

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 1

Challenges, Considerations, and Best Practices for Secure
SD-WAN Operationalization for Business Services

A Technical Paper prepared for SCTE by

Xin Huang
Sr. Principal Engineer, Product Development Engineering

Comcast Cable
1800 Bishops Gate Boulevard

Mt. Laurel, NJ 08054
Xin_huang@cable.comcast.com

Joshua Horton
Director, Product Development Engineering

Comcast Cable
1800 Bishops Gate Boulevard

Mt. Laurel, NJ 08054
joshua_horton@cable.comcast.com

Hung Le
Sr. Principal Engineer, Product Development Engineering

Comcast Cable
11951 Freedom Dr., STE 900

Reston, VA 20190
hung_le@comcast.com

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Challenges and Solutions ... 3
3. Keep-It-Simple ... 4
4. Automation-First Lifecycle and Test-Driven Development .. 7
5. Data-Driven Proactive Monitoring ... 9
6. Conclusions ... 12

Abbreviations .. 12

Bibliography & References.. 13

List of Figures

Title Page Number
Figure 1 – SD-WAN Platform Architecture Design ... 5
Figure 2 – SD-WAN Platform Architecture Optimization .. 6
Figure 3 – Test Automation Framework .. 8
Figure 4 – SD-WAN Platform Data-Driven Monitoring .. 10
Figure 5 – Benefits of Observability .. 11
Figure 6 – Microservices Growth vs Platform Capacity .. 12

List of Tables
Title Page Number
Table 1 – Per Platform Cloud Footprint Reduction for Different Scenarios .. 6
Table 2 – Platform Lifecycle Automation Benefits .. 9

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 3

1. Introduction
Network connectivity products such as Software-Defined Wide Area Network (SD-WAN) or
cybersecurity are becoming critical enablers of needed connectivity as businesses of all sizes re-configure
and consolidate network services and solutions using software-driven and virtualization technologies.
Large service providers such as multiple systems operators (MSOs) who want to provide innovative
solutions in this space have been developing expertise that can drive customer success. This paper will
use insights from real projects to detail the ways in which those wishing to deploy these technologies can
be guided by simple principles and industry best practices to kickstart successful networking platform
initiatives.

In the past, connectivity providers have been very successful deploying networking gear, operating it at
scale, and delivering value by executing well. They may not have created their business engines around a
core of software technologies or on large-scale virtualization in quite the same way the largest internet
platforms have been driving their businesses. Hardware-based technologies provide very high
performance in a reliably fixed and predictable architecture, with key differences being variations in
speeds, feeds, protocols, or connectors. The technologies and expertise needed to launch software
products, by contrast, can often feature dynamic architectures having unpredictable variations, needing
data-driven insights to manage.

Organizations with different strengths/expertise who now wish to adopt technologies that have grown up
in the era of large internet platforms must become skilled in techniques tied to the software-based
infrastructure which brought those platforms to life. Comcast’s launch of software-driven networking
services could be considered as one such case study. Luckily, many of the lessons that were learned were
related to a few fundamental software best practices, which are very well-documented and to which all
modern practitioners should already have access.

In this paper, we will share a few key challenges and lessons learnt through real projects and detail the
ways in which those wishing to move ahead in deploying networking software at scale can be guided to
successfully kickstart similar products and platform initiatives.

2. Challenges and Solutions

Software-based network services such as software-defined networking/network function virtualization
(SDN/NFV) connectivity approaches involve abstracting network functions and services out of silicon
and into software, separating the connectivity service into administration plane, control plane, and data
plane vectors, each of which is coordinated and controlled via software components operated as a
platform.

The data plane is transported physically over white-box devices with all the logic for routing and services
instantiated across the platform. Control plane services allow update to the configurations and changing
the behaviors of the data plane, including adding software-based network functions, such as firewall,
traffic steering, or anti-virus in line with packet processing (in a process called “service chaining”).
Customers and operators manage the control plane services via the admin plane, exposed via application
programming interface (API) or graphical user interface (GUI) into complex orchestration software.

