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1. Introduction 
As the network becomes more powerful through 10G technology, resiliency in our extensive power 
supply network is essential to ensure our customers are always connected. The stability of outside plant 
(OSP) power supplies (PS) is key to keeping the network online and serving customers. Maintaining 
accurate location and active telemetry information is vital to keeping the power supplies in optimal health. 
Machine learning is employed to analyze this massive amount of telemetry data and provide actionable 
insights related to operating conditions and the overall health of the power supplies and batteries. 

The authors, Stephanie Ohnmacht & Matt Stehman, will present a multi-tier solution that was developed 
to address this at scale. The solution includes the integration of mainstream mapping technology, with 
machine learning (ML) routines to optimize location probabilities and use of big data pipelines and 
advanced data science techniques to inform proactive and demand maintenance activities. Predictive 
models are built on top of this large dataset to help detect long term variations in power supply 
performance as well as real-time performance evaluations during active outages. This paper will illustrate 
a proven approach to improving PS resiliency, leading to increased network reliability, and satisfying the 
requirements of a 10G network. 

2. Identifying Power Supplies 
Historically Comcast has had to maintain multiple information sources and databases to manage the 
network of power supplies. These separate databases included those used for network designers, technical 
operations, and asset inventory management. This disparate data provided an opportunity to find a 
solution to enable all systems to talk to each other with one unique key. Creating an innovative system to 
maintain PS information in the future. To start, a team was formed to begin a 4-step process to validate 
and correct location information for Comcast’s PS across databases.  

  
Figure 1 - Architecture 
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2.1. Geolocation Match via Excel Algorithm 

The goal of the geolocation match was to begin to narrow down location discrepancies across databases. 
To determine a single PS referenced in multiple databases, the team developed an algorithm to compare 
the delta of linear feet between the two locations in the databases. If the PS locations were within 300 ft, 
then it was marked as the same location. In situations where the distance was greater than 300 ft, an index 
was applied to show a level of confidence of a match based on the linear feet differences. This level of 
geolocation matching resulted in 22% of the total population identified as having a high-quality match 
within the total population. 

2.2. Algorithm 2.0 

Once completing the first algorithm, the next phase of the analysis was to narrow down outstanding 
matches based on other known links within the databases. This approach focused on using node-to-power 
supply relationships to solve for additional location matches and increase level of confidence. This 
analysis increased matched records to 68% of the PS population.  

2.3. Machine Learning to Identify Power Supply through Open-Source 
Mapping Tools (Find My Power) 

A tool was developed that would identify PS in its natural environment (street or pole) using existing 
mapping applications to confirm the actual location. To initiate the project, power supply photos were 
taken in the field, then loaded into the application to begin training the system to identify different power 
supply types and installation environments. These examples were integral to the ability of the tool to 
accurately detect a PS in all situations. Once the right training model was developed, an open-source 
visual mapping tool was integrated into the tool that captured real street view imagery and provided 
associated latitude and longitude coordinates for the exact location of the identified power supply. After 
an attempted PS match, a level of confidence was determined by the tool and applied to the record which 
was then confirmed manually by a team.  
This new system was able to find power supplies for 65% - 70% of the locations. The mapping tool did 
not have images for about 10% of the locations (given easements, landscape, and gated communities). 
About 45-50% of the power supplies predicted were correctly identified by the artificial intelligence and 
significantly boosted the team’s productivity by 2X when verifying manually. 

 

2.4. Manual Intervention 

Once the team confirmed proposed matches from the machine learning tool, outstanding PS matches were 
set aside to be reviewed by field teams and updated.  
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Figure 2 - Geolocation Matching Algorithm 

 
Figure 3 - Example Output from Find My Power 

3. Asset Inventory Interface 
Updated PS location information and node associations provided the opportunity to create a tool for 
management, field techs and operations called Power Supply Notebook (PSNB).  

