

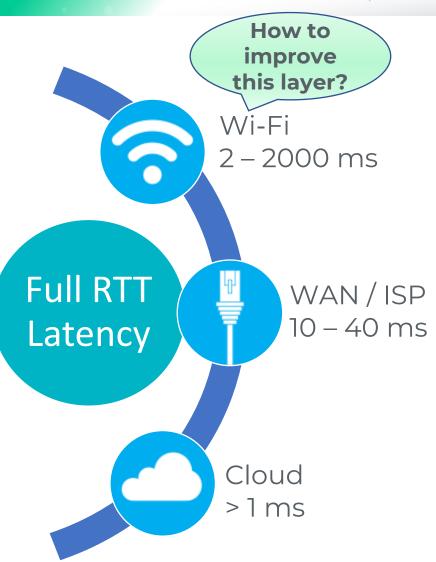
Creating Infinite Possibilities.

Testing OFDMA for Latency Improvements

Matt Brooks

Distinguished Software Engineer CommScope Matt.Brooks@commscope.com

Latency's Contribution to Quality of Experience

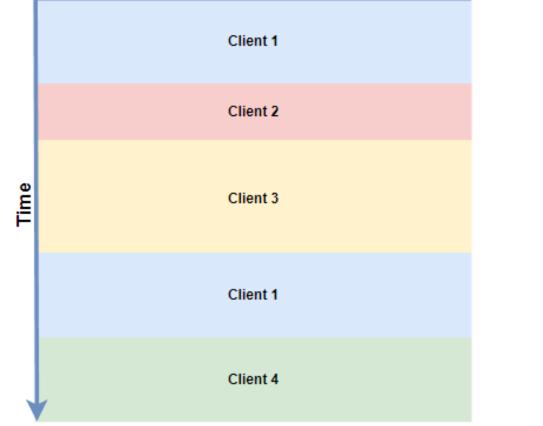


Problem: Average Latency > ~ 100 ms

- Video conference conversation cross-talk
- Slow response to begin loading a video or website
- Consistent lag in security camera video and audio
- Realtime online gaming problems (> 50 ms)
- **Cause:** <u>Average latency too high</u> causing a constant delay in arrival of packets

Problem: Excessive Jitter (Variance of Latency) > 30 ms

- Skips in video or audio during conferencing and Wi-Fi voice calls
- Inconsistent response to actions during online gaming
- **Cause:** <u>Spikes in latency causing high jitter</u> applications drop useless, delayed packets


The OFDMA Difference

Wi-Fi 6/6E HE SU

Each transmit opportunity is for a single client on an entire channel * With MU-MIMO Disabled

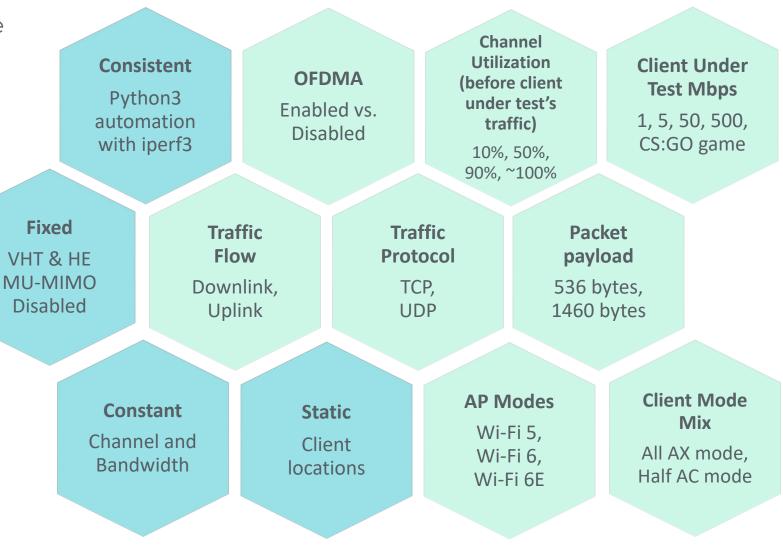
80 MHz Channel Bandwidth

Wi-Fi 6/6E HE OFDMA

Each transmit opportunity is for one or more clients on different tones/subcarriers 80 MHz Channel Bandwidth

Tests Defined and Executed in a House

Goal: Determine which scenarios achieve better latency in a real house with real clients using today's AP solutions.


