

Creating Infinite Possibilities.

Comparative Technical Analysis for 5G Fixed Wireless Access Rural Networks (2.6, 3.7 and 6.4GHz)

Dorin Viorel Distinguished Technologist CableLabs d.viorel@cablelabs.com

How capable is rural FWA as a broadband service?

- What speeds can be offered?
- Is it reliable?
- How many subscribers can FWA serve?
- Can FWA support broadband household usage today and in the future?
- Is it profitable?

CableLabs implemented a cross disciplinary approach:

- Develop a detailed technical analysis
- Use the technical analysis' KPIs to address the economics profitability

Introduction

The 5G FWA rural coverage (outdoor and O2I) is subject to different limitations*:

- Base Station (BS) and CPE advanced array antenna impact upon Frequency Reuse factor.
- BS antenna array tilt.
- Different frequency bands (2.6, 3.7 and 6.4GHz)
- Network load
- Different BS antenna heights (hBS=30m and 60m) upon coverage
- Small-scale, Large-scale fading and O2I loss mechanisms
- UL link EIRP limitations
- FWA user data thresholds
- Probability to deliver a target user link speed

Our companion papers analyze:

- The technical impact of these limitations upon FWA sector/cell coverage/throughput.
- The economics impact

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org

* The simulations assumptions are presented in the Appendix

Methodology

- System Level Simulator (SLS)
 - Based on a Monte Carlo simulation, generates statistical predictions of aggregated interference upon the victim cell for a cluster of 19 cells in two surrounding rings
- Link Level Simulator (LLS)
 - Predicts sector/cell coverage, user throughput of specific 5G waveforms in a simulated network interference environment, subject to environmental conditions.
- CPE/gNB antenna array patterns
 - o Generates suitable array patterns to optimize
 - o radio link performance.
- Economics analysis
 - Estimates the economic feasibility of the 5G FWA and service delivery network under consideration

BS Antenna Array Patterns

Optimizing the sub-array Beam pattern, enhances Frequency Reuse 1 support

Critical parameters: vertical tilt and elevation pattern

Optimizing the spatial division multiplexing, increases the cell throughput and optimizes coverage

- Max gain: 16.4 dBi
- Azimuth half-power beamwidth: 29°
- Elevation half-power beamwidth: 30°

CPE Antenna Array Patterns

Outdoor CPE Array Pattern

Optimizing CPE beam pattern, enhances coverage and mitigates interference

- Max gain: 17 dBi
- Azimuth half-power beamwidth: 16°
- Elevation half-power beamwidth: 52^o

Indoor CPE Array Pattern

Current indoor CPEs have an omni azimuth coverage

- Lower antenna gain reduces coverage
- Max gain: 8.2 dBi
- Elevation half-power beamwidth: 10°

Vertical BS Antenna Array Tilt* (0, -15 and -21deg)

Comparative cell coverage vs. elevation antenna tilt (3.7GHz)

Vertical antenna tilt and the array pattern supports Frequency Reuse 1, maximizing the spectral efficiency, by trading-off network interference reduction against cell user throughput reduction:

- The network interference power impact upon the victim CPE is reduced by 3.7dB (average).
- DL cell throughput is reduced by 15.2%

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org *Outdoor scenario, Fc=3.7GHz, hBS=60m, Link Availability=95%, Network Load 50%.

Network Load* (25%, 50% and 75%)

Comparative Coverage

Comparative CDF Network Interference

When network load is increased from 25% to 75%, cell user throughput is degraded by:

- 48.8% (hBS=60m, MobCellEdge=4000m) and
- 28.1% (hBS=30m, MobCellEdge=2000m).

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org

* Outdoor scenario, Fc=3.7GHz, hBS=60m, Link Availability=95%

The higher is the network load, the higher is the system Interference and the lower is the user data throughput

Network load is optimized by BS antenna tilt and pattern

BS Antenna Array Height

The lower antenna height (hBS=30m) triggers a higher System interference due to the smaller MobCellEdge (2000m):

- Outdoor: 9dB (2.6GHz), 8.3dB (3.7GHz) and 4.7dB (6.4GHz)
- O2I: 10.6dB (2.6GHz), 9.9 (3.7GHz) and 0.8dB (6.4GHz)

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org * NetLoad=50%, Link Availability=95%

2.6GHz system is subject to the highest network Interference:

Lowest propagation losses vs. 3.7 and 6.4GHz cases.
6.4GHz is subject to the lowest system interference

Fading and Loss Mechanisms

Large-scale fading (shadowing)

- Due to obstruction of the main paths (e.g. shadowing).
- The path loss is calculated separately

Small-scale fading

Due to multipath propagation.