3.1. Asset Inventory User Interface 
The team created a source of truth User Interface (UI) for all PS asset details. Including PS 
make/model/serial number, location, batteries, transponder, installation date, and maintenance records. 
For new PS the asset information is loaded once the PS is built and online. Ongoing updates and changes 
can be completed by administrators, technicians, business partners and the network help desk. Depending 
on the user’s permission level, changes are added to a queue and approved by appropriate staff. All 
changes are tracked and recorded for historical purposes and investigation needs.  
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3.2. Alarming Interface 
PS are polled every minute by in-house software. This data is monitored by the Correlation Engine (CE). 
As changes in telemetry flow through CE, anomalies are monitored to determine if an event is in 
progress. CE references all active devices on plant, downstream from the power supply and can correlate 
the impact of an event to number of devices impacted. Based on pre-determined threshold levels, by event 
type, an alert is sent to PSNB. PSNB is the presentation layer that displays current and historical alarms 
and events. Telemetry can be viewed by battery string, as well as the historical trends in battery voltage, 
input voltage, output current, temperature, output voltage, and output power. Events that need dispatching 
are sent to an automated dispatching system to be processed according to business rules. Alerts include 
PS on stand-by (on battery), PS loss of communication, and low battery.  

 

 
Figure 4 - Inventory/Alarming Tool Architecture 

3.3. Impacted Actives (nodes, cable modems) on Plant 

The data output from CE and passed to the PSNB UI, provides insightful data about outage impacts. In 
the past, it was assumed that any PS power outage affected all actives. Based on preliminary data, that is 
not the case. Data suggests that on average, 30-40% of customers stay online (have power) during a PS on 
discharge scenario. The geography of the power grids from the utility company and broadband provider 
do not overlap. As you can see in the example below, an outage from a PS only impacted a portion of the 
cable modems supported by that power supply. Empowered by this additional layer of information, teams 
can make more informed choices about how, when, and where to send a technician.  
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Figure 5 - PS Outage Impact Analysis Example 

4. Power Supply Telemetry 
The previous sections discussed the effort to build a source of truth that is foundational to the overall 
tracking and management of a power supply network. Once the global tracking and visibility for each 
power supply is established, live telemetry from individual power supplies can be incorporated to provide 
the status of each power supply as well as the entire network of power supplies. This section will discuss 
the telemetry gathered from each power supply in Comcast’s plant and how the raw data can be used to 
make informed decisions.  

Each power supply is made up of several sub-components where each is responsible for various aspects of 
overall operation. Understanding the function of the different components as well as the various telemetry 
metrics captured is key to modelling the health of the power supplies. See Figure 6 for a simplified 
summary of the power supply with components relevant to this paper. 

 

Figure 6 - Power Supply Overview 

The transformer component is responsible for converting the commercial high voltage AC power down to 
operational range and format for the power supply. The battery module houses the strings of backup 
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batteries that are used to power the plant in case of a commercial power outage. The Inverter is used to 
convert the DC voltage from the backup batteries into AC as required by the elements of the RF plant (RF 
nodes, RPDs, amplifiers, etc..). The inverter also controls which power source to use in the event of a 
change in input voltages. The communications module is responsible for relaying all relevant information 
about the power supply through DOCSIS® protocols back to Comcast HQ for continuous monitoring. 

The following sections will discuss the different telemetry metrics and data pipelines to consume the 
streaming data which allow for analysis and insights.  

4.1. Telemetry Overview 

The communications module is responsible for combining all measurements of the power supply state 
from the individual sub-components and packaging them into a telemetry stream that can be read through 
DOCSIS protocols. The PS telemetry is polled via simple network management protocol (SNMP) at two 
sampling intervals: every 60 seconds for high frequency engineering telemetry and hourly for 
configuration and system level information. The PS can also push alarms in between SNMP polls in the 
case of specific conditions being outside of acceptable values. Table 1 contains a simplified list of the 
telemetry available from the communications module. 

 

Table 1 - Relevant Power Supply Telemetry Metrics 
Frequency Context Telemetry Metrics Description 

Minute 

Input to Power 
Supply 

Voltage, Current, 
Power 

Measurements of electrical input 
to the power supply transformer 
from commercial line power 

Power Supply 
Operation 
 

Inverter Status 

State of power supply: 
commercial input, battery 
backup/standby (outage), battery 
backup (self-test) 

Tamper Status Indication of whether PS has 
been tampered with 

Internal Temperature Environmental temperature of the 
power supply cabinet 

Alarm 
Internal PS Alarms. Major: 
service impacting, Minor non-
service impacting 

