

SEPTEMBER 26-29 PHILADELPHIA Testing and turn-up of DOCSIS 3.1 services in the HFC network from a field and maintenance technician perspective

Robert J. Flask

Senior Product Line Manager

Viavi Solutions

Agenda

- Testing the building blocks of OFDM
- Measuring OFDM power
- Troubleshooting DOCSIS 3.1- real examples
- Profile Optimization

The Building Blocks of OFDM

Building Block Recommended Metrics

Profile B,C,D		Correctable CWE: variable – Uncorrectable CWE: variable	Correctable CWE: variable – likely to run with high % of correctable Uncorrectable CWE: variable – balance btwn. retries and efficiency		
	OFDM Avg Power, MER, & Noise	Avg LEVEL: >-6 dBmV Avg MER: > 36dB MER @ 2nd Percentile: > 35dB	ICFR < 3 dB peak to peak MER Std Deviation: < 2dB		
	Profile A	Uncorrectable CWE: NONE Lock Status: Locked	If Profile A isn't locked or has Uncorrectable CWE the modem may roll back and use only SC- QAM's in 3.0 mode		
	NCP	Lock Status: Locked Uncorrectable CWE: NONE	If the NCP isn't locked or has many Uncorrectable CWE the modem may not come online		
	PLC	Lock Status: Locked Uncorrectable CWE: NONE	Level: > -15dBmV (6MHz) MER: > 15dB (min)		

Building Block Recommended Metrics

Profile Analysis – identifying drop issues

Тар			Ground B	lock	CPE	
ТАР		Ground Blo	ock	Outlet		
	Profile	Uncorrectable	Profile	Uncorrectable	Profile	Uncorrectable
	Locked?	CWE	Locked?	CWE	Locked	CWE
Profile A	YES	NO	YES	NO	YES	NO
Profile B	YES	NO	YES	NO	NO	YES
Profile C	YES	NO	YES	YES	NO	YES
Profile D	YES	NO	NO	YES	NO	YES

Profile changes highlight problems in drop and or home wiring:

Let's talk about POWER

Average Power vs. Peak Power Use Average for OFDM and Digital carriers

EXP0'16

Using an Analyzer

Spectrum Analyzers measure the level within the RBW window Different RBW's have a big difference in the measured level

Correcting for bandwidth

160kHz RBW Level = -5.49dBmV

STRE ISBE CABLE-TEC

XP0'16

640kHz RBW Level = 0.23 dBmV

5120kHz RBW Level = 10.91 dBmV

Remember total power?Total Power = Power + 10*LOG (Bandwidth)Using this to apply correction factors= -5.49 + 10*LOG (6,000/160)= -5.49 + 10*LOG (6,000/160)= -5.49 + 15.74= 0.23 + 9.72= 10.25 dBmV= 9.95 dBmV

OFDM Measurement with Spectrum Analyzer

For Determining the Average Power you want to choose a marker location that is the flat/average portion and not the peaks of the pilots

Troubleshooting DOCSIS 3.1

OFDM channel 1

STE ISE CABLE-TEC

EXPO'16

OFDM channel 2

Identifying noise and MER degradation

OFDM channel 1

OFDM channel 2

Service Level Testing

AFTER

Profile optimization

Opportunity to adjust profiles to account for plant issues

Profile Optimization

Profiles enable maximum speeds and maximize overall network capacity and throughput

	Example Modulation mix	Approx. bits/Hz
Profile A	Mixed 64 QAM & 256 QAM	6.5
Profile B	Mixed 256 & 1024 QAM	8.0
Profile C	Mixed 1024 & 2048 QAM	9.5
Profile D	Mixed 2048 & 4096 QAM	10.1

SEPTEMBER 26-29 PHILADELPHIA

Robert J. Flask

rob.flask@viavisolutions.com

Essential Knowledge for Cable Professionals[™]

© 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved.

🗲 #CableTecExpo