O2I loss

- Gaussian distribution centered on the median outer wall loss
- Not occurring in the outdoor scenario.
- Lead factor if CPE is positioned inside a house

- Large Scale fading is the driving factor of the composite fading, due to the NLOS propagation (Rayleigh type fading).
- The higher the target link availability, the higher the composite fading impact upon the link budget.
- O2I becomes a lead composite fading/loss factor if CPE is positioned deep inside the house and/or due to the house wall materials/glassecomposition s Engineers, Inc. a subsidiary of CableLabs | expo.scte.org

UL SINR and Frequency Band Impact

Outdoor Scenario

- Outdoor 2.6GHz coverage is slightly larger.
- DL outdoor interference limits 6.4GHz cell coverage, due to narrow DL/UL EIRP difference (6dB/10MHz) and increased UL coverage.

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org

O2I coverage is severely limited by the UL coverage

Poor UL link budget due to the additional O2I Loss.

Cell and User (Data) Throughput*

- O2I UL propagation severely limits the coverage
- 100Mbps cell coverage may be feasible** for the outdoor scenario

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org * hBS=60m, 3.7GHz, Link Availability=95%, NetLoad=50%. See Appendix for the other assumptions.

** For other frequency bands see the paper

Service Availability (Outdoor) *

DL Coverage

- 50 and 100Mbps coverage is subject to UL link budget limitations for link availability < 99%
- If service availability is increased from 95% to 99%, the coverage is reduced by 80.6% (50Mbps) and 90.2% (300Mbps)**

** See the paper for more a more comprehensive analysis

Link Availability (O2I) *

DL Coverage

UL Limited Coverage

O2I coverage is severely UL limited due to the limited UL EIRP (30dBm).

© 2022 SthBS=30m and 60m, 3.7GHz. See Appendix for the other assumptions of CableLabs | exposed expose

Rural FWA. Conclusions

- BS antenna pattern and vertical tilt are critical for optimizing Spectrum Efficiency (Frequency Reuse 1 support).
 - A BS array tilt 6dB below the horizon, decreases the system interference by 3.7dB but the user throughput is decreased only by 0.6% vs. 0° deg Bs array tilt case.
 - The system interference could be dynamically controlled if BS array tilt is controlled as a function of network load.
- The outdoor CPE directive antenna array increases the coverage into adjacent cells and reduced the system interference impact upon the victim.
- The higher is the network load, the lower is the cell coverage and cell/user throughput. A ~50% network load could provide a reasonable cell throughput/coverage trade-off.
- DL SINR is degraded when RH height is reduced to 30m, mainly due to the reduced Mob Cell Edge (2000m) vs. 60m case.
- The 6.4GHz system operates in noise limited coverage mode (almost interference-free), due to limited EIRP.
- The large-scale fading is the driving fading/loss component impacting the link budget.
 - O2I loss could become dominant if different building materials used and/or deep inside the house CPE operation.
- O2I coverage is UL limited.
 - The indoor CPE should use a higher EIRP and/or a directive antenna array.
- All Outdoor service availability links below 99% (3.7GHz, hBS=60m) are UL limited.
- Outdoor 6.4GHz is subject to no UL limitations, due to the lower DI/UL EIRP asymmetry (6dB).
- The higher the service availability target, the shorter is the coverage due to the higher path loss.
 - Coverage is severely reduced when service availability is increased from 95% up to 99%.
- A network planning targeting 95% service availability and 50% network load provides a reasonable cell coverage/user