Battery Operation 
 

Individual Voltages Measured voltage at each battery 
terminal 

Total Voltage Total voltage from all battery 
strings at the input to the inverter 

String Charge Current Measured charging current at the 
input to each battery string 

String Discharge 
Current 

Measured discharge current from 
each string of batteries 

String Float Charge 
Current 

Measured floating charge current 
for each string of batteries 
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Power Supply 
Output 

Voltage, Current, 
Power 

Measurements of electrical 
output from the power supply to 
the outside plant 

Hourly Power Supply Info 

Vendor, Model 
Number, Serial 
Number 

General information about the 
individual power supplies 

Configurations and 
supported functions 

Overview of various 
configurations for each PS and 
which functionalities are 
supported 

System Software versions, device ids, 
Ip/Mac addresses, etc.… 

The table indicates the general families of live telemetry captured from the communication modules of 
each power supply in the field. The minute polls tend to include more engineering specific information 
about voltages, currents, and statuses relevant to the functional operation of the power supply. The hourly 
polls contain more stable information useful for understanding the configurations and settings of the 
power supply.  

From an operations standpoint, the power supply input telemetry gives an indication of the health of the 
underlying commercial power network. The inverter status is used to determine whether the PS is being 
powered from commercial power or back-up batteries. The output telemetry is useful for quantifying the 
size of the plant the power supply is powering and is a key feature in validating the power supply against 
design specifications. The output telemetry is also a key feature in outage runtime prediction models (will 
be discussed in Section 5), since how long a battery will last is largely dependent on how much 
current/power draw the plant requires. The PS temperature field is also useful in this regard because it is 
well known that batteries tend to perform worse in colder conditions due a resulting reduction in the 
chemical energy in each cell. 

The individual battery metrics are very useful for monitoring batter health. For instance, inspection of the 
voltage discharge and charge curves can contain a lot of information about the health of the batteries. The 
durations and boundaries of these individual events contain a mass of information related to battery 
performance and health. Since voltage data is stored for each individual battery, a determination can be 
made about whether a specific battery may be performing sub-optimally as opposed to assuming the 
entire string of batteries needs to be addressed.  

This section introduced the individual power supply telemetry metrics and gave some indication of how 
they can be used to monitor the health of the power supplies. The next sections will discuss the data 
pipelines built to consume and analyze the real-time telemetry data to provide more insights and help 
guide the field with resource allocation and maintenance activities.  

4.2. Streaming Infrastructure and Real Time Eventing 

The telemetry from each individual power supply is streamed through a real time alerting architecture 
where alarms and warnings can be generated based on a variety of conditions that may require action to 
be taken. The data is then landed in a short-term storage solution to support further deep dive analyses on 
recent events if needed. Due to the shear amount of telemetry being generated by the network of power 
supplies the raw data is only stored for a short time to minimize overhead. More information on how this 
challenge is handled will be provided in Section 4.3. 
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The streaming architecture allows for real time alerting and eventing to be performed as the raw telemetry 
is collected. The events are then landed in a front-end user interface for prioritization and determining the 
appropriate action. A general overview of the type of alarms currently implemented is given in Table 2. 

Table 2 - List of Real Time Alerts 
Context Name Description 

Inverter Status 

No Commercial Power Power supply has no commercial 
power and is operating on battery 

Power Supply Running 
Test 

Power supply is running a scheduled 
self-test to check battery 
performance 

Power Supply Test 
Failed 

Power supply self-test did not last the 
intended duration (requires 
investigation) 

Telemetry Variations 

Output Current, 
Voltage, Power 

Alert when measurement varies 
significantly from its nominal value 

High Temperature Power supply temperature is 
reaching unsafe levels 

Low Battery Voltage 
Power supply is operating on battery 
and voltages are reaching depletion 
levels 

Communications 
Loss of 
Communications 

SNMP can no longer communicate 
with communications module 

PS Internal Alarm Forwarding of internal power supply alarms 

These alerts are meant to be an indication that a given power supply is currently experiencing an event of 
interest and requires an assessment. These alerts are currently logic based and developed from an in-depth 
knowledge of the operating conditions of the power supplies. A history of these alerts (including the 
duration the alert was active) are kept for analysis of long-term trends so analysts can evaluate trends and 
provide appropriate courses of action when needed.  

