

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved.

A PRACTICAL GUIDE TO IMPLEMENTING
SOFTWARE DEFINED DOCSIS

A Technical Paper prepared for SCTE/ISBE by

David S Early, Ph.D.
Chief Architect and Data Scientist

Applied Broadband
2741 Mapleton Ave, Boulder, CO 80304

720-259-5621
david@appliedbroadband.com

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 2

Table of Contents

Title Page Number

Introduction __ 3

SDN: From Promise to Delivery ___ 3
1. Making the Case for SDN in DOCSIS ___ 3
2. Myth vs Truth: Is SDN Really a Panacea for All Networking Ills? __________________________ 4

DOCSIS, SDN and OpenDaylight ___ 5
3. Theory ___ 5
4. Practice __ 6
5. Advantages ___ 7
6. Example Architecture __ 7
7. Evolution ___ 8

SDN and PCMM __ 9
8. ODL PCMM Plugin __ 9
9. Use Cases for Programmable Service Flows ___ 9

Theory of Operation ___ 10
10. RESTCONF Request Format __ 11
11. ODL Request Sequence __ 12
12. Management Considerations ___ 12

Lessons Learned ___ 13

Conclusion __ 13

Abbreviations __ 13

Bibliography & References ___ 14

List of Figures

Title Page Number

Figure 1 - SDN High Level Abstraction (ITU-T Y.3300 [6]) 5

Figure 2 - Proposed SDN Transition Architecture 6

Figure 3 - Example Implementation 8

Figure 4 - Request Flow Diagram 10

Figure 5 - Example JSON Content for a Flowspec Gate Set Request 12

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 3

Introduction
SDN carries the promise of enhanced and expanded services with a more manageable operational
environment. While SDN technology is maturing, state-of-the-art is focused on monolithic controller
architectures for traditional networks, with all functions and control being highly centralized – and subject
to the scaling and computational limits of a single server architectural approach.

This paper presents a modular approach to implementing SDN, leveraging existing monolithic controller
architectures for distributed management, but implementing a new centralized control plane that
encompasses only those elements necessary for overarching systems management. Distributed monolithic
controllers are relatively autonomous, while centralized management platforms give the MSO centralized
control of the entire network. This agile new modular approach allows for the immediate leveraging of
existing SDN management platforms without the limitations associated with a purely monolithic
approach.

This paper provides an on overview of a practical SDN implementation of PacketCable Multimedia
(PCMM), along with real-world considerations for SDN architectures and technologies when applied to
Cable Broadband networks. A demonstration will be provided to illustrate.

SDN: From Promise to Delivery

1. Making the Case for SDN in DOCSIS

The use of a software-defined network (SDN) in broadband means resources can be virtualized and
allocated to whatever application or service requires it, when it needs it.

Though advantages to SDN-based architectures and applications have been proposed [1], the specific
benefits when applied to a programmable DOCSIS [2][3] policy environment are as follows:

1. System and network resource elasticity. Traditional network and service provisioning software
for DOCSIS networks has historically been burdened, by rigid system and network resource
deployment constraints and difficult resource dimensioning limitations. The virtualization of
DOCSIS low-level services using contemporary SDN architectures enables greater design
flexibility in networks of scale while affording discrete upgrades to capacities at time of need.

2. A common platform across network applications. Capital, operational, and organizational
economies of scale result when using multiple applications that access the same network services
and related resources in a common way.

3. Service delivery agility. As a consequence (benefit) of both (1) and (2) above, new subscriber
services that benefit from QoS treatment in the access network can quickly be supported.

Business agility is vital for the very survival of broadband organizations hence the ability to implement
new services quickly is vital.

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 4

Traditional DOCSIS network architectures and services lack the flexibility required to support an agile
business and spend more budget than is necessary to over-provision the network for peak utilization. A
forward looking SDN approach is required for any organization looking to become agile, brings the
dynamic features to the network, and gets maximum benefit from the network virtualization functions for
a minimum overall cost. Virtualization has largely transformed the data center with flexible and
automated server provisioning, but networking and storage infrastructure have not kept pace.

2. Myth vs Truth: Is SDN Really a Panacea for All Networking Ills?

While the SDN & OpenDaylight (ODL) [4] technology may still be a little new (and the hype a bit on the
high side), there are real use cases for SDN and the OpenDaylight PCMM plugin in broadband networks
– and we’ll be surprised if products offering this and in-house build systems don’t start taking advantage.

