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Introduction 
SDN carries the promise of enhanced and expanded services with a more manageable operational 
environment. While SDN technology is maturing, state-of-the-art is focused on monolithic controller 
architectures for traditional networks, with all functions and control being highly centralized – and subject 
to the scaling and computational limits of a single server architectural approach.  

This paper presents a modular approach to implementing SDN, leveraging existing monolithic controller 
architectures for distributed management, but implementing a new centralized control plane that 
encompasses only those elements necessary for overarching systems management. Distributed monolithic 
controllers are relatively autonomous, while centralized management platforms give the MSO centralized 
control of the entire network. This agile new modular approach allows for the immediate leveraging of 
existing SDN management platforms without the limitations associated with a purely monolithic 
approach.  

This paper provides an on overview of a practical SDN implementation of PacketCable Multimedia 
(PCMM), along with real-world considerations for SDN architectures and technologies when applied to 
Cable Broadband networks. A demonstration will be provided to illustrate. 

SDN: From Promise to Delivery 

1. Making the Case for SDN in DOCSIS 

The use of a software-defined network (SDN) in broadband means resources can be virtualized and 
allocated to whatever application or service requires it, when it needs it.  

Though advantages to SDN-based architectures and applications have been proposed [1], the specific 
benefits when applied to a programmable DOCSIS [2][3] policy environment are as follows: 

1. System and network resource elasticity. Traditional network and service provisioning software 
for DOCSIS networks has historically been burdened, by rigid system and network resource 
deployment constraints and difficult resource dimensioning limitations. The virtualization of 
DOCSIS low-level services using contemporary SDN architectures enables greater design 
flexibility in networks of scale while affording discrete upgrades to capacities at time of need. 
 

2. A common platform across network applications. Capital, operational, and organizational 
economies of scale result when using multiple applications that access the same network services 
and related resources in a common way. 
 

3. Service delivery agility. As a consequence (benefit) of both (1) and (2) above, new subscriber 
services that benefit from QoS treatment in the access network can quickly be supported. 

 

Business agility is vital for the very survival of broadband organizations hence the ability to implement 
new services quickly is vital.  
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Traditional DOCSIS network architectures and services lack the flexibility required to support an agile 
business and spend more budget than is necessary to over-provision the network for peak utilization. A 
forward looking SDN approach is required for any organization looking to become agile, brings the 
dynamic features to the network, and gets maximum benefit from the network virtualization functions for 
a minimum overall cost. Virtualization has largely transformed the data center with flexible and 
automated server provisioning, but networking and storage infrastructure have not kept pace. 

2. Myth vs Truth: Is SDN Really a Panacea for All Networking Ills? 

While the SDN & OpenDaylight (ODL) [4] technology may still be a little new (and the hype a bit on the 
high side), there are real use cases for SDN and the OpenDaylight PCMM plugin in broadband networks 
– and we’ll be surprised if products offering this and in-house build systems don’t start taking advantage.  

To start, an SDN controller in a software-defined network is the “brains” of the network, and it can be 
open or proprietary. The SDN controller is the strategic control point in the SDN network, relaying 
information to the southbound APIs (switches/routers) and the applications and business login via 
northbound APIs. Southbound interfaces (NETCONF and SNMP) and Protocol plugins (PCMM) 
facilitate efficient control over the network and enable the SDN controller to dynamically make changes 
according to real-time demands and needs. 

The Network Configuration Protocol (NETCONF) defined by IETF RFC 6241 provides mechanisms to 
install, manipulate and delete the configuration of network devices. The Simple Network Management 
Protocol (SNMP), defined by IETF RFC 3411, allows collection and organization of information about 
managed devices on IP networks and modification of that information to change device behavior. 

