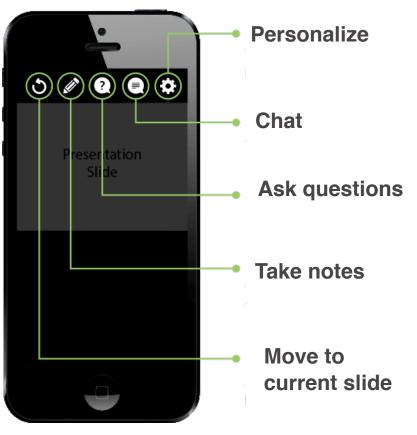


SEPTEMBER 26-29 PHILADELPHIA

## Configuration Recommendations for DOCSIS Transport of IP Video Service

#### William T. Hanks


Director, Systems Broadband Architecture Engineering

ARRIS



## **This Session Will Be Interactive!**







### AUDIENCE SURVEY: What is your primary background expertise?



- CATV & Analog Video
- Digital Video & SDV
- RF and/or HFC plant
- IPTV over traditional Networks DOCSIS Services





#### **Summary of topic:** Top 100 words from paper





### **Purpose of Paper**

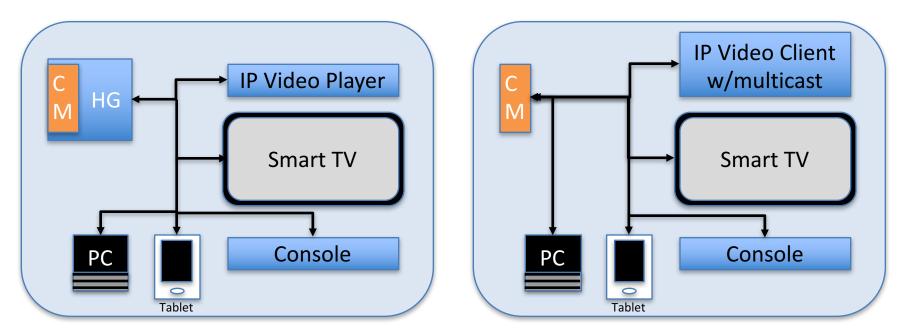
To help answer commonly-asked cable industry questions about configuring managed IP Video service over DOCSIS.

#### **Included**

- Overview of many interconnected topics
- General configuration recommendations

#### Not Included

- Customer-specific optimizations
- Traffic engineering calculations




#### **Vendor and Product Disclaimer**

- The ideas and recommendations expressed in this work are believed by the authors to be applicable on most products from most industry vendors.
- Some background assertions may prove to be untrue on some products and some recommendations may be unrealizable on some products.
- If issues arise when attempting to tune an IP video system, please refer to product information and contacts from the component equipment vendors.
- NOTE: While this presentation is focused on M-ABR solution using home gateway products, some alternate IP Video architecture solutions (especially IP Video applications that sit behind a CM) may benefit from these recommendations too.



#### **Home Networking Use Cases**



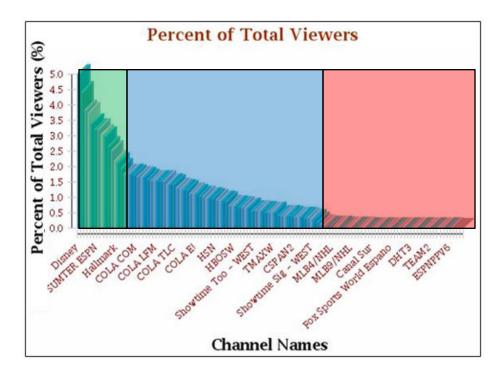


#### Many Technology Topics to be Carefully Considered

| Viewership Patterns                                                               | Channel Zapping |              | Program Popularity   |  |
|-----------------------------------------------------------------------------------|-----------------|--------------|----------------------|--|
| Single Viewer                                                                     |                 | Many Viewers |                      |  |
| IP Unicast                                                                        |                 | IP Multicast |                      |  |
| ABR                                                                               | M-ABR           |              |                      |  |
| QoS                                                                               |                 |              |                      |  |
| Plant Topology                                                                    |                 | CM size      | Service Requirements |  |
| Configuration and Assignment                                                      |                 |              |                      |  |
| DOCSIS                                                                            |                 |              |                      |  |
|                                                                                   |                 |              |                      |  |
| IP Video configuration recommendations with examples for mixed population of CMs! |                 |              |                      |  |