To start, an SDN controller in a software-defined network is the “brains” of the network, and it can be
open or proprietary. The SDN controller is the strategic control point in the SDN network, relaying
information to the southbound APIs (switches/routers) and the applications and business login via
northbound APIs. Southbound interfaces (NETCONF and SNMP) and Protocol plugins (PCMM)
facilitate efficient control over the network and enable the SDN controller to dynamically make changes
according to real-time demands and needs.

The Network Configuration Protocol (NETCONF) defined by IETF RFC 6241 provides mechanisms to
install, manipulate and delete the configuration of network devices. The Simple Network Management
Protocol (SNMP), defined by IETF RFC 3411, allows collection and organization of information about
managed devices on IP networks and modification of that information to change device behavior.

SDN allows routers and switches to match packets on multiple header fields, not just destination IP
address. It allows a network controller to control entire networks for the single program, possibly even
including a remote autonomous system as opposed to just immediate neighbors. SDN provides
mechanism for direct control over packet handling (rather than indirect control via various routing
protocols) and it offers the ability to perform many different actions on packets beyond simply just
forwarding them. When you think about where it might make sense to deploy SDN, ISPs are the natural
place to start. SDN controllers can benefit tens to hundreds of providers and it is possible for ISPs to
adopt SDN without providers deploying new network equipment.

One significant challenge in utilizing existing SDN development work is the differences between
“traditional” networks and DOCSIS networks. Much of the SDN world has focused on traditional
networking applications, and the use of such protocols as OpenFlow [5]. When comparing OpenFlow to
Cable access network technologies such as DOCSIS, fundamental differences exist:

 Topology: The underpinning HFC network is a physical tree/branch topology. The CMTS
(master) and CM (slave) topology and resulting protocol design are fundamentally different than
port-to-port topology of switched networks (e.g. Ethernet).

 Scale: The number of managed devices (entities) in a single managed DOCSIS network is well
into the tens of millions and expected to grow further.

 Complexity: The Information model representing a complete DOCSIS network describes objects
and attributes counted in the thousands.

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 5

DOCSIS, SDN and OpenDaylight
Experience has shown repeatedly that a monolithic approach to management systems has serious
drawbacks. One very powerful pain point is consolidation of features into a single platform that would
require monolithic upgrades for single features, monolithic management and monolithic failure potential.

In this section we address the SDN reference architecture and some proposed adjustments and
enhancements that will help put SDN in context for broadband networks.

3. Theory

The SDN architecture abstraction presented by the ITU-T in [6] describes three functional layers and two
interfaces between the layers (illustrated in Figure 1):

1. Application Layer: SDN and/or business applications that specify network behavior.
2. SDN Control Layer: “a means to dynamically and deterministically control the behavior of

network resources…as instructed by the application layer” [6].
3. Resource Layer: Network devices and element management systems.

Application
Application

Application Support

Orchestration

Abstraction

Control Support

Data transport & processing

Application‐control
Interface

Resource‐control
Interface

Application
Layer

SDN Control
Layer

Resource
Layer

Figure 1 - SDN High Level Abstraction (ITU-T Y.3300 [6])

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 6

The two interfaces (Application-Control and Resource-Control interfaces) represent bidirectional
communication between the components of each layer.

The current reality for PCMM is that SDN “controllers” perform very little if any autonomous
modification to the requests that the Application Layer makes to the core. The Application Layer is
implicitly responsible for making decisions about the nature of the request and the controller does not
modify requests. The controller is mostly a router of requests to network resources.

4. Practice

Strong adherence to a theoretical layered architecture may or may not provide the functionality and
architectural flexibility necessary for long-term evolution. We propose a modified and modular
architecture that will leverage aspects of existing SDN controller platforms while maximizing current and
future options for the core.

The modified architecture is shown in Figure 2.

Common REST Inteface

Orchestration

Abstraction

Control Support

Data transport & processing

Application‐control
Interface

Resource‐control
Interface

Application
Layer

SDN Control
Layer

Resource
Layer

Common REST Inteface

ApplicationApplication

REST Shim

 Figure 2 - Proposed SDN Transition Architecture

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 7

Note the modifications and additions:

1. The “Application Support” layer is removed in favor of a common standards-based
NETCONF/RESTCONF interface, for the core used on both the NBI and SBI.

2. Applications that require it will have a REST “Shim” provided to convert their native requests
into the common REST language of the new core.

