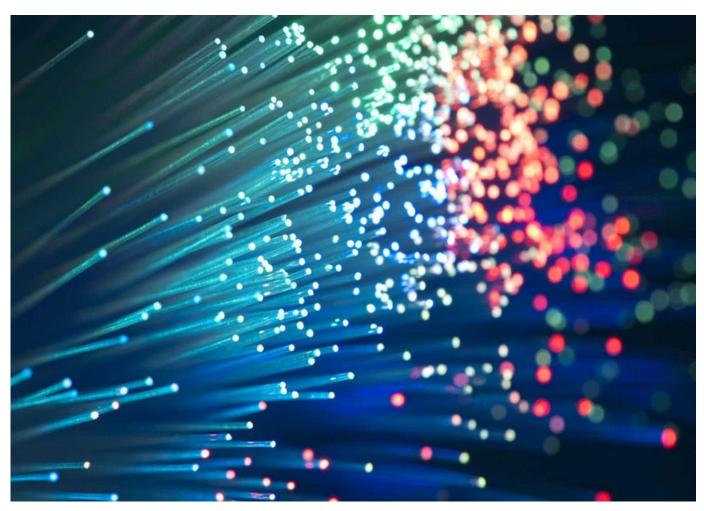


Creating Infinite Possibilities.

Broadening the Reach of Broadband, Powered by Distributed Access Architecture

Katherine Aiello

Director, Project Management Comcast Katherine_Aiello@cable.comcast.com



How Comcast Will Support RBB

- Comcast's Commitment
- Technology Overview
 - Distributed access architecture (DAA)
 - Virtual cable modem termination system (vCMTS)
 - Virtual broadband network gateway (vBNG)
- Operational Alignments

Comcast Commitment

We are building a better network, every day.

nternet Essentials

- Launched in 2011
- Over 10 million
 Americans from low-income families
 connected
- Nation's largest and most comprehensive Internet adoption program

ift Zones

- More than 1,000
 Wi-Fi-connected
 "Lift Zones"
- Works with Internet Essentials programs and further helps student
- Fosters freedom and flexibility for their education needs

Recycling

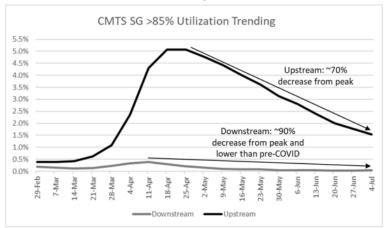
- Program to recycle coaxial cables at the end of their use
- Working with Echo
 Environmental to repurpose these cables
- Includes
 insulation and
 jacketing in our
 recycling efforts

Project UP

- Our \$1 billion commitment
- Programs and community partnership across Comcast, NBCUniversal & Sky
- Connect people to the Internet, advanced economic mobility and more

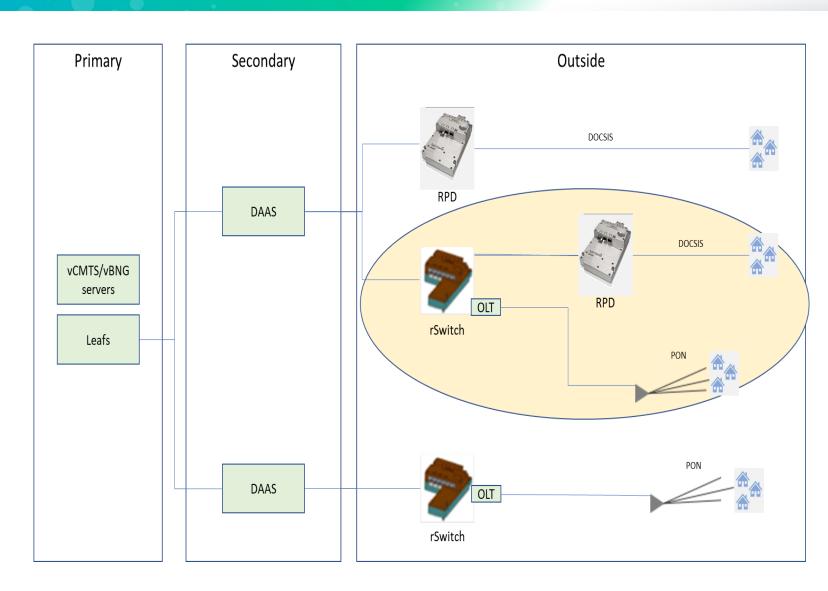
Rural Broadband

What is Rural Broadband?

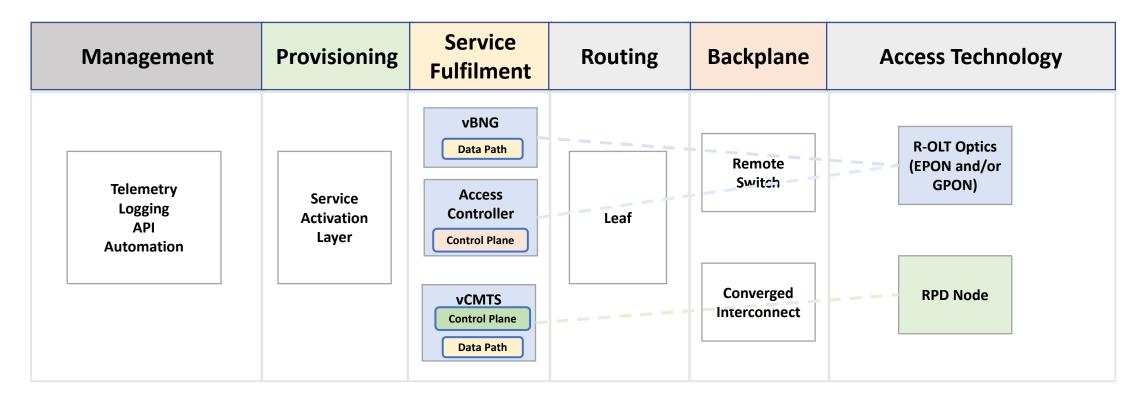

- Cable providers traditionally have not had the ability to build out scalable networks to lowpopulated areas
- Primary & secondary headend locations very distant; coaxial RF technology not well-suited to covering very large distances
- Tens of millions of Americans do not have high-speed Internet today