SDN allows routers and switches to match packets on multiple header fields, not just destination IP 
address. It allows a network controller to control entire networks for the single program, possibly even 
including a remote autonomous system as opposed to just immediate neighbors. SDN provides 
mechanism for direct control over packet handling (rather than indirect control via various routing 
protocols) and it offers the ability to perform many different actions on packets beyond simply just 
forwarding them. When you think about where it might make sense to deploy SDN, ISPs are the natural 
place to start. SDN controllers can benefit tens to hundreds of providers and it is possible for ISPs to 
adopt SDN without providers deploying new network equipment. 

One significant challenge in utilizing existing SDN development work is the differences between 
“traditional” networks and DOCSIS networks. Much of the SDN world has focused on traditional 
networking applications, and the use of such protocols as OpenFlow [5]. When comparing OpenFlow to 
Cable access network technologies such as DOCSIS, fundamental differences exist: 

 Topology: The underpinning HFC network is a physical tree/branch topology. The CMTS 
(master) and CM (slave) topology and resulting protocol design are fundamentally different than 
port-to-port topology of switched networks (e.g. Ethernet). 

 Scale: The number of managed devices (entities) in a single managed DOCSIS network is well 
into the tens of millions and expected to grow further. 

 Complexity: The Information model representing a complete DOCSIS network describes objects 
and attributes counted in the thousands.  
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DOCSIS, SDN and OpenDaylight 
Experience has shown repeatedly that a monolithic approach to management systems has serious 
drawbacks. One very powerful pain point is consolidation of features into a single platform that would 
require monolithic upgrades for single features, monolithic management and monolithic failure potential. 

In this section we address the SDN reference architecture and some proposed adjustments and 
enhancements that will help put SDN in context for broadband networks. 

3. Theory 

The SDN architecture abstraction presented by the ITU-T in [6] describes three functional layers and two 
interfaces between the layers (illustrated in Figure 1): 

1. Application Layer: SDN and/or business applications that specify network behavior. 
2. SDN Control Layer: “a means to dynamically and deterministically control the behavior of 

network resources…as instructed by the application layer” [6]. 
3. Resource Layer: Network devices and element management systems. 
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Figure 1 - SDN High Level Abstraction (ITU-T Y.3300 [6]) 
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The two interfaces (Application-Control and Resource-Control interfaces) represent bidirectional 
communication between the components of each layer. 

The current reality for PCMM is that SDN “controllers” perform very little if any autonomous 
modification to the requests that the Application Layer makes to the core. The Application Layer is 
implicitly responsible for making decisions about the nature of the request and the controller does not 
modify requests. The controller is mostly a router of requests to network resources. 

4. Practice 

Strong adherence to a theoretical layered architecture may or may not provide the functionality and 
architectural flexibility necessary for long-term evolution. We propose a modified and modular 
architecture that will leverage aspects of existing SDN controller platforms while maximizing current and 
future options for the core. 

The modified architecture is shown in Figure 2.   
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 Figure 2 - Proposed SDN Transition Architecture 
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Note the modifications and additions: 

1. The “Application Support” layer is removed in favor of a common standards-based 
NETCONF/RESTCONF interface, for the core used on both the NBI and SBI.  

2. Applications that require it will have a REST “Shim” provided to convert their native requests 
into the common REST language of the new core.  

3. The SDN Control Layer (the core) will perform request routing and minimal modifications to the 
incoming requests in early implementations. 

4. The SBI will interface to the “Control Support” portion of the resource layer, which will utilize 
ODL as the interface management system between the core and the network resources. Because it 
is “independent” of the network resources (i.e. not a resource itself or an EMS), it will act as the 
interface between the core and the network but independent of both. 

5. Advantages 

Common Interface Language. By using REST as a common interface language for the application layer, 
any new applications will have a well-defined and extensible interface to the core and can access the core 
directly via the “application support” layer. By adhering closely to existing YANG and NETCONF 
standards, the interface will be well documented and accessible.  