These types of alerts are industry standard and allow for a live view of activity on the network. These 
alerts are only aware of a local time window around the present time stamp and thus are limited in their 
abilities to find complex patterns in the raw data. Thus, there is a large opportunity in this space to adopt a 
machine learning approach that can gain more complex insights from historical data in combination with 
real time data.  

4.3. Big Data Pipelines for Efficient Storage and Analysis 

In order to build predictive models that can learn from historical events, a historical database of training 
data is required. However, due to the size of Comcast’s power supply network which typically generates 
hundreds of billions of data points a day, it is cost prohibitive to store all the raw telemetry metrics for a 
long duration. To overcome this obstacle, Comcast has developed a staged strategy for identifying and 
storing events relevant to modeling the health of the power supplies. Figure 7 outlines the approach to 
only storing data that is useful for modeling. 
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Figure 7 - Big Data Processing Pipeline Architecture 

The big data pipelines consume the raw telemetry from the temporary storage solution discussed in 
Section 4.2. A daily job is then run that processes a single day’s worth of data for the entire footprint in 
one go. This was implemented because some meta data that is calculated for the individual events 
requires more information than a local time window would afford and thus event meta data cannot be 
calculated through the streaming event/alerting process discussed previously. The daily job processes the 
raw data and determines if the criteria for any model-able events were found. The set of events that are 
checked against are events that contain information related to the health of the power supply, namely: 
battery discharge and charge events. By looking at how batteries charge and discharge, one can infer the 
health of the batteries and the different approaches for this health prediction will be discussed in Section 
5.1.  

If an event check does determine that a model-able event has occurred for a given power supply, the 
entire set of raw data for the duration of that event is stored indefinitely in a long-term storage solution. 
All raw data outside of these model-able events are then removed as part of the standard temporary data 
retention policies. When the event is processed, there is a litany of meta data calculated that is stored to 
help describe the characteristics of the event which is placed in an event database that has no retention 
policy. This table is light weight since every event is only a single row in a table and the meta data allows 
for insights into the physics of the events computed from raw data. This approach results in storing only 
0.25% of the original raw data for an equivalent period of time. Obviously, this number can change based 
on the number of events but by implementing this staged storage approach Comcast has significantly cut 
down on the cost of storing data while not missing anything relevant to long term modeling efforts.  

The model-ability of an event is determined by another set of criteria on the event meta data, a few 
examples are event duration, data quality, etc. For example, while a power supply may need to go into 
battery mode for a split-second commercial power outage, that event might not be useful for modeling the 
health of power supplies due to the very short duration. The next section will discuss more about the 
modeling objectives and how the raw telemetry values can be used in building models that can deliver on 
those objectives.  

5. Modeling Power Supply Health 
The previous section introduced the power supplies and telemetry metrics as well as the data processing 
pipelines that consume the raw data to provide real time alerts and pre-process for future modeling 
efforts. This section will discuss the different objectives of predictive models in the power spaces as well 
as the different modeling approaches and some initial results from this relatively new initiative.  
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5.1. Modeling Objectives 

In the cable domain, a positive customer experience is the main objective of all efforts. For outside plant 
power that means keeping the plant online and customers connected at all costs. Thus, a predictive model 
should use all available data to determine if a customer impacting event is imminent or the impact 
assessment of any live customer impacting events. These types of scenarios in the cable world are 
typically referred to as proactive maintenance and demand maintenance. Many initiatives exist in the RF 
network maintenance realm such as Wolcott, et al. (2016) and Wolcott, et al. (2018) and many practices 
have even become industry standard as documented in CableLabs PNM Best Practices Primer (2020). For 
the power supply domain most efforts have been focused on improving the engineering models related to 
the power supplies such as Anderson and Burgett (2014). The authors believe that there is a large 
opportunity to enhance the overall field of power supply management and maintenance with machine 
learning which can consider many more inputs outside of raw engineering data. Figure 8 showcases the 
distinction between proactive and demand maintenance.  