3. The SDN Control Layer (the core) will perform request routing and minimal modifications to the
incoming requests in early implementations.

4. The SBI will interface to the “Control Support” portion of the resource layer, which will utilize
ODL as the interface management system between the core and the network resources. Because it
is “independent” of the network resources (i.e. not a resource itself or an EMS), it will act as the
interface between the core and the network but independent of both.

5. Advantages

Common Interface Language. By using REST as a common interface language for the application layer,
any new applications will have a well-defined and extensible interface to the core and can access the core
directly via the “application support” layer. By adhering closely to existing YANG and NETCONF
standards, the interface will be well documented and accessible.

Limited State in the Core. Since Applications are currently managing their own state anyway, stateful
information in this architecture is effectively pushed to the edges: Applications will maintain their state,
and the edge interface to the network (e.g. in this case, ODL) will maintain state associated with requests
made to network resources. This minimizes HA/DR requirements on the core focusing instead on load
balancing and total throughput capabilities.

Inherent Modularity. With state managed at the edges, the architecture allows for a high degree of
modularity. While a monolithic approach is still possible, modularity is the order of the day:

 The core’s primary function is routing requests to the correct network interface (i.e. ODL). As
such, pan-network knowledge is not required and multiple independent instances can be spun up
to handle incoming requests.

 Incoming request load balancing and HA/DR is straightforward: Send the requests to any
available server. If something is down, spin up a new one.

 ODL functions as an interface between the core and the network resources, but can be limited to a
subset of network devices (1-to-1 ODL to resource possible though unlikely). By capping the
number of devices managed by a single instance, state management and replication (for HA/DR)
can be set to a realistic size based on the maturity/capabilities of ODL.

Feature Extensibility. By separating the request routing from resource interface management and
creating modules for each, feature upgrades and enhancements become a piece-wise exercise. Upgrades
can be done one section at a time, limiting exposure in production to a well-defined set of devices and
simplifying rollbacks as well.

6. Example Architecture

Figure 3 shows a simplified example of how the architecture might look in production.

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 8

App A App B App C

Request
Router

Request
Router

CMTS
CMTS

CMTS

CMTS

ODL1 ODL2 ODL3 ODL4

Figure 3 - Example Implementation

At the top, Applications A, B and C make requests into the core. For PCMM, Applications include
Diameter-based telephony requests, Fairshare, etc. Application B is shown with a backup link to a second
request router. The Applications use the common REST interface.

In the core there are 2 “Request Routers,” more are possible as they work relatively autonomously. These
decide which ODL instance to forward the request to. All “routing” here is done on REST requests.

As the interface to the network ODL receives the requests and manages the interaction with the network,
each ODL would be associated with a subset of the CMTSs. ODL2 shows a backup connection to an
additional CMTS. In the event that the primary ODL for this CMTS is down, requests could be rerouted
to this ODL if extra capacity is provided to handle the additional load.

7. Evolution

Currently, the core is planned to be more or less a request router, relying on the applications to provide
more detailed “control” of transactions. While the core will ultimately manage the implementation of a

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 9

given transaction, the higher-level management will be left to the calling application. In the future, the
core will need to possibly do the following:

 Enhanced, condition-based routing modifications
 Modification of request contents based on observations/rules (e.g. Time of day/event-based

mods)
 Automatic management activities (not based on requests, self-initiated)
 Injection of these changes in real time.

SDN has its roots as a routing management platform that can manage network routers and provide super-
set rules for routing and control. The proposed architecture supports this same context in the core: Create
a super-router with rules/functions that can manage and provide rules to other core request “routers,” and
thus provide additional features and functions. The core becomes a mini-SDN environment, with the
request routers as resources and the super-router as the SDN controller for the request “network.” This is
forward thinking and we will continue to explore and apply what we are currently learning to future
designs.

SDN and PCMM

8. ODL PCMM Plugin

The PCMM plugin for ODL, sponsored by CableLabs, was originally conceived to use the ODL platform
for the Application Manager and parts of the Policy Server, both components of the PCMM architecture.
Specifically, the plugin provides the following features [7]:

 RESTCONF APIs for provisioning CMTS network elements
 RESTCONF APIs for provisioning Service Flow values and types
 RESTCONF APIs for provisioning QoS (or metering) parameters
 PCMM/COPS protocol transport plugin

The initial version of the plugin while functional has some limitations. For instance, it only supports a
service class name type gate set, there is limited feedback from the set operation to the original calling
application and some extensions to the Yang model will be required to cover all possible gate sets
required by a production system. However, the plugin is functional enough with adequate COPS-PR
coverage for proof of concept implementations.