Rural FWA. Summary

- What speeds can be offered?
 - Outdoor 100Mbps could be provided* (2.6 and 3.7GHz) for the entire cell area.
 - O2I 50Mbps could be provided* (2.6/3.7GHz) for 100% coverage (hBS=60m) and for 33% cell coverage (hBS=30m).
 - 6.4GHz coverage could be used in dual coverage models.
- Is it reliable?
 - Service Availability 95% is achievable** (outdoor mode, 2.6/3.7GHz).
 - Higher service availability rates will increasingly reduce coverage**.
 - O2I mode is UL limited and requires higher power Fixed CPEs for better performance
- How many subscribers can rural FWA serve?
 - The modeled cases were based on 24 active users/cell***.
- Can rural FWA support broadband household usage today and in the future?
 - Yes for today, subject to a heavy set of assumptions and dependent on the target user speed.
 - Tomorrow's FWA usage is addressed by the Economics analysis (dependent on non-technical factors)
- Is it rural FWA profitable?
 - Subject to the Economics Analysis
- * Service Availability=95%, NetLoad=50%, MobCellEdge(hBS 60m)=4000m, MobCellEdge(hBS 60m)=4000m
- ** Based on the model's assumptions
- *** Cell area (hBS 60m)=50.24km, Cell Area (hBS 30m)=12.5km. Assumed oversubscription ratio 1/10

System and Cell Assumptions

SYSTEM	VALUE	CELL	VALUE
System interference	Per SLS feed	Service Availability (%)	95
Cluster of cells PLOS	As defined by [20]	Sector/Cell	3
Network traffic load (%)	25/50/75	Beam/Sector	4
O2I propagation scenario	O2I residential (TR38.901)	Carrier aggregation	1
Channel model	3GPP TR38.901	Cell edge SINR (AWGN driven) (dB)	-4.54
Number of SLS iterations	100,000	МІМО	2×2
Max body loss (dB)	Not enabled	Air layer (MIMO) EIRP reduction MIMO x2 [dB]	-3
NLOS small-scale fading	Rayleigh	O2I path length (behind outer wall) (m)	1
LOS small-scale fading	Rice, K=12 dB	O2I wall material	Wood
O2I large-scale fading	N{mean 9.35, sigma 4.4}	Glass/outer wall ratio	0.3
RF Waveform polarization angle	Cross-Polarized	Central frequency (MHz)	2596/3700/6400
NR band	n41, n77, n96	Link Adaptation	Enabled
Mobile cell edge (m)	2000 (hBS=30m); 4000 (hBS=60m)	Modulation implementation loss	3
ISD [m]	3640 (hBS=30m) 6920 (hBS=60m)	Channel Bandwidth (2.6, 3.7GHz) [MHz]	100
Frequency Reuse	1	Channel Bandwidth (2.6, 3.7GHz) [MHz]	80
Interference model	DL		

BS and CPE Array Assumptions

BS	VALUE
Antenna array	Array of Subarrays [2 2]
Subarray	4x4x2
DL MIMO rank	2x2
Antenna element	Cross-Dipole
SubArray structure	4x4x2
Antenna height above clutter (m)	30 or 60
Antenna array Tilt [º]	-15
Subarray boresight gain 3.7GHz [dBi]	17.0
Subarray Azimuth HPBW	29

СРЕ	VALUE	
Indoor Antenna array	UCA 4×4	
Outdoor Antenna array	URA 2x8x2	
Outdoor antenna element	Cross-Dipole	
Indoor CPE height [m]	2	
Outdoor CPE height [m]	4	
Outdoor array boresight Gain (3.7GHz)	16.4	
Outdoor Azimuth HPBW [deg]	16.4	
Indoor antenna gain (3.7GHz)	8.2	
Outdoor Azimuth HPBW [deg]	360	

PHY/RF Assumptions

BS	VALUE	СРЕ	VALUE			
rmsEIRP/10MHz	50 dBm/10 MHz	rmsEIRP (dBm)	30			
Active users/beam	2	Noise figure (dB)	6			
Sub Carrier Spacing [kHz]	30	PHY Oversampling ratio	×4			
Slots/Subframe	2	DMRS symbols	1			
Subframes/Frame	10	User symbols	1			
TDD ratio	11:2:1					
DL Control (PCCh+DMRS) syms	2					
© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs 📋 expo.scte.org						

Atmospheric/Environmental Conditions

ATMOSPHERIC		ENVIRONMENT		
ITU rain region	Disabled	Average House Height [m]	8	
Slanted path profiles	Disabled	Average Street Width [m]	20	
Crane rain region	B2	Average clutter height	1	
Atmospheric pressure	Sea level			

Creating Infinite Possibilities.

Thank you

Dorin Viorel Distinguished Technologist CableLabs d.viorel@cablelabs.com Roy Sun Principal Architect CableLabs r.sun@cablelabs.com Sanjay Patel Distinguished Strategist CableLabs s.patel@cablelabs.com

George Hart Principal Architect Rogers Communications g.hart@rci.rogers.com