 

Figure 8 - Proactive vs Demand Maintenance 

Proactive maintenance is the ability to proactively detect and fix any potential issues on the network 
before a customer is impacted. For power supplies a simple but effective passive technique would be to 
do a standard workup on every power supply on a regular schedule, say annually. While this approach is 
generally good at keeping power supplies operational in the long term a more active approach can help 
address any potential issues in a more targeted fashion. This is where the telemetry-based models will be 
able to thrive. For example, by monitoring the charge and discharge curves during all events for each 
power supply, models can be built that attempt to catch any long-term degradations in power supply 
performance. This type of model can start to predict slow variations in the performance over many 
months of run time and help alert the field that certain power supplies may need to be visited sooner than 
others.  

In a demand maintenance scenario, there is an active situation, and a model would need to predict the 
outcome of a given event to help the field teams allocate resources in real time. In this instance the data 
related to a specific event is heavily relied on in addition to any relevant historical data to predict and 
score potential outcomes of the current event. For example, say a severe weather event results in a loss of 
commercial power and the power supply needs to operate on battery backup to keep the plant and 
customers online. A predictive model in this case would need to estimate how long the batteries will run 
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until they will reach end of discharge. Based on the model outputs, the field teams can prioritize which 
power supplies may need a backup generator if the run time is expected to be less than the commercial 
power outage duration.  

In either case, the output of the respective model will be consumed by field teams and prioritized and 
worked accordingly. Therefore, any additional information that can be supplied to the teams performing 
the work will help increase efficiency and add confidence to how the work will be prioritized. For this 
reason, the models that will be explored in this effort need to have some avenue for explainability of the 
given prediction. Examples of explainability not only include a level of confidence in each prediction but 
also elements like global and local feature importance to indicate what features the model believes to be 
most important in making a prediction.  

Comcast is currently focusing on a demand maintenance use case using a machine learning based run 
time prediction model for power supplies operating on battery backup during commercial power outages. 
Comcast sees many potential avenues for using the aforementioned data sets and methodologies to 
enhance the outside plant power domain on many fronts, from long term budget planning and global 
resource allocations to using the power supply telemetry in other models related to access network root 
cause analysis.  

5.2. Data Sets Used for Battery Runtime Prediction 

For the goal of predicting how long the power supply can power the plant in the absence of commercial 
input power a machine learning model will need access to data that contains predictive power in this 
instance. It is apparent the telemetry related to the electrical circuitry discussion in Section 4.1 would be 
required to describe the physical principals occurring. In fact, the state-of-the-art modeling in the battery 
domain pretty much solely rely on the electrical data to make run time prediction, i.e., physics based and 
even more modern time series-based approaches.  

However, as discussed in previous sections, Comcast has put in a significant amount of effort to create an 
accurate inventory of all the power supply assets which can provide extra enhancements to the modeling 
efforts. Items of particular interest are the battery manufacturer, age, type, install date and number of 
batteries in each power supply. This battery specific information will help enhance a predictive model 
using global patterns from various meta data fields related to the identity of the batteries and power 
supplies.  

The final class of data under consideration as input to a machine learning model are features that can be 
engineered from the aforementioned data sources. The process of feature engineering has proven to be 
one of the most important aspects in developing high performing machine learning models. Features that 
are derived from the raw input data can produce significantly more accurate results than the raw features 
alone. While Comcast is still exploring the different approaches to feature engineering in this capacity, 
some immediately obvious features of interest for a run time prediction could be: information about the 
last discharge (test or outage) of a given power supply like time since, duration of, ending voltage, 
variance of individual battery voltages; other relevant statistics as well as historical information including 
number of discharge cycles in last n months, number of cold temperature cycles, time since last 
maintenance visit.  

5.3. Machine Learning for Battery Runtime Prediction 

The requirements for a run time prediction model are straightforward: when commercial input power is 
lost the model should predict how long the power supply can run on battery power before it can no longer 
power the plant. Figure 9 outlines the overall architecture of the desired model where the model takes 
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inputs from the aforementioned data sources and makes a run time prediction at the moment that the 
commercial power outage begins, as well as a confidence in the prediction and some form of 
explainability in what led the model to making that prediction. The 3 outputs combined will be the key 
aspect of how the field will prioritize and ultimately address predictions that indicate intervention will be 
needed prior to commercial power coming back online.  