9. Use Cases for Programmable Service Flows

Within the cable access network, SDN has the potential to reduce service setup times, reduce errors
associated with those setups, offer new management options, and facilitate the introduction of more fine-
grained service offerings. While there is a wide array of use cases that SDN can apply to in the cable
access network (see [8]), this work focuses on 3 specific use cases:

 Telephony – Specifically the setup and management of QoS associated with calls
 Congestion management – Dynamic, rule-based implementation of bandwidth controls/limits in

response to congestion or individual user abuse
 Enhanced video services – Establishing QoS for video services

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 10

Theory of Operation
An example request sequence will now be presented.

Referring to Figure 4, Applications at the top corresponding to the 3 use cases from the previous section
(Telephony, Congestion Management and Video) make requests into the platform.

Request
Router

CMTS

ODL

T
el

ep
ho

ny

C
on

ge
st

io
n

V
id

eo

Figure 4 - Request Flow Diagram

The requests are received by the Request Router and transformed (if necessary) into a RESTCONF
format for internal handling. Telephony, for example, uses Diameter signaling. The Diameter request is
transformed into RESTCONF for forwarding.

The Request Router reads enough of the request to understand to which ODL instance the request needs
to be sent. This is basic topological information based on mapping CM IP address spaces to a list of
CMTSs.

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 11

The request is forwarded to the correct ODL instance, which manages the relationship with the CMTS via
COPS-PR. The request will be forwarded to the CMTS with configuration and operational information
stored in the local ODL datastores.

10. RESTCONF Request Format

For consistency, the internal RESTCONF format conforms to the existing YANG model-based
PacketCable Plugin REST API. An example of the RESTCONF request is provided below. Service
requests consist of 2 parts, the HTTP call and the associated JSON data. Simple requests for information
are generally just HTTP calls.

All of the information in the HTTP call, and any accompanying JSON data, is supplied by the
APPLICATION and not augmented in the current implementation by the core software.

The HTTP call format for a flowspec gate set is as follows:

/restconf/config/packetcable:qos/apps/app/<appId>/subscribers/subscrib
er/<CM_IP>/gates/gate/<gateId>/

 <appId> - This is a unique label for the requesting agent. This is used internal to the request

router core and ODL to identify the origin of a request.
 <CM_IP> - The subscriber IP for the gate request. This address is used to locate the correct

CMTS and thus the correct ODL instance.
 <gateId> - This is an internal gate identifier used in ODL to uniquely identify a gate. Note that

this is a highly overloaded term and is NOT the gateId returned by the CMTS. The gate identifier
returned form the CMTS is stored in ODL but is NOT used for internal identification.

Figure 5 shows example JSON content for the flowspec gate set. This type of gate required an extension
of the existing packetcable plugin, which out of the box only supported a service class name gate
definition. The information is self-explanatory, with the one note that the <gateId> MUST match the
gateId used in the HTTP call.

{
 "gate": {
 "gateId": "<gateId>",
 "classifiers": {
 "classifier-container": [
 {
 "classifier-id": "1",
 "classifier": {
 "srcIp": "10.20.0.3",
 "dstIp": "10.20.0.5",
 "protocol": "0",
 "srcPort": "54322",
 "dstPort": "4322",
 "tos-byte": "0x01",
 "tos-mask": "0x00"

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 12

 }
 }
]
 },
 "gate-spec": {
 "dscp-tos-overwrite": "0x00",
 "dscp-tos-mask": "0x00",
 "direction": "us"
 },
 "traffic-profile": {
 "flow-spec-profile": {
 "token-bucket-rate": "400",
 "token-bucket-size": "40",
 "peak-data-rate": "400000",
 "minimum-policed-unit": "400",
 "maximum-packet-size": "400",
 "rate": "30000",
 "slack-term": "0"
 }
 }
 }
}

Figure 5 - Example JSON Content for a Flowspec Gate Set Request

11. ODL Request Sequence

There are several steps that a request goes through internal to ODL, including the creation and
management in the internal configuration and operational datastores as defined in the NETCONF RFC
[9].