#### **Some Background Topics**




#### **Evolution of cable video technology**

- Community Antenna TV: Analog broadcast video over coax cable
- HFC: Analog broadcast video over fiber and coax cable
- Digital HFC: Digital broadcast video over fiber and coax cable
- VOD: Digital Video-on-demand digital video for single user
- SDV: Switched digital video over fiber and coax (when viewed)
- IP over DOCSIS: cable system carries IP services
- IPTV over DOCSIS: Over-the-top services use IP over DOCSIS to deliver video
- Managed multicast-assisted adaptive bitrate (M-ABR) IP video: Leverage best of all technologies to efficiently carry high quality video



## **Relative Popularity of Linear Programs**



STTE ISBE CABLE-TEC

#### short-tail:

- Many viewers similar to traditional broadcast
  - Static Multicast: always on; CM JOINs at registration and stays JOINed.
  - Dynamic Multicast: Multicast signaling protocol (IGMP/MLD) used to JOIN/LEAVE as user changes channels

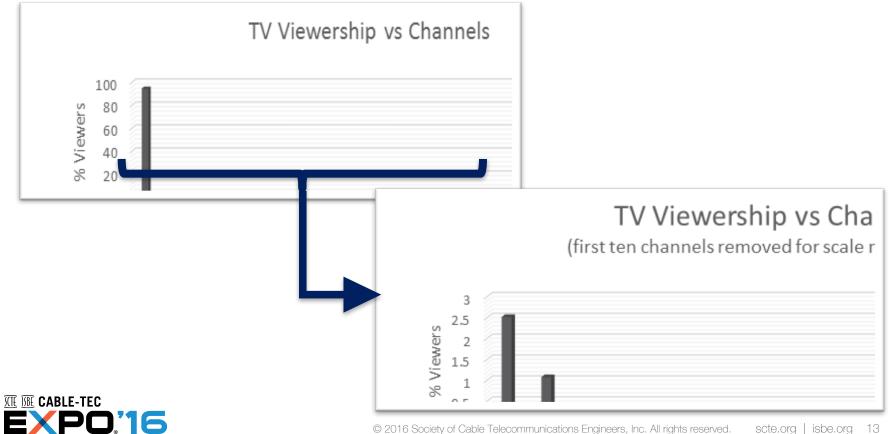
#### medium-tail:

- program streams expected to be switched in/out depending on demand
  - Either IP unicast (similar to VOD) or IP multicast (similar to SDV); depending on MSO plan

#### long-tail:

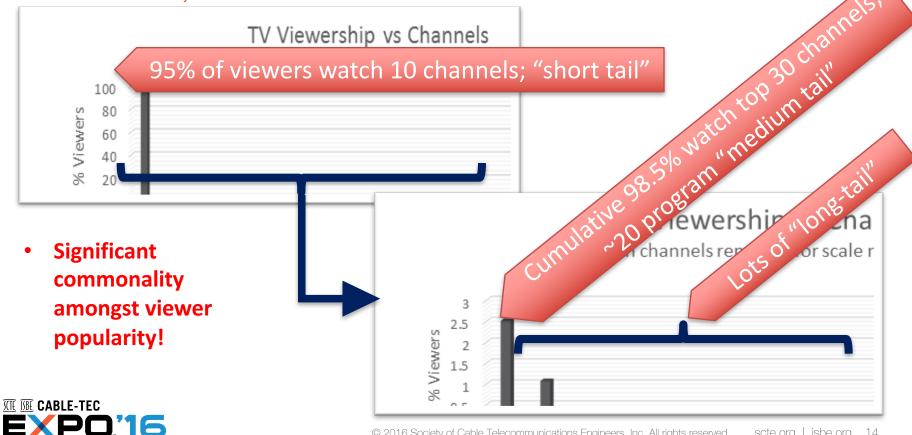
- program streams expected to be watched rarely
  - Usually IP unicast as these programs would not see benefit from IP multicast