House: 4500 sqft - 3 story - Clean Airtime

AP: Front corner – main floor (4x4:4)

 Ch. 100/80 MHz (5 GHz) and Ch. 37/80 MHz (6 GHz)

1 client under test: Wi-Fi 6/6E (2x2:2)

- Located on same floor in next room away from AP
- 3 control clients: Wi-Fi 6/6E (2x2:2)
 - To create predetermined percentages of channel utilization
 - Located in room above, room below, and same room as AP

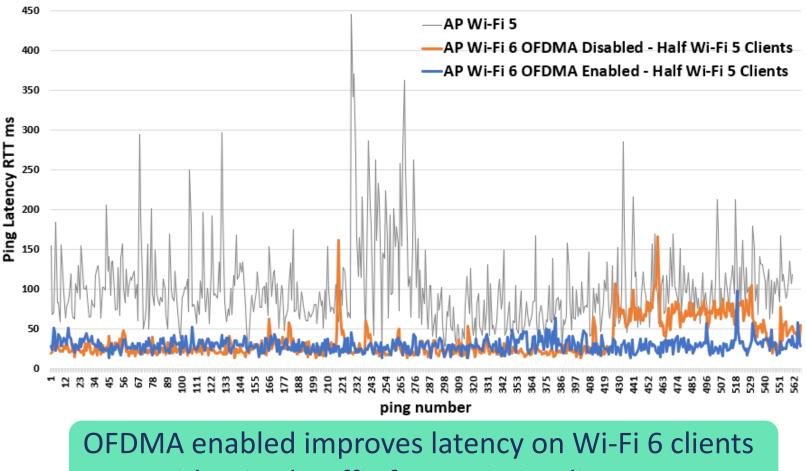
UDP Uplink used 100% - No Rate Limits

UDP Uplink 1460 byte packet 60 seconds traffic 160 OFDMA Disabled —OFDMA Enabled No Rate Limits on all clients 140 100% utilization 120 Ping Latency RTT ms **4** Clients 100 Pings 10/sec to one of the Wi-Fi 6 Clients Under Test 80 with traffic 60 Wi-Fi 6 Wi-Fi 6 Wi-Fi 6 40 Client **OFDMA OFDMA** Under Disabled Enabled 20 Test (ms)(ms)0 Latency 6 69 93 5 217 229 241 81 5 14 7 Avg ping number OFDMA enabled reduces latency in fully Max 161 51 utilized channels in the uplink direction. 15 3 Jitter

Wi-Fi 6 OFDMA Disabled vs. Enabled

TCP Downlink used 100% - No Rate Limits

TCP Downlink 1460 byte MSS 60 seconds traffic


No Rate Limits on all clients 100% utilization

4 Clients half Wi-Fi 5 mode, half Wi-Fi 6 mode

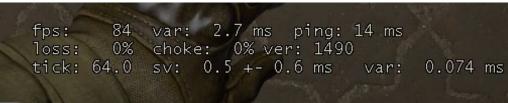
Pings 10/sec to one of the Wi-Fi 6 Clients Under Test with traffic

Wi-Fi 6 Client Under Test Latency	Wi-Fi 5 (ms)	Wi-Fi 6 OFDMA OFF – half AC Clients (ms)	Wi-Fi 6 OFDMA ON – half AC Clients (ms)
Avg	100	36	29
Max	445	166	98
Jitter	51	22	8

Wi-Fi 5 vs. Wi-Fi 6 OFDMA Disabled vs. Enabled – Half Wi-Fi 5 Clients

even with mixed traffic from Wi-Fi 5 clients.

TCP Uplink used 90% before client under test


Playing LAN Hosted Game

TCP Uplink 1460 byte MSS 60 seconds traffic

3 control clients - 90% utilization

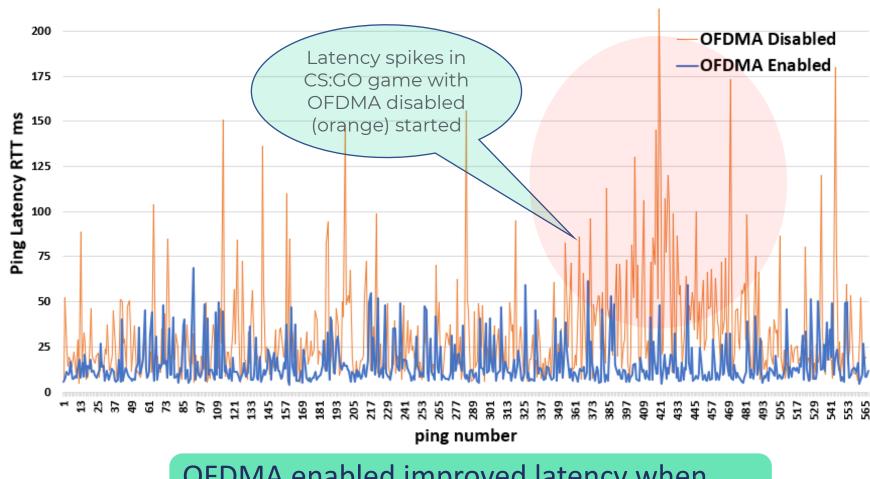
1 Wi-Fi 6 Client Under Test at 1 Mbps iperf3 rate limit while **playing CS:GO LAN hosted game** and pings 10/sec during traffic