When a request arrives at an ODL instance, the following internal communications occur (See Figure 6):

1. Basic verification of the content of the request is made against the relevant YANG models. If a
mandatory element is missing, the request is rejected and an error returned to the caller.

2. Upon acceptance of the request, an entry is made in the Configuration datastore and a “200 OK”
message is returned to the sender (no additional information is provided to the sender).

3. Using the COPS-PR protocol, the request is forwarded to the CMTS.
4. The CMTS either accepts and establishes the gate or rejects it. Upon acceptance, a gate ID is

generated by the CMTS that is unique for the gate on that CMTS
5. If a gate ID is returned, the established gate information, including the gate ID, is stored in the

operational datastore. If no gate ID is returned, error information is stored in the operational
datastore.

12. Management Considerations

As currently implemented, ODL does not return any confirmed operational information to the requesting
application. The only message is a “200 OK” message indicating correct syntax and acceptance of the

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 13

request. Any additional information about the gate, including whether it was successfully set, must be
explicitly requested by the calling application.

Lessons Learned
Open source has its challenges. Open source holds a lot of promise for rapid development and relatively
cheap software options. However, there are limitations. Acceptable operational practices in one industry
may not translate to others. And not all development decisions are good. One of the challenges we ran up
against was a “native” need for OpenDaylight to access the internet on first start up due to dependency
issues. This can be resolved, but it required work on our part to create an environment that did not require
this functionality.

Open source needs time to mature. The PCMM plugin functioned, but was far from complete. Once
again, just because software has the right label and uses the right terminology doesn’t mean it is ready for
prime time. Be prepared for additional work to bring the parts you need up to speed.

Just because it says “Java” doesn’t mean it is good. Java has many good things going for it, but just
because it is uses Java doesn’t mean it is well-written. Because it is somewhat ubiquitous, Java suffers a
bit from a surfeit of average to below average programmers. Be aware that anything “industry standard”
doesn’t mean “industry leading.”

Care needs to be taken not to overload terminology. The code may not care but the ease of
management is reduced if operators have to work to understand and debug requests or logs because of
ambiguous terminology. “GateID” turned out to be particularly overloaded in OpenDaylight and the
PCMM plugin. Pick terms and stick to them and make sure that you leave no ambiguity for your
organization.

Conclusion
SDN is a necessary and inevitable eventuality for the evolution of broadband networks. The agility gained
and potential for market differentiation will drive this change.

Moving SDN into DOCSIS driven networks will require some adaptation of traditional network tools to
the special requirements of the broadband provider but current experience shows that this is very possible
and realistic and measureable results are possible. With the application of practical knowledge and some
industry common sense, MSOs can leverage some tools without starting from scratch and start to analyze
and understand the potential of SDN in their networks.

Abbreviations
AP Access Point
bps Bits per Second
CM Cable Modem
CMTS Cable Modem Termination System
CCAP Converged Cable Access Platform
DPD Downstream Profile Descriptor
FEC Forward Error Correction

 © 2016 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 14

HFC Hybrid Fiber-Coax
HD High Definition
Hz Hertz
SCTE Society of Cable Telecommunications Engineers
ISBE International Society of Broadband Experts
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiplexing with Multiple Access
PNM Proactive network maintenance
SDN Software Defined Networking
SD Software Defined
SF Service Flow

Bibliography & References
 [1] N. Feamster, J. Rexford, E. Zegura. The Road to SDN: An Intellectual History of Programmable
Networks. IEEE ACM Queue, December 2013.

[2] DOCSIS 3.1 MAC and Upper Layer Protocols Interface Specification, CM-SP-MULPIv3.1-I02-
140320, CableLabs, 2014

[3] DOCSIS 3.1 PHY Physical Layer Specification, CM-SP-PHYv3.1-I07-150910, CableLabs

[4] OpenFlow® [Online] Available from: http://openflow.com

[5] J. Tourrilhes, P. Sharma, S. Banerjee and J. Pettit, "The Evolution of SDN and OpenFlow: A
Standards Perspective," ONF, 2014

[6] Recommendation ITU-T Y.3300 (06/2014) Framework of software-defined networking, ITU, 2014

[7] OpenDaylight Users Guide, https://www.opendaylight.org/sites/opendaylight/files/bk-user-guide.pdf

[8] SDN Architecture for Cable Access Networks Technical Report, CableLabs, VNE-TR-SDN-ARCH-
V01

[9] RFC6241: Network Configuration Protocol (NETCONF), IETF

