

SEPTEMBER 26-29 PHILADELPHIA Aboard the Technology Wave: Surf Report

Dr. Robert Howald

Vice President, Network Architecture

Comcast

Agenda

- Problem and Solution Options (2)
- Current Wave and Readouts (9)
 - Fiber Deep
 - DOCSIS 3.1
 - FTTP
 - All-IP
- Wave 2 (5)
 - Distributed Architectures
 - Virtualization
 - Full Duplex DOCSIS
 - Wireless
- Timing and Synergy

Persistent Forcing Function

- CAGR continues
- Implications can be projected
- Multiple tools to manage
- Drives decision and investment timeline
- Many years to observe trends and adapt

Quantifiable Options

Time Perspective Matters

- Long-term investment window – BAU limitations
- Capacity, product, operations, and architecture strategy considerations
- Results lead to Fiber Deep recommendation

Fiber Deep: Building Now

XP0'16

- Passive coax
- More spectrum
- Flexible spectrum
- Smaller serving groups
- Convenient access for FTTP

Fiber Deep: Technology Partners Delivering

(PO'16

- World's first deployed
 1.2 GHz node
- New PA technology to maximize reach optimize economics with extended tilt line
- Modular Node for DAA DOCSIS and EPON options

Fiber Deep: Expectations Being Met

Increased EOL MER observed More BW-efficient QAM for D3.1

> 1 bps/Hz average gain

Steady state before / after trouble calls: -30% Increase during – typical but expect to get better

DOCSIS 3.1: PHY Makeover Definition

- Better BW efficiency and capacity were primary objectives
- Multiple QAM
 profile optimize
 network usage
 rather than throw
 away dB

DOCSIS 3.1: Launched

- Field versions of 1024-QAM and 4096-QAM from D3.1 trials
- OFDM spectrum operating in the roll-off band in Philadelphia trial system

DOCSIS 3.1: Mission Accomplished

Robust, repeatable Gigabit service speeds achieved Periodic speed testing

Bonding of D3.1 and D3.0 spectrum proven Enabling of Gbps service speeds over coax

FTTP: Align to Capacity, Product, All-IP

- Support capacity growth, matching long term HFC
- EPON Interoperability
- Multi-Gig speeds
- · Business services growth
- All-IP Services
- DPoE
- IEEE standard

FTTP: Adapted to Cable Networks

	OLT Config	Trunk	PON	10 ONU DS	10 ONU US	60 ONU DS	60 ONU US
1	Control Test	0km	20km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
2							
3	cable distance 10 - 30	20km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
4	cable distance 30 - 50	40km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
5	cable distance 50 - 70	60km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
6	cable distance 60 - 80	70km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
7	cable distance 70 - 90	80km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
8	cable distance 80 - 100	90km	0km	8,400Mbps	8,400Mbps	8,339Mbps	7,670Mbps
9	cable distance 80 - 100	90km	10km	8,400Mbps	8,296Mbps	8,339Mbps	7,670Mbps
10	cable distance 80 - 100	100km	0km	Fail	Fail	Fail	Fail
11	cable distance 10 - 100	90km	20km	Fail	Fail	Fail	Fail

- HFC and PON / Telco architecture differences
- Distance and hhp/fiber (or hhp/lambda) differences
- PON "Extender" overcomes limits and enhances architecture flexibility

All-IP: Continuous Spectrum Management

- Analog reclaimed
- Digital TV
- HD TV
- Higher Efficiency video encoding
- IP Explosion
- IPTV

Wave 2 – Next Up

Distributing Benefits

- Fiber Efficiency
- Fiber reach
- Ethernet
- Facility Efficiency
- EOL RF Performance
- Alignment to NFV /
 SDN Architecture

Not Just for DOCSIS

- Common problem statement
- Common Network
 interface
- Common transport protocol
- Agnostic to last-mile
 access technology

DAA Benefits at Both Ends

- Distribute
- Virtualize
- Converge
- Standardize

Unify Service Deployment

B. Hamzeh, Full Duplex DOCIS, 2016 CableLabs Winter Conference

- Fiber Deep, DAA, D3.1 dependencies
- Enhance HFC upstream capacity and speed
- Maintain downstream capacity
- Common last mile service capability regardless of fiber or coax drop

Something in the Air

 High density WiFi Aps extend customer HSD access today

STTE ISBE CABLE-TEC

EXPO'16

 High density access to fiber such as FD is enabling of mobile and/or mm-wave access

Timing and Synergy

- Migration to Fiber Deep
 - Capacity, Speed, FTTP Extension
- Introduce DOCSIS 3.1
 - Maximize FD Spectrum to 10G, All-IP
- Implement 10G (EPON) also in FTTP
- Introduce "DAA" architecture to scale FD
 FD + DAA → FDX Enablement
- With "Distributed" move to "Virtualize" core
- Distributed + Virtualized + Multiple Last Mile Access → Converged, Automate
- FD = Dense Fiber Access → Aligns with wireless mobile access strategies

Conclusion

- Long-term evolution playbook developed and executing
- Technology moves faster than
 infrastructure change
- Options for new services and operational efficiencies
- Must place bets projecting emerging technology complements, disruptors, and timing
- Playbook is a living document

HEADEND & BACKBON FIBER DEEP ARCHITECTURE Today's IP Fiber-Deep Enabled Broadcast and Bandwidth IP Bandwidth VOD OAM Node Splits 1.2 GHz 750 MH Today's 85 MHz Upstream Upstream FN Splits SG Costs ADI FD FTTH Narrowcas Data. Video Core DAA Components OSP Enclosure Remote DOCSIS 750 MHz 1 GHz 1.2 GHz Module(s) Single Unified IP Network 10G or 16 1 DOCSIS 3.1: Frequency Division Duplex Different Spectrum Downstream and Upstream Remote PON Module(s) ously use the same spectrum for

NPV Comparisons (2016 - 2026)

apex (\$N

Speed Test

SEPTEMBER 26-29 PHILADELPHIA

Dr. Robert Howald

rlhowald@cable.Comcast.com

Essential Knowledge for Cable Professionals[™]

© 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved.

У #CableTecExpo