Capacity Needs

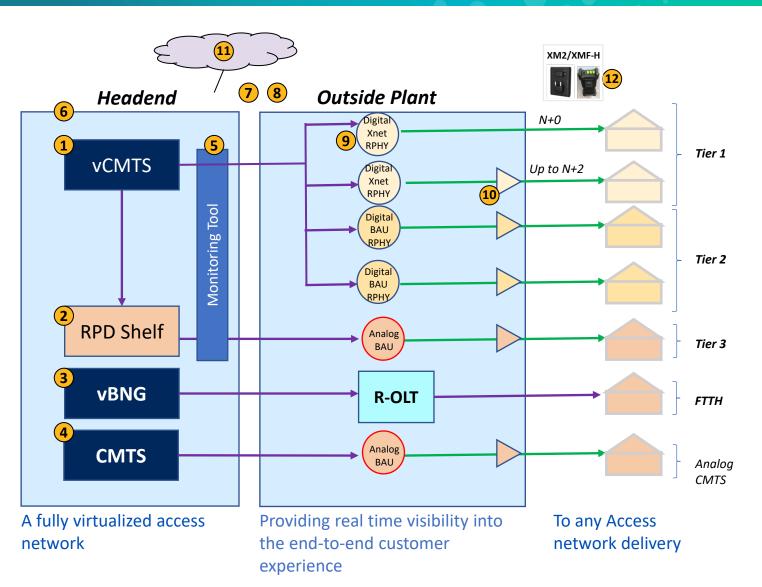
Customers' capacity needs are increasing!


- Capacity needs have been doubling every few years downstream while also continuing to grow in the more-constrained upstream; Oh...uh, also COVID
- Ability to upgrade the network for this demand using just hardware is unstainable
- Software enhancements, pushing intelligence into the field gives flexibility of continuous increases and capacity
- DOCSIS 3.1 & OFDM/OFDMA benefit from these software investments
- PON can leverage these investments and procedures

DAA for RBB Benefits



- Lower MER degradation
- Ability to deliver PON beyond distances of optical link budget standards not well-aligned to HFC
- Lower power consumption and better performance than alternate RBB solutions
- Automated change management through software development


Extending the vCMTS Architecture

Allows for other access technologies while reusing common functional components

A Network in Transition

- **1.vCMTS:** transition to Gen 3 HW to enable scaled migrations off legacy CMTS
- **2.RPD Shelf** necessary for migration off legacy equipment
- **3.vBNG:** Leverage vCMTS for FTTH architecture
- **4. Legacy CMTS:** No new code drops; support capacity growth in Tier 3 markets
- **5.XMF-R**: Real time fiber cut detection with monitoring applications for fiber underlays
- 6. Facility monitoring with CI
- 7. Automated designs and fiber management support with fiber monitoring tools
- **8. Construction:** Workflow management (HFC & fiber)
- **9. Node:** Analog to digital migration
- 10.Amps: Smart 10G FDX amplifiers forthcoming
- **11.Detect, Mitigate and Fix** with internal applications (ROCI/Optek) and data sciences enhanced correlation
- 12. Handheld meters

Sustainability: Operational & Environmental

Operational

- Leverage the same node enclosures for RPD and R-OLT hardware
- Leverage the same DAA switching infrastructure already in place
- Capture new data sets leveraging current data models
 - Build operational models of knowledge from additional data
- Monitor and dispatch tools to be integrated with vBNG, utilizing current back-office applications
- Advance the technicians' skill sets to further their scope in support of the converged access infrastructure

Environment

- Gain fiber slowly, deliberately deeper into the outside plant
- Use capacity demands to help determine fiber placement in HFC
- Prioritize power consumption efficiencies in HFC technology and RBB architecture paths
- Maximize operations and partnerships to break apart coax wiring for 70% direct reuse with 30% recycled
- Maximize our commitment to be carbon neutral by 2035
 - PON distributed network is 90% more power efficient than DOCSIS

Real-Time Dashboards & Automation

- Alignment of the back-office systems for the converged access network
- Additional data points from smarter in-field network elements
- Streamlined dashboards, leveraging existing interfaces
- Currently over 98% automation in deployed DAA network for all changes
- Similar HW and SW platform for both PON and DOCSIS
- Ability to dynamically create dashboards off existing data structures

General / vCMTS Summary Landing Better Jeff View ☆ ペ

4.68 K

Conclusion

Reliable Rural Broadband

Automated

Smarter outside plant devices with software configurations instead of hardware

Flexible

Enable the implementation of outside infrastructure to be determined by the usage and demand

Sustainable

Repurpose existing infrastructure with detailed recycling program

Scalable

Leverage current deployed DAA to implement vBNG and R-OLT to rural areas

Thank You!

Katherine Aiello

Director, Project Management Comcast Katherine_Aiello@cable.comcast.com