Game Server for **Counter Strike: Global Offensive** was hosted on LAN Ethernet – without any WAN dependency – screen overlay shows game RTT latency in real-time.

Game Reported Latency During Play

80 -AP Wi-Fi 5 75 AP WI-FI 6 OFDMA OFF AP Wi-Fi 6 OFDMA ON 70 AP Wi-Fi 6 - Half Wi-Fi 5 Clients OFDMA OFF 65 —AP Wi-Fi 6 - Half Wi-Fi 5 Clients OFDMA ON 60 Latency 55 50 ŝ 45 40 E 35 CS:GO 30 25 20 15 10 15 18 21 24 Seconds OFDMA enabled test cases (blue and green) show smooth latency during game play.

TCP Uplink used 90% before client under test - Continued



Playing LAN Hosted Game

OFDMA disabled shows ping **RTT latency spiking more often** at t=36 seconds into run.

This correlates with game play RTT latency rising at same time shown on previous slide.

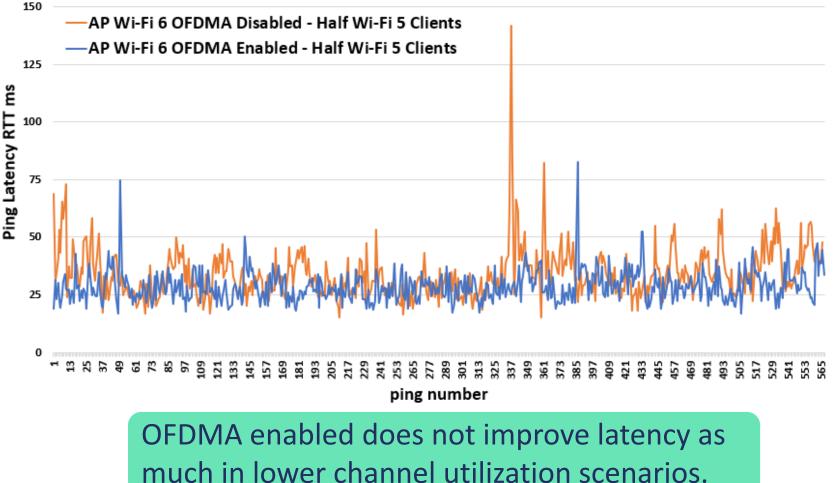
Wi-Fi 6 Client Under Test Latency	Wi-Fi 6 OFDMA Disabled (ms)	Wi-Fi 6 OFDMA Enabled (ms)
Avg	32	15
Max	212	69
Jitter	28	12

Wi-Fi 6 OFDMA Disabled vs. Enabled

OFDMA enabled improved latency when channel 90% utilized with upstream traffic.