#### **Viewership snapshot**


#### U.S. Metro Area; Dec.2015






### **Viewership snapshot**

#### U.S. Metro Area; Dec.2015



## **Viewership snapshot**

#### U.S. Metro Area; Dec.2015

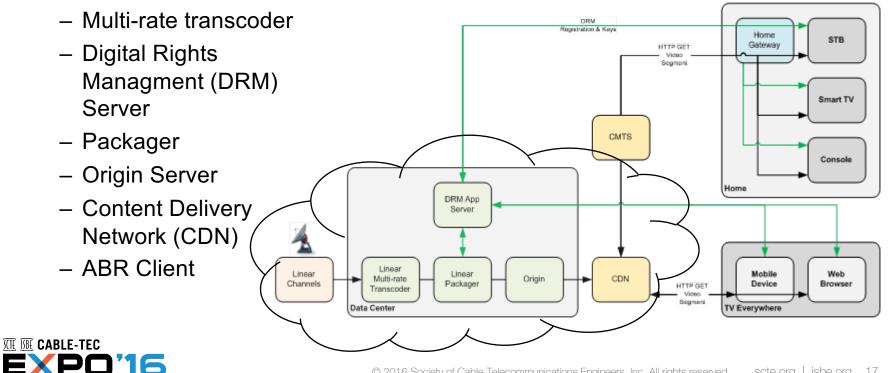


# **Channel Zapping**

- Rapid television channel changes (a.k.a. "zapping") can create problems with any digital video format where entire packets and frames must be received with valid checksums and then rendered.
- With IP video, individual program streams are typically placed onto packet flows that use different IP header or flow identification information.
  - This header information needs to be communicated to the CPE devices in real-time as customers rapidly press channel "up", "down" and "previous" buttons on their remote.
- Some studies have shown that a channel change needs to happen in 430 milliseconds.<sup>1</sup>



1. Kooij, Robert et.al.; "Perceived Quality of Channel Zapping", 2006


#### **Adaptive Bit Rate Television**

- Adaptive Bit Rate (ABR) Protocols work across all devices
  - Set-top video players, tablets, smart-phones, gaming devices, smart TVs, PC, etc.
  - Works through NAT and firewalls!
  - Unicast HTTP based (over TCP/IP)
    - Simple Clients with URL-based Playlists
    - Easily traverses home firewalls
    - Leverages standard CDN transport
- Adapts to changing network conditions
  - ABR is a superset of several different protocols:
    - MPEG-DASH, HLS, Smooth Streaming, HDS, ...
  - Program is broken into chunks and encoded with multiple resolutions (and transmission sizes) into files which are all stored
    - Client bases next chunk request on reception time of last chunk



## **Traditional (unicast) ABR Infrastructure**

ABR Components



### What is M-ABR?

- Multicast-assisted ABR (M-ABR) is an important optimization of Traditional ABR
  - Similar to standard ABR system that uses transparent caching proxy in Home Gateway
  - Transparent cache can be filled via multicast or unicast
    - Multicast optimizes network bandwidth utilization
    - Unicast used for quick channel changes and lost segments
- Improved QoE for highly-valued linear TV services
  - Provides guaranteed Quality of Service for multicast streams
- May be used with reliable multicast transmission protocols (like NORM)



### **NACK-Oriented Reliable Multicast (NORM)**

- IETF RFC 5740
- Protocol adds some reliability to UDP-based multicast transport
- Recommended multicast transfer protocol by <u>IP Multicast Adaptive Bit Rate</u> <u>Architecture Technical Report</u><sup>[1]</sup>
- Can be configured to add FEC capability to the content to reduce the potential for multicast/unicast retransmission and increase overall efficiency.
- Many excellent NORM configuration recommendations can be found in [1].



1. OC-TR-IP-MULTI-ARCH-V01-141112, Cable Television Laboratories (CableLabs).

### **M-ABR Infrastructure**

 M-ABR supplements ABR DRM Registration & Keys Bandwidth optimization Home STB Multicast Gateway Client when multiple viewers ABR Segments over Multicast ABR Segments – QoE guarantees over Unicast Smart TV CMTS HTTP GET Video Console Segment M-ABR Components Multicast Multica Controller Server DRM App Multicast Controller Server HTTP GET Video Multicast Server Segment Linear - Multicast Client Linear Mobile Linear Web CDN Multi-rate Origin Channels Packager Device Browser HTTP GET Transcoder Video Segment Data Center TV Everywhere



### AUDIENCE SURVEY: Should loads always be balanced?





© 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved.

