

SEPTEMBER 26-29 PHILADELPHIA DEVICE TESTING AND EVALUATION OF PNM TEST OPERATIONS VIA SIGNAL ANALYSIS

Maurice M. Garcia

Sr. Principal Software Engineer

Comcast

Introduction

DOCSIS 3.1 offers greater spectral efficiency, robustness, and multiple modulation profiles to get us closer to Shannon Limit

- How to optimize capacity?
 - Old way: use expensive test equipment, labor intensive field measurements
 - New way: use 3.1 PNM features + open source software to automate it at scale
- In this presentation, we'll address the following:
 - Is a DOCSIS 3.1 CM with enhanced PNM functionality indeed a viable alternative to lab-quality test equipment
 - How can cable operators use new PNM in DOCSIS 3.1 CMs' to optimize capacity and how close can we get to the Shannon Limit
 - Individually, as well as collectively, reliably and predictively

Method

- Great insight into network health can be provided simply by using the DOCSIS 3.1 PNM feature Downstream Receive Modulation Error Ratio Per Subcarrier (RxMER) to determine OFDM signal fidelity at the CM tuner frontend
- The analysis toolset used is an in-house developed application called OpenPNM. It is currently being used for our DOCSIS 3.1 trials in the evaluation of OFDM signal fidelity via RxMER and FEC Summary
 - Also provides OFDM modulation profiles and leverages variable bit loading

Validating the Sensitivity of the CM RxMER via Signal Analysis

Validating the Sensitivity of the CM RxMER via Signal Analysis

This test is to compare the CM's ability to measure the MER accurately at the receiver front end versus a lab quality signal analyzer. The signal analyzer was configured to perform spectrum, vector, and DOCSIS OFDM analysis.

If PNM-based metrics are to be used moving forward for critical plant repairs and improvements, this evaluation is essential to determine the performance and assessment of the OFDM signal fidelity from the perspective of the CM.

Validating the Sensitivity of the CM RxMER via Signal Analysis

CMTS OFDM Configuration					
OFDM 96MHz (BW) (Tests 1 – 6)		OFDM 96MHz (BW) (Tests 7 – 11)			
Start Frequency*	786 MHz	Start Frequency	786 MHz		
Stop Frequency*	882 MHz	Stop Frequency	882 MHz		
PLC**	832 MHz	PLC	832 MHz		
Profile A	4096QAM	Profile A	1024QAM		
Cyclic Prefix	1024 Samples	Cyclic Prefix	1024 Samples		
Roll-Off	256 Samples	Roll-Off	256 Samples		
Single Carrier QAM		Single Carrier QAM			
Center Frequency	663 MHz	Center Frequency	663 MHz		

Table 5 - CMTS OFDM Test Configuration based

Validating the Sensitivity of the CM RxMER via Signal Analysis

Test results were within 0.3 dB of lab vector analyzer!

TEST	PROFILE-A	VSA MER (dB)	PNM RxMER (dB)	SNR (dB)	THRUPUT (Mbps)	LDPC CODE ITERATION
1	4KQAM	46.0	43.2	46	773	1
2	4KQAM	38.0	37.9	38	773	2
3	4KQAM	37.1	37.2	37	773	12
4*	4KQAM	36.7	36.4	36	773	15
5**	4KQAM	36.4	35.6	35	340	20
6	4KQAM	36.18	-	34	-	ALL ERRORS
7	1KQAM	35.0	34.2	35	651	-
8	1KQAM	33.2	33.2	34	651	-
9	1KQAM	32.4	31.3	33	651	-
10*	1KQAM	30.71	30.3	30	651	-
11	1KQAM	-	-	29	-	ALL ERRORS

Table 6 - Sensitivity of the CM RxMER via Signal Analysis Summary Results

PROFILE-A*	MINIMUM MER	VSA	(MM-V) DELTA	PNM	(MM-P) DELTA
4KQAM	36.1 dB	36.7 dB	.6 dB	36.4 dB	.3 dB
1KQAM	30.1 dB	30.7 dB	.6 dB	30.3 dB	.4 dB