 
Figure 9 - Machine Learning Run Time Prediction Architecture 

Given the variety of input features and the desire to have a form of model explainability, the initial 
machine learning architecture is a random forest (RF). Random forests have proven to excel in finding 
nonlinear patterns in data with limited initial assumptions and they also have the added benefit of the 
ability to add some sense of explainability. The results of the random forest model will be compared 
against a baseline physics-based model to determine the efficacy and potential enhancements over the 
baseline model that is implemented in production. More information on the baseline model can be found 
in Lin and Nispel (2022).  

The random forest was trained on approximately 2500 examples where the power supplies operated on 
battery backup until it reached end of discharge and safely shuts downs. The features used in this initial 
model include the initial conditions of the physical properties at the beginning of the event and some meta 
data on battery information (type, age, count). The model then makes run time predictions on a test data 
set of 500 examples compared against the predictions from the baseline model. The results of the random 
forest are shown in Figure 10 where Figure 10a shows what features the model found most important 
during model training and Figure 10b shows the distribution of individual prediction errors in minutes 
compared to the baseline model.  
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Figure 10 - Random Forest Performance. a.) Feature Importances, b.) Prediction Errors 

Compared to Baseline 

As expected, the random forest model finds the most important features to be the average battery voltage 
in the first minutes of the event as well as the initial current draw and power consumption of the plant. 
These features combined essentially indicate the current capacity of batteries and how demanding it is to 
power the plant. The next group of features which are also found to be important are the ambient 
temperature at the beginning of the event, the output voltage of the power supply and the battery age in 
years. The model indicates that the number of batteries and the number of battery strings are marginally 
important for predicting the run time, likely due the majority of samples having a similar configuration. 
The random forest model tends to produce smaller errors compared to the physics-based baseline model 
as shown by the smaller tail in the distribution. As the model is enhanced with more features, the 
distribution of errors is expected to continue to shift lower indicating improved performance.  

As discussed previously a random forest can also provide a measure of explainability for individual 
predictions. Figure 11 displays an example prediction from a particular sample. One can see that the 
output includes the prediction, confidence interval and a form of insight into the prediction. In this case 
the predicted run time was 270 minutes while the actual run time was 222 minutes. Along with the raw 
run time prediction, the 50% confidence interval is derived from the distribution of all the individual 
decision tree predictions. The width of this confidence interval gives an indication of how confident the 
model is in its raw prediction. Finally for a random forest, the raw prediction can be thought of as mean 
prediction plus a contribution from all the feature values for a particular sample. In the case below the 
model’s mean prediction from training data is 239 minutes and features with blue bars increase the 
predicted duration over the mean and red decreases the predicted duration relative to the mean. In this 
case the most significant contribution is due to the battery age field, in this case the batteries are only 1 
year old, so relatively new, which is why it is increasing the predicted duration. These types of 
supplementary information in addition to a run time prediction can help the field action and prioritize 
more efficiently. 
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Figure 11 - Example Random Forest Prediction of Battery Run Time 

This section presented an initial proof of concept model using random forests for predicting the battery 
run time for power supplies which performs on par if not slightly better than the current physics-based 
prediction model. More advanced features are being developed which are expected to significantly 
improve the predictive accuracy over the current models. Comcast hopes to use the results of this model 
(once fully validated) over the long term as an input to a proactive maintenance model. For example, this 
model could be run periodically during nominal conditions (in the absence of a commercial outage) to 
determine if a power supply would perform to spec in the event of an outage and therefore open a window 
to perform proactive maintenance on suspect power supplies.  

6. Conclusion 
Spending time and resources to go deep into the power supply environment and build a product to 
support and improve network powering reliability has the potential for huge resource savings. We now 
have visibility into customer impact during power outages by correlating backend systems and building 
powerful a front-end interface. The new systems and interfaces combined with real time power supply 
telemetry open the doors for machine learning models to significantly enhance the proactive and 
demand maintenance capabilities of field teams. Machine learning models can not only provide more 
accurate predictions but also allow for explainability of given predictions to further support planning 
efforts. These initiatives are rooted in providing an amazing customer experience and having a more 
resilient power supply network is helping Comcast continue towards that goal.  
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Abbreviations 
 

DOCSIS Data Over Cable Interface Specifications 
ML machine learning  
OSP outside plant power 
PS power supply 
PSNB Power Supply Notebook 
RF random forest  
SCTE Society of Cable Telecommunications Engineers 
SNMP simple network management protocol 
UI User Interface 
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