

Network Migration to 1.8 GHz: Operational "Spectral Analysis" Measured in nano-Hertz, a 30-Year Perspective

Zoran Maricevic

Engineering Fellow CommScope zoran.maricevic@commscope.com

AGENDA:

- ✓ Broadband Traffic Engineering what drives network upgrades
- ✓ Downstream Tavg Growth Projections
- ✓ Network Upgrade Considerations & Initial CAPEX
- ✓ Total Cost of Ownership & Sensitivity Analysis
- ✓ Conclusions

Broadband Traffic Engineering

✓ 5,000 Mbps DS / 1,000 Mbps US selected as Tmax_max

SCTE CABLE-TEC

Broadband Subscriber Traffic Consumption – Tavg

Based on 10+ years of consistent data collection from the same 4 operators

Downstream Tavg Growth Projections

DS Tavg Predictions: 2017 to 2037

Cone of Uncertainty:

- 2027 expected DS Tavg 5-12 Mbps range
- 2032 expected DS Tavg 7-25 Mbps range
- 2037 expected DS Tavg in the 8-65 Mbps range

At <u>21% CAGR</u>, DS Tavg exceeds 100Mbps **by 2040** With <u>Linear growth</u>, DS Tavg

exceeds 100Mbps in 200+ yrs

DS Tavg Projections: 2022 to 2052

2037 DS Tavg = 8 - 65 Mbps

2052 DS Tavg = 20 – 350 Mbps

Network Upgrade Considerations

Before the Upgrade

The Big Picture View

Head-end Changes for DAA D4.0 FDD Upgrade

Initial Upgrade CAPEX, in \$ per home-passed

Initial Upgrade CAPEX, in \$ per home-passed

Network Upgrade CAPEX vs. Total Cost of Ownership

CAPEX & OPEX, 1.8 GHz ESD and 1.2 GHz HS upgrades

© 2022 Society of Cable Telecol

16

CAPEX & OPEX, 10G R-PON upgrades

Cost, in Today's Dollars, of a \$100 Postponed Expense

Nominal vs. 2023 \$, CAPEX & OPEX, 1.8 GHz ESD upgrades

Enter "Frequency Domain"

1 year = 31,557,600 seconds 1/year = 1/31,557,600 per sec 1/year = 31.7 x 10⁻⁹Hz = ~32 nano Hz 1/3 year = ~10 nHz 1/15 year = ~2 nHz 1/30 year = ~1 nHz

How often an expense repeats is captured in the Frequency Domain

Frequency Domains compared: 1.8 GHz & 1.2 GHz & 10G PON

Upgrade Paths Compared

Upgrade Scenario	1.2 GHz D3.1 HS	1.2 GHz; →1.8 GHz	1.8 GHz D4.0 FDD	1.8 GHz FDD (w PON overlay'44)	10G R-PON 20% Underground	10G R-PON 80% Underground
Tavg Growth Scenario	Low	Low→Med	Medium	High	High	High
NPV (Plant CAPEX)	\$103	\$119	\$146	\$209	\$468	\$785
NPV (Plant OPEX)	\$100	\$107	\$126	\$131	\$44	\$58
NPV (CPE CAPEX)	\$31	\$35	\$36	\$38	\$89	\$89
NPV TCO (7.5% TVM)	\$235	\$261	\$308	\$380	\$601	\$932
Total cash outlays over time	\$496	\$596	\$643	\$971	\$826	\$1,176

1.8 GHz ESD upgrade; followed by R-PON overlay in '44

Time Domain - ESD to R-PON Upgrade in Nominal \$

Variations/ Monte-Carlo Sensitivity Analysis

Upside Downside

Conclusions

- ✓ Common to all upgrade scenarios is the brownfield starting point of 400 HP, 200 subs per node, with the long-term top tier 5 Gbps DS / 1 Gbps US advertised speeds
- ✓ Initial upgrade costs are 5x to 10x higher for PON as compared to HFC upgrades
- ✓ PON OPEX, however, is 2x lower, and thus favors PON for the greenfield installations
- ✓ The 1.8 GHz ESD plant upgrade handled low to moderate Tavg growth with aplomb. TCO, over the next 30 years, comes at \$308/HP, in '23 dollars
- ✓ 1.2 GHz high-split upgrade held up surprisingly well with just one node split required under the low Tavg growth assumption. TCO = \$235/HP, in '23 dollars
- ✓ 10G R-PON addressed the high Tavt growth at a premium. TCO = \$601/\$932, with 20% vs. 80% of plant located underground
- ✓ Postponement of big spend pays dividends, as seen in "1.8 GHz upgrade now, overbuild with fiber in '44" scenario. TCO = \$380/HP in '23 dollars
- Caveat Emptor mileage may vary above conclusions are based on a long list of assumptions. Variation analysis & sensitivity analysis, however, are provided

David Bowler, for expert guidance on finer aspects of 1.8 GHz ESD plant upgrade

Co-Authors

John.Ulm @commscope.com Craig.Coogan @commscope.com Zoran.Maricevic @commscope.com

Thank You!

Zoran Maricevic Engineering Fellow CommScope zoran.maricevic@commscope.com