Table 7 - Sensitivity of the CM RxMER via Signal Analysis Results

OFDM Modulation Profile Transition

- Verify demotion of OFDM profiles in AWGN
- 3 profiles used (not all D3.1 features supported yet)

OFDM Modulation Profile Transition

- Test proved CM/CMTS capability to demote CM to lower profile
- Validates the sensitivity of the CM RxMER KPI in 3.1

TEST	PROFILE	PNM RxMER	AWGN	THRUPUT
	QAM**	(dB)	(dB)	(Mbps)
1	4068	40.7	-	910
2	1024	37.36	37.0	910
3	1024	35.44	34.0	910
4	1024	31.50	31.0	910
5	1024	32.4	30.0	910
6	1024	31.54	29.0	910
7	1024	30.66	28.0	910
8	256	29.78	27.0	910
9*	256	24.99	22.0	492
10	256	24.39	21.5	492
11	256	24.28	21.3	492
12	256	24.12	21.1	492
13	256	-	-	-

TEST	PROFILE	PNM RxMER	AWGN	THRUPUT
	QAM	(dB)	(dB)	(Mbps)
1	4068	40.24	40	910
2	4068	39.13	38	910
3	4068	38.40	37	910
4	4068	37.72	36	910
5*	1024	36.88	35	910

Table 8 - OFDM Modulation Profile Transition 4096-QAM – 256-QAM Test Results

Table 9 - OFDM Modulation Profile Transition 4096-QAM Re-Test

- MER as proxy for SNR is now standardized across vendors
- OpenPNM application plots MER magnitude vs. subcarrier freq.
 - MER varies from Rx level variation, ingress strength variation among subcarriers, or both
 - In displaying the RxMER, user can observe any ingress or network impairments
 - The following figures are from a Comcast DOCSIS 3.1 field trial
 - CMs with a standard deviation greater than one with a skewness value less than -1 were searched to detect sharp ingress

Figure 8 - RxMER Response - Signal Ingress

Figure 9 - MER Distribution indicating Skewness - Skewness < -1 or -3.19

Comcast's corporate offices, rather than in the field, which shows the power of the centralized monitoring provided by PNM technology.

It is unknown how the signal ingress was introduced, but one can see the side statistics by using the standard deviation and skewness as key performance indicators (KPI). Using automation, CMs can be quickly screened for a potential problem.

- These are captured from a DOCSIS 3.1 field trial and indicate a type of oscillation in MER
- Both are showing a skewness of > -1, and a severity of MER response swing of a standard deviation of greater than 1 dB

Figure 11 - RxMER Response – Oscillation

Figure 12 - MER Subcarrier Distribution - Oscillation - Skewness < -1 or -0.19

- Figure 11 and Figure 13 are captured from a DOCSIS 3.1 field trial and indicate a type of oscillation.
- Both are showing a skewness of > -1, and a severity of MER response swing of a standard deviation of greater than 1 dB.

STE IN CABLE-TEC

EXPO^{'16}

Figure 15 - Multiple Signal Ingress

Figure 16 - MER Distribution – Skewness < -1 or -2.26

Figure 17 - MER per subcarrier Channel Capacity

Skewness < -1 or 2.26

RxMER Analysis MER Per Subcarrier Channel Capacity

The previous slides shows the per-subcarrier channel capacity performance from an MER point-of-view. Each subcarrier is evaluated against the required minimum MER for bit-per-symbol (b/sym) or equivalent the order of modulation, M-QAM.

Although the MER response shows multiple signals ingress that are causing a reduction of MER for a subset of subcarriers, as is seen in Channel Capacity Chart displays, the impact is limited to a reduction from 4K-QAM to 2K-QAM, which means 12 b/sym to 11 b/sym. This gives a throughput reduction of about 8.5% if the CM is demoted to a lesser modulation profile.

Conclusion

The two hypotheses of this paper were shown to be correct:

- A DOCSIS 3.1 CM with enhanced PNM functionality is indeed a viable alternative to lab-quality test equipment
- Cable operators can indeed use DOCSIS 3.1 CMs to determine how close the HFC can get to the upper bound of the Shannon Limit both individually as well as collectively

SEPTEMBER 26-29 PHILADELPHIA

Maurice M. Garcia

maurice_Garcia@cable.Comcast.com