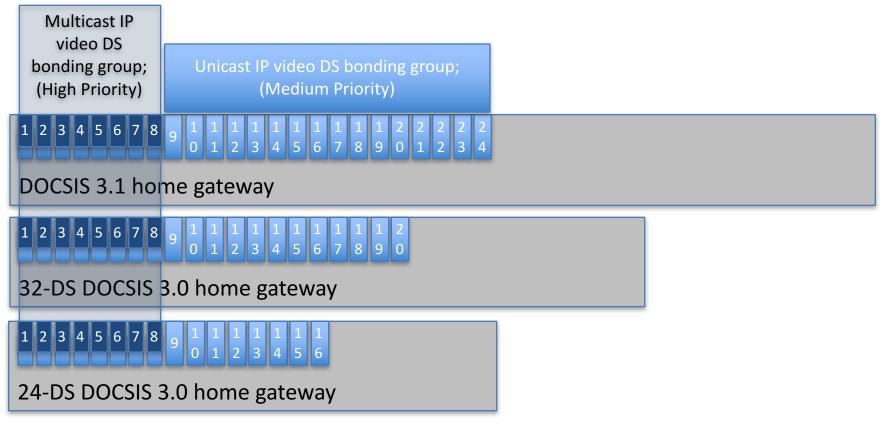


## Load balancing is not always good!

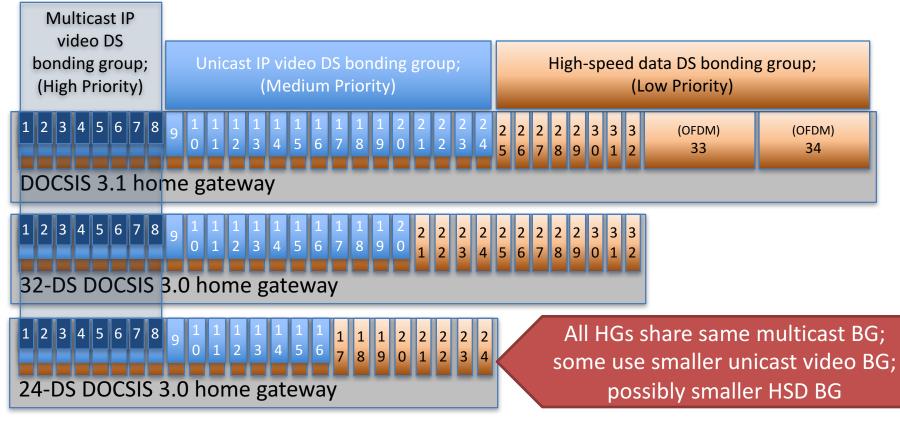
- IP multicast transmission is intended to be shared most efficiently when many group listeners share the exact same media (pseudo-broadcast)
- MSOs have diverse plans for target HG/CM devices to carry IP video; not all MSOs will use only large HG devices with many receivers
  - For all HG/CM devices of differing size to share the same IP multicast transmission, (and avoid replication) the multicast group streams must be **consolidated** onto a bonding group that even the smallest HG/CM can use while allowing other services.
  - HG/CM devices may continue to grow in capability to cause today's large HG/CMs to become the smallest HG/CM in the future.
  - The channels in the common IP video multicast bonding group are intended to have a high utilization (carrying short-tail programing) at all times. This actually improves overall bandwidth efficiency!



DOCSIS 3.1 home gateway


32-DS DOCSIS 3.0 home gateway

24-DS DOCSIS 3.0 home gateway




| Multicast IP<br>video DS<br>bonding group;<br>(High Priority) |                  |
|---------------------------------------------------------------|------------------|
| 1 2 3 4 5 6 7 8                                               |                  |
| DOCSIS 3.1 ho                                                 | me gateway       |
| 1 2 3 4 5 6 7 8                                               |                  |
| 32-DS DOCSIS                                                  | 3.0 home gateway |
| 1 2 3 4 5 6 7 8                                               |                  |
| 24-DS DOCSIS                                                  | 3.0 home gateway |











