
© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 1

Bitcode Obfuscation
Protecting Software Without Source Code Access
Rafie Shamsaasef
Director of Software Engineering
CommScope Inc.
rafie.shamsaasef@commscope.com

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 2

Agenda

Bitcode Obfuscation

Introduction

Software Obfuscation Techniques

Bitcode Obfuscation

Example

Conclusion

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 3

What is software obfuscation?
• To generate source or machine code that is difficult for humans and automated tools to

make sense of
• To protect applications against theft of intellectual property, reverse engineering,

tampering, software piracy and malware attacks
• To achieve unintelligible code without introducing unacceptable levels of overhead
• To hide sensitive and secretive codes from static analyses

Introduction

• Obfuscation is not encryption

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 4

Protect against static analysis and reverse engineering

Why obfuscate?

Source : State+of+Software+Security+v12 https://www.veracode.com/state -of-software -security -report and https://threatpost.com/financial -apps-are-ripe -for -
exploit -via -reverse -engineering/143348/

https://www.veracode.com/state-of-software-security-report
https://threatpost.com/financial-apps-are-ripe-for-exploit-via-reverse-engineering/143348/

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 5

Approaches
• Wide range of heuristic approaches to manipulate source code and binary without

altering the logic
• Source code to source code obfuscation techniques are not effective

• Reverse engineering tools can easily de-obfuscate the code
• Java obfuscations are not effective

• Unlike C++, de-compilation of Java programs is a much simpler task
• Class hierarchy, high-level statements, names of classes, methods and fields can

be retrieved from class files
• It comes down to renaming and hiding some of the instructions

• Native languages like C/C++ are more suitable for obfuscation
• Practically proven to be secure
• LLVM based support (Low Level Virtual Machine)

• Obfuscate at binary level

Software Obfuscation

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 6

Control Flow Obfuscation
• Instruction substitution replaces assembly-level operations with randomly chosen

code blocks that perform the same operation in different ways.

• Bogus-control-flow adds entry points that evaluate complex expressions to determine
the outcome of conditional jumps: either to jump to valid program code or to randomly
altered “junk” code blocks.

• Control-flow-flattening rearranges a program’s basic blocks in a randomized manner
to give a program a uniformly random structure.

• Virtual-machine interpreter obfuscation incorporates known hard mathematical
problems in the computation of the control-flow to further increase the cost of reverse-
engineering attacks.

Software Obfuscation Techniques

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 7

Data Flow Obfuscation
• Randomized branch encoding involves representing data-related logical and

mathematical operations as a branching program composed of a sequence of
permutations. Sequences of these branching programs are then concatenated
together. When these programs are converted back to machine code, the result is
uniformly randomized and unintelligible code that bears no resemblance to the
original algorithm.

• Randomized input, output encodings can be used to make the obfuscated code even
harder to reverse-engineer, as well as protecting constants and allowing seamless
secure chaining to and from the obfuscate application.

Software Obfuscation Techniques

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 8© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 8

Bitcode Obfuscation

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 9

• LLVM is Low Level Virtual Machine:
• LLVM is a set of compiler and toolchain

technologies that can be used to develop a
front end for any programming language
and a back end for any instruction set
architecture

• Popular LLVM-based tools are Clang, Apple
XCode, Microsoft Visual Studio, etc.

• Supported languages are C/C++, Objectve
C, Swift, GO, Rust, etc.

• Bitcode
• A platform-independent, universal low-

level intermediate representation (IR)
used by LLVM compilers and tools.

https://www.cs.cornell.edu/~asampson/blog/llvm.html

https://stackoverflow.com/questions/2354725/what-exactly-is-llvm

Bitcode and LLVM

Front End Back End machine codeC or C++

Pass

Pass

PassIR IR IR IR

Clang LLVM proper

https://www.cs.cornell.edu/%7Easampson/blog/llvm.html
https://stackoverflow.com/questions/2354725/what-exactly-is-llvm

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 10

Bitcode Obfuscation with LLVM

Multiple
passes

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 11

How does it work?

Bitcode Obfuscation

Tunning
and

Coverage

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 12© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 12

Example

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 13

Bitcode Obfuscation Example

#include <stdio.h>

void test1() {
printf ("TEST1: ");
int a = 1;
for (int i = a; i < 10; i++) {

printf ("%d ", i);
}
printf ("\n");

}

void test2() {
printf ("TEST2: ");
int a[10], tmp;
for (int i = 0; i < 10; i++) {

a[i] = i;
for (int j = 0; j < 10; j++) {

tmp = (a[i] * 2) ^ (j + 3);
if (tmp % 3)

tmp += 8;
a[i] = tmp;

}
printf ("%d ", a[i]);

}
printf ("\n");

}

int main() {
printf ("BEGIN TESTS\n");
test1();
test2();
printf ("TESTS COMPLETE!\n");
return 0;

}

Output:
BEGIN TESTS

TEST1: 1 2 3 4 5 6 7 8 9

TEST2: 4362 8202 10506 8202 11274 8202 10506 14346 16650 14346

TESTS COMPLETE!

Program ended with exit code: 0

1
Set Obfuscation

Level

Obfuscate

2

3

Obfuscated

Obfuscated

Original Bitcode Binary

Obfuscated Bitcode Binary

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 14

No Obfuscation

File size = 5 KB

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 15

50% Obfuscation

File size = 83 KB

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 16

100% Obfuscation

File size = 169 KB

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 17© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 17

Use cases
Bitcode obfuscation techniques allow
tunability to achieve a balance between
security and performance; and can be applied
to a wide range of software applications
targeted to various platforms and devices.

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 18

Use case examples

Desktop
App

Mobile
App

Cloud
App

IoT App Browser
Plug-ins

SDK
Libraries

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 19

Bitcode Obfuscation is a promising technology to protect your binary
without altering the source code and has a wide range of usage in various
type of applications in different industries.

With obfuscation, you can
• Guard your software against reverse engineering attack
• Hide your business logic and secret data
• Protect your intellectual property
• Balance your application security vs performance with tuning level

• Overhead associated with obfuscation must be acceptable
• Audit and inspect your application protection strength

Conclusion

© 2022 Society of Cable Telecommunications Engineers, Inc. a subsidiary of CableLabs | expo.scte.org 20

Thank You!
Rafie Shamsaasef
Director of Software Engineering – Security Products
CommScope Inc.
1 (858) 404-2205
rafie.shamsaasef@commscope.com

	Bitcode Obfuscation�Protecting Software Without Source Code Access
	Agenda
	What is software obfuscation?
	Protect against static analysis and reverse engineering
	Approaches
	Control Flow Obfuscation
	Data Flow Obfuscation
	Slide Number 8
	Slide Number 9
	Slide Number 10
	How does it work?
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Thank You!