In hardware-based network services, all aspects of the service are well-defined and fixed into the design
of the devices being deployed. The ways in which the devices can be configured is therefore more or
less pre-determined by the vendors. If more capacity is needed, then new hardware is purchased and
deployed.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 4

In software-based network services, all aspects of the service might be distributed across multiple
software components, each of which could be instantiated on a variety of different hardware options.
Each choice in architecture and configuration results in a potentially wide range of capabilities and trade-
offs that must be evaluated and carefully calibrated. Different layers of software abstraction, of operating
systems and virtualization layers, and of interoperability between the layers, creates combinatorial
numbers of variations which could affect the behaviors of the customer service.

Embracing this complexity and developing techniques to make the problems tractable and in line with the
strategies for being handled within hardware was a core part of the challenge in successfully deploying a
software-based networking product.

Below is a list of high-level principles we embrace in design and operations in order to resolve the above
challenges:

· Keep it simple: Leverage cloud-native architecture and standard technologies like edge routers,
border gateway protocol (BGP), generic routing encapsulation (GRE) tunneling, proxies, and load
balancers (LB) for system integration.

· Emphasis on standardization of configuration in version-control, combined w/ logical inventory in
change management database (CMDB) plus strict change control policies to facilitate automation-
first deployment, move/add/change/delete (MACD), & disaster recovery (DR) for operations to
reduce unforced errors

· Embrace test-driven development using fully-automated unit and integration tests to ensure version-
after-version quality consistency

· Forwarding to data lake, aggregation of time-series data combined with intelligent machine learning,
to achieve observability and data-driven capacity planning

3. Keep-It-Simple

When introducing the SD-WAN product, our main goal is to integrate vendor solutions
seamlessly with our existing eco-systems and business strategies.

Nowadays cloud infrastructure virtualization has become a dominating technology because of the set of
benefits it brings. These include a wide range of hardware selections, improved economies of scale,
reduced costs to resource efficiencies, operational flexibility, and faster time-to-market, etc. To keep our
product competitive in the market, we embraced the “keep-it-simple” design principle and make use of
industry standard technologies and best practices. For example, we adopted cloud-native architecture
design, deployed our platform services in geographical-redundant data centers (DCs), and utilized
standard networking technologies to facilitate communications between DCs and to the Internet. Figure 1
below illustrates the high-level architecture design of our cloud-based SD-WAN platform.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 5

Figure 1 – SD-WAN Platform Architecture Design

Microservices are the core of cloud-native architecture design. The complex SD-WAN control plane and
management plane functionality is broken down into multiple microservices, each of which serves a
specific function and could scale in/out independently based on its workload. We take advantage of
microservices because they support DevOps, and improve scalability, while also allowing flexibility with
respect to infrastructure growth. Within the same data center, microservices are interconnected with one
another via traditional technologies, e.g., application programming interfaces (APIs), load balancers
(LBs), etc.

To achieve SD-WAN platform high-availability (HA) and guarantee business continuity, we deploy our
platform (including microservices and data) across geographically diverse DCs (i.e., located in different
regions of the country). This geographical redundancy approach is an industry standard best practice that
provides business resiliency against natural disasters and catastrophic events which might bring a DC
down for certain period of time. Even when disaster happens and one of the DCs is down, our platform
remains available since services are still running in the other DC. Once the impacted DC is recovered,
everything returns to normal. Different microservices in Figure 1 have different HA designs (e.g., active-
backup, active-active, or cluster-based) depending on the nature of the functionality and requirements.

To keep the design simple but efficient, we also adopted standard network technologies to facilitate the
inter-connectivity between data centers and the communication between the SD-WAN platform and
applications/devices from the Internet. As shown in Figure 1, edge routers and Border Gateway Protocol
(BGP) over Generic Routing Encapsulation (GRE) are used to provide HA and dynamic traffic steering
for components to communicate with each other between DCs. Standard proxy and load balancer

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 6

technologies are adopted to facilitate the communication between upstream systems and components in
our platform. Message buses are used to distribute platform telemetry data to service assurance systems
and security monitoring systems.

With these high-level design principles in mind, we keep refining and optimizing our platform
architecture to make it more scalable. For example, we observed that breaking down big microservices
into smaller microservices is an effective way to reduce per-platform cloud footprint. Figure 2 and Table
1 show that our optimization could successfully reduce the per-platform cloud footprint by 9%, 9%, and
62%, respectively, for the best case scenario, the average case scenario, and the worst case scenario. This
benefit grows with the platform capacity. When the platform capacity doubles, per-platform cloud
footprint could be further reduced by19%, 19%, and 82%, respectively, for the best case scenario, the
average case scenario, and the worst case scenario.