TCP Downlink used 50% before client under test

TCP Downlink 1460 byte MSS 60 seconds traffic


4 Clients - **half Wi-Fi 5 mode**, half Wi-Fi 6 mode

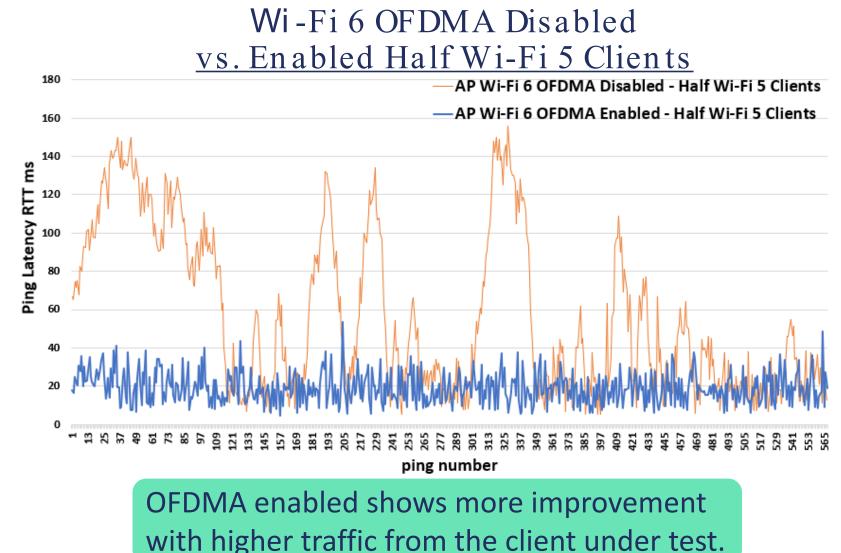
control clients - 50% utilization 🖁

1 Wi-Fi 6 Client Under Test with 500 Mbps rate limit with pings 10/sec during traffic

Wi-Fi 6 Client Under Test Latency	Wi-Fi 6 OFDMA OFF – half AC Clients (ms)	Wi-Fi 6 OFDMA ON - half AC Clients (ms)
Avg	34	29
Max	142	83
Jitter	11	8

Wi-Fi 6 OFDMA Disabled vs. Enabled Half Wi-Fi 5 Clients

TCP Uplink used 10% before client under test


TCP Uplink 1460 byte MSS 60 seconds traffic

4 Clients - half Wi-Fi 5 mode, half Wi-Fi 6 mode

control clients - 10% utilization

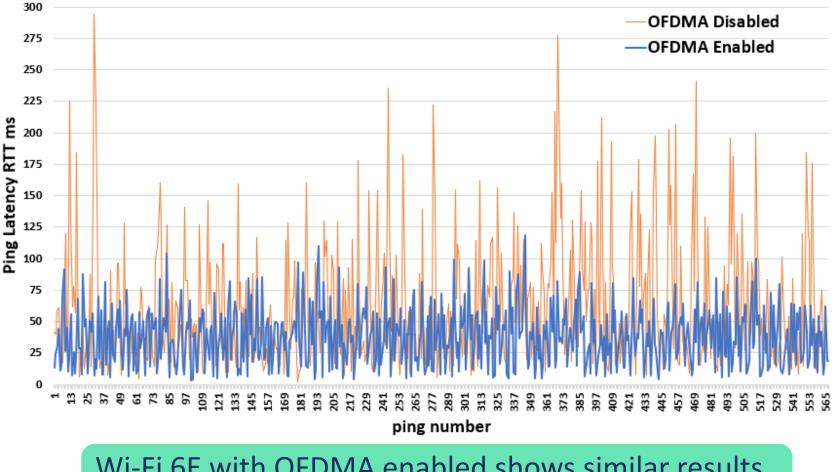
1 Wi-Fi 6 Client Under Test with 500 Mbps rate limit with pings 10/sec during traffic

Wi-Fi 6 Client Under Test Latency	Wi-Fi 6 OFDMA OFF – half AC Clients (ms)	Wi-Fi 6 OFDMA ON - half AC Clients (ms)
Avg	56	19
Max	156	54
Jitter	42	8

Wi-Fi 6E – TCP Uplink 90% used before client under test

Ping Latency RTT

TCP Uplink 1460 byte MSS 60 seconds traffic


4 Clients – Wi-Fi 6E

control clients - 90% utilization

1 Wi-Fi 6E Client Under Test with 50 Mbps rate limit with pings 10/sec during traffic

Wi-Fi 6E Client Under Test Latency	Wi-Fi 6E OFDMA OFF (m s)	Wi-Fi 6E OFDMA ON (ms)
Avg	62	38
Max	294	119
Jitter	49	23

Wi-Fi 6E with OFDMA enabled shows similar results and reduces latency in highly utilized channels.

Key Take-Aways

Uplink Wi-Fi 5 clients **High Airtime OFDMA** Direction okay! Utilization Works! Uplink traffic showed Tests with mixing of Most latency **Reduced latency seen** the most latency Wi-Fi 5 & Wi-Fi 6 improvement seen with real scenarios in a improvements with clients still allow Wi-Fi with high airtime home using today's AP 6 clients' latency to utilization and OFDMA OFDMA enabled. solutions with OFDMA improve with OFDMA enabled. enabled. enabled.

Additional details are available in the SCTE Cable-Tec Expo 2022 White Paper: *Testing Wi-Fi Upgrades for Latency and Throughput*

- In the paper there is an extensive list of additional test scenarios to consider.
- Many results would differ if VHT/HE MU-MIMO was enabled; in order to see OFDMA's individual contributions, MU-MIMO was disabled.

Creating Infinite Possibilities.

Thank You!

Matt Brooks

Distinguished Software Engineer CommScope Matt.Brooks@commscope.com

