

Creating Infinite Possibilities.

Measuring IP Video Playback QoE

Srinath V Ramaswamy

Architect

Comcast

srinath_ramaswamy@cable.comcast.com

Agenda

- IP Video Architecture Intro
- Customer Impacting Issues
- Importance of Measuring IP Video Playback QoE
- Video Viewing Quality (VVQ), model metrics, formula
- VVQ Implementation
- Video QoE Management using VVQ

IP Video Architecture

Customer Impacting Issues

- Rebuffering or video stalling
- Low-quality video playback during extended durations
- Encoding Artifacts
 - Macroblocking, blurry, out of lip sync, missing audio
- Large startup latency
- Media playback failures
- Playback control failures
 - Trickmode failures
- Live latency
- Multiple and frequent occurrences of the above issues

Importance of Measuring IP Video Playback QoE

- Seamless transition to IP video from QAM
- Early detection of IP video infrastructure issues and enable self-healing
- Validation of new streaming technologies
 - Content adaptive streaming, new players, codecs
- Facilitate IP video component upgrades
- Video customer retention
- Lead the detection of streaming video issues

Video Viewing Quality(VVQ)

- Single final overall score
 - Holistic metric
 - Objectively determines the IP Video Playback Quality of Experience (QoE) as perceived by the end user
 - Rather than tracking distinct metrics individually
 - average video bitrate, startup latency, rebuffering duration, rebuffering count, top errors/failures, encoded video quality
- Based on a mathematical model
 - Model parameters are determined using training examples
 - Examples from production and publicly available MOS scores

VVQ Model Metrics

- Video Quality (as a result of lossy encoding)
 - Variants/Segments in ABR ladder classified into three categories Low, Medium, High. Based on either bitrate or complex video analysis or PSNR or SSIM
- Quality switching (downshift to Low/Medium video quality segments)
 - Peak frequency, number of downshifts
- Low/Medium video segments playback duration
- Rebuffering events
 - Peak frequency, number of events, duration
- Startup latency (Primacy)
- Last bad video quality impact (Recency)

VVQ Model Metrics (continued)

- Playback failures/errors
 - Applicable to the ones that disrupt video playback
- End-user actions
 - Latency from trick mode commands
- Display dimensions

VVQ Formula

Video Viewing Quality Score = 100 - Impact from Low Quality Video Playback - Impact from Medium Quality Video Playback - Rebuffering impact - Impact from the time interval between bad quality events - Playback startup times impact - Impact from Playback Errors - Impact from trick play latency

Expanding this to the actual terms used in the formula we would have,

VideoViewingQualityScore = 100 - (LowQualVideoImpact + ContinuousLowQualityImpact + DownshiftToLowQualImpact + MediumQualVideoImpact + ContinuousMediumQualityImpact + DownshiftToMediumQualImpact + ContinuousRebufferingImpact + RebufferingFrequencyImpact + OverallRebufferingImpact + LastBadQualityEventImpact + StartupTimeImpact + PlaybackFailureImpact + ContinuousErrorImpact + ErrorPeakFrequencyImpact + OverallErrorImpact + SeekLatencyImpact)

VVQ Formula (Continued)

- LowQualVideoImpact: Measures the overall impact from the playback of low quality video at certain times or during the entire measurement period.
- MediumQualVideoImpact: Measures the overall impact from the playback of medium quality video at certain times or during the entire measurement period.
- ContinuousLowQualityImpact: Computes impact based on how long the user client device is playing low quality video before it switches to either medium or optimal quality video.
- ContinuousMediumQualityImpact: Computes impact based on how long the user client device is playing medium quality video before it switches to either optimal or medium quality video.
- DownshiftToLowQualImpact: Computes impact when user client device is downshifting to low quality video during playback, uses peak downshift frequency and total number of downshift events.
- DownshiftToMediumQualImpact: Computes impact when user client device is downshifting to medium quality video during playback, uses peak downshift frequency and total number of downshift events.
- ContinuousRebufferingImpact: Computes impact based on how long the user client device is rebuffering before it restarts video playout.
- RebufferingFrequencyImpact: Computes impact based on how often the user client device is rebuffering.
- OverallRebufferingImpact: Computes the overall impact from rebuffering during the entire video playback.

VVQ Formula (Continued)

- LastBadQualityEventImpact: Computes impact for the time intervals between bad video quality events such as downshift to a low quality video, rebuffering.
- PlaybackFailureImpact: Computes impact from fatal playback failures such as unable to decode video, download segments, manifest.
- StartupTimeImpact: Computes impact based on how long it takes for video playback to start after the user has initiated it.
- SeekLatencyImpact: Computes impact based on how long it takes for video playback to start after the user has initiated a seek or trick mode operation like FFWD or RWD.
- ContinuousErrorImpact: Computes impact based on how long the user client device is in error state before it restarts video playout.
- ErrorPeakFrequencyImpact: Computes impact when the player runs into error events, uses peak error frequency and total number of error events.
- OverallErrorImpact: Computes the overall impact from errors during the entire video playback.

* Details on each of the terms in the above equation is available in the paper

Video QoE Management Scoring in Analytics Engine or IP Video Player

IP Video Playback Metrics

VVQ Implementation in Analytics Engine

Sample VVQ Scores

Device	VVQ Score	Description
STB	0	Total Linear playback duration: 88 mins 2 Rebuffering events, Max duration 7 mins 6 downshifts to bitrate 0.8Mbps (34s on low bitrate video*) 26 downshifts from 6 to 2Mbps (4mins on medium bitrate video*) In home issue, attributed to packet loss and Wi-Fi latency
STB	73.34	Total Recorded content playback duration: 51 mins 5 downshifts to 2.1Mbps Video (13mins on medium bitrate video*)
iPhone	0	Total VOD playback duration: 35 mins 9 mins on low bitrate video**
iPhone	82	Total VOD playback duration: 36 mins 3 Rebuffering events, Max duration 8s 2 downshifts to bitrate 0.7Mbps (31s on low bitrate video**)
Desktop Edge	0	Total Linear playback duration: 48 mins 2 downshifts to low bitrate video (20mins on low bitrate video**) 3 downshifts to medium bitrate video (28mins on medium bitrate video**) 1 Rebuffering event, Max duration 3s
Android	20	 Total Linear playback duration: 19 mins 17. downshifts to bitrate 0.5Mbps (3 mins on low bitrate video**) 56 downshifts to medium bitrate video 2Mbps (7mins on medium bitrate video**)

* Low bitrate video < 1.8Mbps, Medium bitrate video < 3Mbps, Video compression – AVC

** Low bitrate video < 0.75Mbps, Medium bitrate video < 1.5Mbps, Video compression - AVC

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org

Reference Implementation VVQ Scores

Linear Playback Sessions (Average VVQ scores)

Reference Implementation VVQ Scores Linear Playback Sessions (VVQ Individual Impact average values)

Linear Sessions: Daily Average of VVQ Components

TotalErrorQualityImpact
 OverallRebufferingQualityImpact
 OverallRebufferingQualityImpact

VVQ based QoE Management

- Detect in home Wi-Fi issues and interface with router and user to resolve them
- Early detection of issues with new SW/FW releases, hardware upgrades
- Drive automatic switching to redundant video delivery paths and CDNs
- Drive automatic allocation of additional resources BW, compute power, memory
- Manage transcoder highest profile bitrate to address network BW saturation
- Interface with mobile carriers to help them manage BW allocation and channels
- Proactive user messages for potential video outages

Creating Infinite Possibilities.

Thank You!

Srinath V Ramaswamy Architect Comcast

srinath_ramaswamy@cable.comcast.com