Figure 2 – SD-WAN Platform Architecture Optimization

Table 1 – Per Platform Cloud Footprint Reduction for Different Scenarios
Scenarios Current Capacity 1.5 X Current Capacity 2 X Current Capacity

Best case 9% 21% 19%
Average case 9% 15% 19%
Worst case 62% 82% 82%

Current Capacity 1.5 X Current
Capacity

2 X Current
Capacity

Baseline archiecture -- best case 1.00 1.22 1.44
Baseline archiecture -- average

case 1.00 1.22 1.44

Baseline archiecture -- worst case 4.74 12.38 16.34
Refined archiecture -- best case 0.91 0.96 1.17
Refined archiecture -- average case 0.91 1.04 1.17
Refined archiecture -- worst case 1.79 2.28 2.93

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

N
or

m
al

ize
d

pe
r p

la
tf

or
m

cl
ou

d
fo

ot
pr

in
t

Platform Capacity vs Cloud Footprint (normalized)

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 7

4. Automation-First Lifecycle and Test-Driven Development

When silicon-based network capabilities get implemented as software distributed across multiple
components, whether or not on a cloud platform, the pattern is still microservices, and each software
component provides a subset of overall system functionality. An orchestration function is then frequently
placed between the components to coordinate the components into more advanced processes, such as
enabling a new network feature by updating the customer configuration. In some cases, each
microservices component might be a separate software product in itself, with its own behaviors and
release schedule. This distributed structure provides maximum flexibility and reuse, and can allow for
simplification and different optimizations for the operator, at the possible cost of complexity of
implementation.

In our case, service reliability was of paramount concern. Given the wide range of network features and
functionality being launched, the tight integration between the administration plane and the control/data
plane behaviors demanded a comprehensive validation of all capabilities for backwards compatibility, to
prove the proper working of all services before moving any new software code to production. This was a
non-negotiable requirement, in order to preserve the confidence of customers and operations that software
changes would not be disruptive to their experience. But we soon found that traditional approaches to
bench testing would not alone be enough to capture sufficient details regarding the individual health and
wellness of each component independently, let alone to build a comprehensive picture of overall service
reliability.

While we understood that minimizing any risk of disruption would necessitate comprehensive regression
before every significant change, we also knew that the tedious manual testing exercises of the early
development phase would not suit the needs of our customers. Our approach shifted towards development
of a custom, reconfigurable testing platform, integrated with our continuous integration/continuous
deployment (CI/CD) pipeline. This high-level framework is depicted in Figure 3. It resulted in reliably
repeatable validation cycles, covering an ever-growing set of test cases across all components. This
switch to automated testing added new development in the sense of coding test cases, but eventually test
design and coding merged into the same practice. Overall, it cut our testing cycles by multiple orders of
magnitude, allowing us the flexibility to increase velocity of deploying the latest code, resulting in faster
improvement of reliability and features releases to our customers.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 8

Figure 3 – Test Automation Framework

We also addressed several important challenges. For one, we could not always rely on a fixed set of
software versions in production; that is, in the field, due to many different teams operating over time and
different field requirements or business realities, there could be different versions of each component
running, other than what got initially deployed. All these different variations would need to be supported
uniformly from a feature perspective. Further, operations teams maintaining microservices-based systems,
having numerous components with different behaviors distributed geographically, would face the tedious
exercise of having to manage extreme amounts of detail during maintenance windows, requiring large
teams of highly-skilled engineers maintaining superhuman focus for hours at a stretch, attending to every
detail when performing upgrades.

The most crucial aspect of successfully managing these details turned out to be perhaps one of the most
difficult to achieve in practice: configuration standardization, such that the configurations being tested
and deployed have known behaviors that can be used as baselines when our teams are trying to resolve
something that isn’t behaving as expected in the wild. This is something done very well in software, but
very difficult to achieve manually. These system complexities made clear that manual administration of
even a small number of environments would be untenable over time. As has been discovered by other
software-driven organizations, we resolved that an automation-first strategy was required to make even
simple administration tenable.