- None Use static settings from HG's CM configuration file
  - DOCSIS CMTS Static Multicast Session Encoding (TLV Type 64) for short tail always-on multicast channels
  - Unicast best-effort service flows for signaling
  - Unicast best effort service flow for unicast portion of M-ABR media



- None Use static settings from HG's CM configuration file
  - DOCSIS CMTS Static Multicast Session Encoding (TLV Type 64) for short tail always-on multicast channels
  - Unicast best-effort service flows for signaling
  - Unicast best effort service flow for unicast portion of M-ABR media
- Multicast signaling
  - Internet Group Management Protocol (IGMPv2/3) for IPv4
  - Multicast Listener Discovery (MLDv2) for IPv6



- None Use static settings from HG's CM configuration file
  - DOCSIS CMTS Static Multicast Session Encoding (TLV Type 64) for short tail always-on multicast channels
  - Unicast best-effort service flows for signaling
  - Unicast best effort service flow for unicast portion of M-ABR media
- Multicast signaling
  - Internet Group Management Protocol (IGMPv2/3) for IPv4
  - Multicast Listener Discovery (MLDv2) for IPv6
- PacketCable Multimedia (PCMM)



- None Use static settings from HG's CM configuration file
  - DOCSIS CMTS Static Multicast Session Encoding (TLV Type 64) for short tail always-on multicast channels
  - Unicast best-effort service flows for signaling
  - Unicast best effort service flow for unicast portion of M-ABR media
- Multicast signaling
  - Internet Group Management Protocol (IGMPv2/3) for IPv4
  - Multicast Listener Discovery (MLDv2) for IPv6
- PacketCable Multimedia (PCMM)
  - NOT RECOMMENDED (see next slide)



 Dynamic bonded unicast flow creation requires at least two 3-way DOCSIS MAC Management Dynamic Services transactions (DSA to add) + (DBC to add bonding info) to succeed in serial.

- Only one dynamic services transaction may be active at a time per CM



- Dynamic bonded unicast flow creation requires at least two 3-way DOCSIS MAC Management Dynamic Services transactions (DSA to add) + (DBC to add bonding info) to succeed in serial.
  - Only one dynamic services transaction may be active at a time per CM
  - Serialization of these transactions adds latency and error opportunities to channel zapping use case
    - Significant possibility of dynamic services requests backing up at CMTS/CCAP MAC Domain during rapid channel change



- Dynamic bonded unicast flow creation requires at least two 3-way DOCSIS MAC Management Dynamic Services transactions (DSA to add) + (DBC to add bonding info) to succeed in serial.
  - Only one dynamic services transaction may be active at a time per CM
  - Serialization of these transactions adds latency and error opportunities to channel zapping use case
    - Significant possibility of dynamic services requests backing up at CMTS/CCAP MAC Domain during rapid channel change
  - Problem is magnified when web-based service application managers assume that the same transaction can be resent multiple times "to ensure success"
    - New PCMM Gate Set request messages do not have identification that allow CMTS to determine whether request is a duplicate.



- Dynamic bonded unicast flow creation requires at least two 3-way DOCSIS MAC Management Dynamic Services transactions (DSA to add) + (DBC to add bonding info) to succeed in serial.
  - Only one dynamic services transaction may be active at a time per CM
  - Serialization of these transactions adds latency and error opportunities to channel zapping use case
    - Significant possibility of dynamic services requests backing up at CMTS/CCAP MAC Domain during rapid channel change
  - Problem is magnified when web-based service application managers assume that the same transaction can be resent multiple times "to ensure success"
    - New PCMM Gate Set request messages do not have identification that allow CMTS to determine whether request is a duplicate.
  - PacketCable Multimedia does not scale well for rapid channel changes due to significant processing on CMTS/CCAP device



### **Summary**

- M-ABR is generally the industry standard.
- Use NORM to provide some robustness to connectionless IP multicast sessions.
- IP multicast transmission is intended to be shared. Maximize efficiency by packing multicast on as few channels as can carry the short (and possibly some medium) tail content.
- Avoid using PacketCable Multimedia signaling for IP video signaling backup is likely with channel zapping behavior.





Essential Knowledge for Cable Professionals<sup>™</sup>

© 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved.