), that use a 
branch-and-bound approach to solve mixed integer programming problems (including the 
quadratic type). These methods iteratively try to rule out parts of the parameter-space and narrow 
down where we can find the global optimum, as well as narrow down the gap between lower and 
upper bounds for the optimal objective value. These tools often manage to reach the global 
optimum and they employ various heuristics to try to speed up the process. 

3.2. Neural Network Gradient Descent 
We propose an alternative method to solve the optimization problem. We construct a neural 
network model to calculate a soft-approximation of the neighborhood’s total pain, given any 
combination of channel allocation, and use gradient descent with back-propagation to change the 
underlying parameters until the pain reduces to a local minimum. The model is illustrated in 
Figure 2. 
 
The model’s parameters are represented as a matrix 𝑊𝑊 ∈ ℝ𝑛𝑛×𝑛𝑛𝑐𝑐. The input to the model is a 
dummy scalar variable 𝛽𝛽 ∈ ℝ+. Using 𝑊𝑊 and 𝛽𝛽, the model calculates a “soft” version of channel 
allocation 𝐶𝐶𝛽𝛽,𝑊𝑊 ∈ [0,1]𝑛𝑛×𝑛𝑛𝑐𝑐 by using the softmax operation on each row of 𝛽𝛽𝑊𝑊:  
 

𝐶𝐶𝑖𝑖,𝑐𝑐
𝛽𝛽,𝑊𝑊 = 𝑒𝑒𝛽𝛽𝑊𝑊𝑖𝑖,𝑐𝑐

∑ 𝑒𝑒𝛽𝛽𝑊𝑊𝑖𝑖,𝑑𝑑𝑛𝑛𝑐𝑐
𝑑𝑑=1

 .  

 
The resulting matrix 𝐶𝐶𝛽𝛽,𝑊𝑊 has each row (for home 𝑖𝑖) describing a probability distribution over 
the 𝑛𝑛𝑐𝑐 optional channels. This is not a valid channel allocation (in practice each AP only uses a 
single channel at a time), but this is a soft approximation of a valid channel allocation. 
 
The model then incorporates the potential pain matrix 𝑃𝑃 as a fixed given input and uses 𝐶𝐶𝛽𝛽,𝑊𝑊 to 
calculate a soft approximation of the total pain:  
 
𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝛽𝛽,𝑊𝑊 = 𝑇𝑇𝑇𝑇 �𝐶𝐶𝛽𝛽,𝑊𝑊𝑇𝑇𝑃𝑃𝐶𝐶𝛽𝛽,𝑊𝑊�. 
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Notice, that the input variable 𝛽𝛽 controls the order of the approximation: with a small value, like 
𝛽𝛽 = 0.1 the soft channel allocations in 𝐶𝐶𝛽𝛽,𝑊𝑊 will be closer to a uniform distribution over the 𝑛𝑛𝑐𝑐 
channels. With a higher value, like 𝛽𝛽 = 100, the soft channel allocations better approximate a 
valid channel allocation – where for each home only a single channel gets a value close to 1 and 
the other channels get a value close to 0. 
 
To solve the optimization problem, we start by randomly initializing the parameters 𝑊𝑊 (e.g., 
using an i.i.d. standard normal distribution), and then use gradient descent (with back-
propagation) to reduce the approximated total pain 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝛽𝛽,𝑊𝑊. In addition, we start by using a 
small value of 𝛽𝛽 as input, and slowly increase it. This helps the algorithm first find a good global 
area and only later fine tune the parameters to a local minimum. After this procedure converges 
to a local minimum, and the parameters are tuned to values 𝑊𝑊𝑒𝑒𝑛𝑛𝑒𝑒, we can get the solution (the 
chosen channel allocation) by looking at the approximated channel allocations (for large 𝛽𝛽) and 
thresholding their values:  
 
𝐶𝐶𝑖𝑖,𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒 = 1 �𝐶𝐶𝑖𝑖,𝑐𝑐

1000,𝑊𝑊𝑒𝑒𝑛𝑛𝑑𝑑
> 0.5�. 

 
Figure 2 – Neural Network Approach with Gradient Decent (GD) and Back Propagation 

While this gradient descent approach does not presume to find a better (lower) optimum than off-
the-shelf solvers, we want to highlight a few advantages it has: 

• This approach doesn’t assume that the potential pain matrix 𝑃𝑃 is symmetric, while other methods 
may rely on convex relaxations of the optimization problem, requiring them to have a symmetric 
matrix for the quadratic form. 
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• This approach can be modified to solve a different optimization problem that tries to minimize 
the worst-home-pain instead of the total, or average-home-pain. By making slight changes to the 
neural network, it can approximate the pain of the worst suffering home, and the optimization 
will try to minimize that value. 
 

• This approach runs efficiently, quickly reaching a local minimum. 
 

• This approach does not “try too much” to get to the global minimum. We want to generalize to 
near-future data, so we should avoid overfitting to the most recent days’ data. 

4. Preliminary Experiments 
During summer 2021, we conducted a few offline experiments with data from a big apartment 
building. We had data from 66 homes in the building, so we treated them as “the neighborhood’s 
homes” for the experiment. We tried various combinations of different aspects, and we share 
here some of our preliminary experiments and results. In these experiments, we simulated 
running the optimization on a reference date, to select the channel allocation for the following 
day. We collected data from the homes in the neighborhood from the recent days up to (and 
including) the reference day (the “train days”), calculated the potential pain matrix, and solved 
the channel allocation problem. We did a similar calculation to get the potential pain matrix for 
the day following the reference day (the “test day”). We evaluated the total pain on both the train 
days and the test day, given the chosen channel allocation, keeping in mind that the real goal is to 
improve (minimize) the pain on the test day. 

4.1. Estimating Potential Pain 
We estimated the two components of the potential pain separately: the (binary) sensing matrix 𝑆𝑆𝑏𝑏 
and the internet co-usage matrix 𝑈𝑈. Figure 3 illustrates this process: the colors in the matrices 
represent the cell values, ranging from 0 (dark blue) to high values (bright yellow). Each matrix 
has a different range (see the color-bar to the right of each image). 
 
The co-usage can be defined as some version of multiplying two home’s internet-traffic time-
series (𝑢𝑢𝑡𝑡,𝑖𝑖 represents home 𝑖𝑖’s usage at time 𝑡𝑡). In this paper we use 𝑈𝑈𝑖𝑖,𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑎𝑎�1 + ∑ 𝑢𝑢𝑡𝑡,𝑖𝑖𝑢𝑢𝑡𝑡,𝑗𝑗𝑡𝑡 �, 
but we can have many variations: sum each home’s time-series first and then multiply, use a 
different non-linearity than logarithmic, apply non-linearity on 𝑢𝑢𝑡𝑡,𝑖𝑖 alone to produce a non-
symmetric version, etc. To estimate the co-usage matrix 𝑈𝑈, we used periodic measurements that 
each AP takes every 15 minutes. Specifically, we used a measurement of percentage of airtime 
that the AP occupied the channel to transmit data to the home’s devices (the “download” 
direction, assumed to occupy the majority of airtime in a typical home). We smoothed the 
quarter-hourly measurements to hourly quantities. We experimented with both measurements 
from whole-days (all hours of the day) and evening-time (only using measurements from 7pm-
10pm local time), but here we focus our results on evening-time. For estimation with the recent 
𝑛𝑛𝑒𝑒 days, this results in a time-series (vector) of 3𝑛𝑛𝑒𝑒 hourly values for each home. We then 
calculated the cross-correlation between homes (the dot product of two homes’ time-series) and 
took the log (1 + 𝑥𝑥) of these values. 
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Figure 3 top row illustrates the process of estimating the co-usage matrix: starting with a Wi-Fi 
usage time-series for each home (top left). The image shows 10 homes and airtime-percentage 
values from 96 time points. This narrow matrix is multiplied by its transpose to produce the 
usage correlation matrix (for each pair of homes the value is the dot product of their two time-
series). These correlation values can be extremely large (notice the color-bar reaching values of 
200k), so we then apply logarithmic compression to form the co-usage matrix 𝑈𝑈. 

 
Figure 3 – Estimating the Co-Usage, Sensing, and Potential Pain Matrices 

For estimating the sensing matrix 𝑆𝑆𝑏𝑏, we used radio-scan reports from the APs in the 
neighborhood: each AP performs a scan multiple times a day to look for Wi-Fi beacons in the 
air. The AP records the media access control (MAC) address of every other AP that it senses, 
and the signal to noise ratio (SNR) of the sensed beacon. We mapped sensed Wi-Fi MAC 
addresses to the familiar APs that are part of the neighborhood. The scans reported additional 
sensed entities that came from external APs (which we don’t know and cannot control). For each 
pair of homes 〈𝑖𝑖, 𝑗𝑗〉 in the neighborhood, we averaged the SNR values (over a period, like a 
week) of how strongly home 𝑖𝑖’s AP senses home 𝑗𝑗’s AP. We can call these variables the SNR 
matrix 𝑆𝑆 (typically having non-negative real values), illustrated in Figure 3 bottom left image for 
10 homes. In our experiments, we chose to symmetrize the sensing matrix: 𝑆𝑆 ← 0.5(𝑆𝑆 + 𝑆𝑆𝑇𝑇). We 
applied a threshold of 10dB to produce the binary sensing matrix 𝑆𝑆𝑏𝑏 (Figure 3, bottom middle 
image). Notice that since an AP never “sensed itself” in the radio scans, we naturally get zeros in 
the diagonal. This fits our formulation, because we wish to only model the pain that homes cause 
other homes, not themselves. 
 
We multiplied (elementwise) these two estimated matrices 𝑈𝑈 and 𝑆𝑆𝑏𝑏to form the potential pain 
matrix 𝑃𝑃 (bottom right image in Figure 3).  
 
For the test day, we calculated the co-usage matrix 𝑈𝑈 from the test day’s usage measurements. 
However, we used the same SNR matrix 𝑆𝑆 as we did for the train days. This is because we didn’t 
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have sufficient scan measurements from every day, and because we assumed that “who can sense 
whom” stayed stationary over a longer time (~a month). 

4.2. Optimization Details 
We used the Gurobi package (Gurobi Optimization, 2022) as a MIQP solver. For our neural 
network algorithm, we implemented the network using TensorFlow (Martín Abadi, 2015) and 
Keras (Chollet, 2015). Every update step had just a “single example” input into the network. We 
increased the value of the input variable 𝛽𝛽 in phases (running 6,400 update steps in each phase) 
with values: 1, 10, 100, 1000. We used ADAM optimizer with learning rate 0.001. 

4.3. Results 

Table 1 – Experimental Results 
 Train days Algorithm Total pain –  

per train day 
Total pain – 

test day 
1.  1 (Aug 24) Gurobi 58.2 194.0 
2.  1 (Aug 24) Neural Network 58.2 184.9 
3.  4 (Aug 21-24) Gurobi 64.5 166.3 
4.  4 (Aug 21-24) Neural Network 69.9 143.8 

 
We show in Table 1 results from a few of our offline experiments with a single neighborhood. 
These were all done with train days up to (and including) August 24th and testing on usage data 
from August 25th. In these experiments, we used usage (and scan information) from the 2.4GHz 
frequency and we simulated solving the channel allocation for 𝑛𝑛𝑐𝑐 = 2 channels. Rows 1-2 show 
experiments where there was only a single training day, compared to 4 training days in rows 3-4 
(the table reports the average total pain per train day). The results show that when training with 
data from more days, we could achieve a worse (higher) total pain on the train data, but a better 
(lower) total pain on the test day, which is what we want to achieve. As expected, our neural 
network solver did not beat Gurobi’s solution on the train days. However, the neural network 
solver’s solution generalized better to the test day – it achieved a lower pain than Gurobi’s 
solution (in both the 1-train-day and 4-train-days scenarios). 

5. Conclusion 
We have discussed the problem of Wi-Fi airtime competition in a dense neighborhood and the 
need for a centralized channel selection solution. We defined a Wi-Fi pain objective, based on 
the co-occurrence of close neighbors having a lot of internet traffic at the same time on the same 
radio channel. We formulated the pain such that all the relevant information is captured in a 
single square matrix 𝑃𝑃, indicating for each pair of homes how much pain would one add to the 
other if they were using the same channel. We formulated an optimization problem and offered 
two alternative solvers for it: an off-the-shelf MIQP problem solver and a tailored neural network 
solver. We conducted preliminary offline experiments with data from a real neighborhood and 
demonstrated how we can achieve better generalization (lower pain for “tomorrow”) with more 
training days and by using our neural network solver. 
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5.1. Future Directions 
There are still many more directions to research, including various flavors of Wi-Fi pain (non-
symmetric definitions of potential-pain, weighting different days of the week, etc.), and 
adjustments to the optimization algorithm (e.g., regularization on the parameters 𝑊𝑊, schedule of 
changing 𝛽𝛽). An interesting direction is minimizing the worst-home pain and seeing how it 
influences the average-home pain. We will conduct more offline experiments with many more 
neighborhoods. Additionally, actual trials will reveal more reliably how helpful is centralized 
channel selection and A/B tests can help demonstrate which methods are better. In actual 
channel-selection experiments, we can more directly measure the sensed interference that every 
AP experiences from its environment. More importantly, we’ll have to assess the effect on the 
residents’ subjective experience of slow internet and Wi-Fi “pain”. 
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Abbreviations 
AP access point 
DFS dynamic frequency selection 
Hz Hertz 
SCTE Society of Cable Telecommunications Engineers 
MIQP mixed integer quadratic programming 
MAC media access control 
SFH single-family home 
MDU multiple dwelling unit 
SNR signal to noise ratio 
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