Another early indicator that tipped the scales towards platform automation was the realization that there
would be numerous instantiations of the fundamental datacenter software stacks which powered our
service – so many, in fact, as to make manual administration of all those system instances impossible in
practice. There could never be enough skilled engineers to manually log in and take care of all the many
traditional Day 2 activities which invariably would arise when running complex software systems –
password changes, template updates, patches, even disaster recovery. Neither could these systems reliably
and repeatably be deployed, day after day, week after week, retaining the same level of quality with the
15th as with the first; nor could they reliably be restored after a disaster using a manual checklist alone.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 9

We thus adopted a platform strategy for our systems lifecycle applications, a technique that is also
widespread in the software industry. Starting with a common framework of basic services, such as data,
API, GUI, communications, and logging, we ensured that all applications participating in this platform
would also enjoy common performance and availability optimizations, such as blue-green deployment for
live upgrades, and site-diversity for fault tolerance. On top of this framework was developed a portal, into
which bits of functionality could be dropped. Initially just a wrapper for some crude management utilities,
it has become the one-stop-shop for platform operations teams, who leverage automation at every step in
the lifecycle of our production systems. The portal’s extensibility enables it to be used not only for large
milestones such as deployment, upgrades, or disaster recovery, but also to perform more routine tasks
such as license management, password rotation, and security patches.

The most important benefits from the repeatability and reliability of this standardized approach to
operations are clear and have proven value from the start; many serious issues that could typically have
resulted from hand-crafted configurations, varying from environment to environment, have been
completely avoided. Taken as a whole, the benefits due to the automation are irrefutable, with time-in-
motion improvements typically measured in (sometimes multiple) orders of magnitude, as illustrated in
Table 2. To paraphrase computing legend Larry Wall, it “makes hard tasks easy, and impossible tasks
possible.”

Table 2 – Platform Lifecycle Automation Benefits
Platform Lifecycle Category Execution Timeline Improvement with Automation

Regression Testing >99%
Production VM Build / Software Deployment 92%
Disaster Recovery / High Availability Testing >70%

5. Data-Driven Proactive Monitoring

Modern operational visibility has expanded beyond sysadmins and ITOps analysts. It is required
not only to monitor the status and performance of running applications/services/systems and to
detect issues in real-time but also to understand why, project the trends, and provide feedback to
DevOps teams and customers. Additionally, the nature of cloud technology and SD-WAN
technology, namely the separation of data plane, control plane, management plane, virtual
resource, and physical resources, adds more complexity to the platform monitoring and data
analysis.

Following the industry standard, we embrace data-drive proactive monitoring approaches and
cross-layer correlation to achieve observability at all layers. It is a straightforward architecture
pattern which allows us great flexibility in adding or changing features and service. Figure 4
shows our high-level data-driven monitoring architecture design.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 10

Figure 4 – SD-WAN Platform Data-Driven Monitoring

The data collection layer utilizes industry standard tools or vendor supported features to collect data and
provide observability from all layers, including the physical layer (e.g., cloud, hypervisor, servers, hosts,
network, etc.), the platform layer, and the application/service layer. The data collected includes all three
pillars – logs, metrics, and traces – that are needed for observability.

The data storage and distribution layer uses industry standard technologies and shared platforms to store
and distribute telemetry data to the upstream systems. The volume and velocity of the data needed for
observability is huge. Thus, our design requirement on systems and platforms used at this layer mainly
focuses on scalability, performance, and HA.

The data processing and correlation layer consists of multiple systems that are designed and developed to
provide visibility from different perspectives. For example,

o Customer portal: provides the overall health status at the customer service level.
o Operation team tools and portal: provides in-depth health status of all layers from an engineering

perspective.
o Security monitoring portal: provides in-depth telemetry data from a security perspective.

Our data-driven monitoring infrastructure has become a critical piece in the entire product ecosystem. It
provides insightful information and feedback from many product perspectives, as in Figure 5 (a) below.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 11

Figure 5 – Benefits of Observability

From a platform perspective the main benefits include but not limited to:

o Fast operation reaction to issues: we are collecting health metrics from all layers and triggering
notifications to our operation teams to react. The correlation of collected data from all layers also
assists in troubleshooting and debugging process, helping operation teams and platform
architecture teams to identify the root causes and fix issues even before customers report them (as
illustrated in Figure 5 (b).

o Health metrics collected from the physical layer and the platform layer help us to look for signs
that indicate resources may soon run out of capacity, enable us to predict the growth and trend,
perform capacity planning, and trigger operation teams to scale out platform components. Figure
6 illustrates the microservices growth projection with increasing platform capacity. The
calculation is based on the observability data collected in production. As shown in the diagram,
with the increasing platform capacity, different microservices need to be scaled out differently
depending on the projected workload. Some microservices do not require to be scaled out even
when we plan to double the platform capacity.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 12

Figure 6 – Microservices Growth vs Platform Capacity

In addition, using standard technologies in design and developing this data-driven proactive monitoring
infrastructure helps to reduce development cost, to achieve required scalability and reliability, and to hire
talent to maintain and operate the platforms.

6. Conclusions
It was the intention of this paper to detail the ways in which we have found that simple software industry
best practices could be implemented to great effect as part of the operationalization of networking
services. These include leveraging standard networking protocols for implementing core availability
behaviors, standardizing configurations in order to apply an automation-first approach to change
management, embracing test-driven development to validate changes as quickly as needed by the
business, and employing insights collected using modern data management approaches to forecast growth
and anticipate changes. Although common among many industries, these techniques differ from
hardware-based approaches due to their inherent flexibility in relation to dynamic virtual and distributed
software-based systems, allowing greater reliability and availability to be offered.

Abbreviations
API application programming interface
BGP Border Gateway Protocol
CI/CD continuous integration/continuous deployment
CMDB change management database
DC data center
DR disaster recovery

0

10

20

30

40

50

60

70

Current Capacity 1.5 X Current Capacity 2 X Current Capacity

M
ic

ro
se

rv
ic

es
 S

ca
la

bi
lit

y
(n

or
m

al
ize

d)
Microservices scalability vs platform capacity (normalized)

micro-service1

micro-service2

micro-service3

Other micro-services

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 13

GRE Generic Routing Encapsulation
GUI graphical user interface
HA high availability
MACD move/add/change/delete
MSO multiple system operator
SDN/NFV software-defined networking/network function virtualization
SD-WAN software-defined wide area network

Bibliography & References
Programming Perl, 2nd Edition (1996), Tom Christiansen, Randal L. Schwartz, and L. Wall; ISBN-13:
978-1565921498, ISBN-10: 1565921496; O'Reilly Media.

M. Casado, N. McKeown, and S. Shenker, “From ethane to SDN and beyond”, in ACM SIGCOMM
Computer Communication Review, vol. 49, issue 5, Oct. 2019, pp 92-95.

L. L. Peterson, C. Cascone, and B.S. Davie, “Software-Defined Networks: A System Approach”; System
Approach, LLC.

“Network Functions Virtualisation – Introductory White Paper”; ETSI. Oct. 2012. Retrieved June 2013.
G. Fellows, "High-Performance Client/Server: A Guide to Building and Managing Robust Distributed
Systems", in Internet Research, vol. 8, issue 5, Dec. 1998.

Observability Engineering, C. Majors, L. Fong-Jones, and G. Miranda ; ISBN: 9781492076445 ;
Released May 2022 ; O'Reilly Media.

Observability in Google Cloud ; Google Cloud DevOps Research and Assessment (DORA) research.

N. Kumar, A. Leventer and A. Matatyaou, "Monitoring and Troubleshooting at Scale with Advanced
Analytics", SCTE Cable-Tec Expo 2021.

A. Mohan and X. Huang, "Robust and Resilient Service Assurance System Design with Observability to
Improve Enterprise Customer Experience", SCTE Cable-Tec Expo 2022.

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Tom+Christiansen&text=Tom+Christiansen&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Randal+L.+Schwartz&text=Randal+L.+Schwartz&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Larry+Wall&text=Larry+Wall&sort=relevancerank&search-alias=books

	1. Introduction
	2. Challenges and Solutions
	3. Keep-It-Simple
	4. Automation-First Lifecycle and Test-Driven Development
	5. Data-Driven Proactive Monitoring
	6. Conclusions
	Abbreviations
	Bibliography & References