Limited State in the Core. Since Applications are currently managing their own state anyway, stateful 
information in this architecture is effectively pushed to the edges: Applications will maintain their state, 
and the edge interface to the network (e.g. in this case, ODL) will maintain state associated with requests 
made to network resources. This minimizes HA/DR requirements on the core focusing instead on load 
balancing and total throughput capabilities. 

Inherent Modularity. With state managed at the edges, the architecture allows for a high degree of 
modularity. While a monolithic approach is still possible, modularity is the order of the day: 

 The core’s primary function is routing requests to the correct network interface (i.e. ODL). As 
such, pan-network knowledge is not required and multiple independent instances can be spun up 
to handle incoming requests.  

 Incoming request load balancing and HA/DR is straightforward: Send the requests to any 
available server. If something is down, spin up a new one. 

 ODL functions as an interface between the core and the network resources, but can be limited to a 
subset of network devices (1-to-1 ODL to resource possible though unlikely). By capping the 
number of devices managed by a single instance, state management and replication (for HA/DR) 
can be set to a realistic size based on the maturity/capabilities of ODL. 

Feature Extensibility. By separating the request routing from resource interface management and 
creating modules for each, feature upgrades and enhancements become a piece-wise exercise. Upgrades 
can be done one section at a time, limiting exposure in production to a well-defined set of devices and 
simplifying rollbacks as well.   

6. Example Architecture 

Figure 3 shows a simplified example of how the architecture might look in production. 
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Figure 3 - Example Implementation 

At the top, Applications A, B and C make requests into the core. For PCMM, Applications include 
Diameter-based telephony requests, Fairshare, etc. Application B is shown with a backup link to a second 
request router. The Applications use the common REST interface. 

In the core there are 2 “Request Routers,” more are possible as they work relatively autonomously. These 
decide which ODL instance to forward the request to. All “routing” here is done on REST requests. 

As the interface to the network ODL receives the requests and manages the interaction with the network, 
each ODL would be associated with a subset of the CMTSs. ODL2 shows a backup connection to an 
additional CMTS. In the event that the primary ODL for this CMTS is down, requests could be rerouted 
to this ODL if extra capacity is provided to handle the additional load. 

7. Evolution 

Currently, the core is planned to be more or less a request router, relying on the applications to provide 
more detailed “control” of transactions. While the core will ultimately manage the implementation of a 
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given transaction, the higher-level management will be left to the calling application. In the future, the 
core will need to possibly do the following: 

 Enhanced, condition-based routing modifications 
 Modification of request contents based on observations/rules (e.g. Time of day/event-based 

mods) 
 Automatic management activities (not based on requests, self-initiated) 
 Injection of these changes in real time. 

SDN has its roots as a routing management platform that can manage network routers and provide super-
set rules for routing and control. The proposed architecture supports this same context in the core: Create 
a super-router with rules/functions that can manage and provide rules to other core request “routers,” and 
thus provide additional features and functions. The core becomes a mini-SDN environment, with the 
request routers as resources and the super-router as the SDN controller for the request “network.” This is 
forward thinking and we will continue to explore and apply what we are currently learning to future 
designs. 

SDN and PCMM 

8. ODL PCMM Plugin 

The PCMM plugin for ODL, sponsored by CableLabs, was originally conceived to use the ODL platform 
for the Application Manager and parts of the Policy Server, both components of the PCMM architecture. 
Specifically, the plugin provides the following features [7]: 

 RESTCONF APIs for provisioning CMTS network elements 
 RESTCONF APIs for provisioning Service Flow values and types 
 RESTCONF APIs for provisioning QoS (or metering) parameters 
 PCMM/COPS protocol transport plugin 

The initial version of the plugin while functional has some limitations.  For instance, it only supports a 
service class name type gate set, there is limited feedback from the set operation to the original calling 
application and some extensions to the Yang model will be required to cover all possible gate sets 
required by a production system. However, the plugin is functional enough with adequate COPS-PR 
coverage for proof of concept implementations. 

9. Use Cases for Programmable Service Flows  

Within the cable access network, SDN has the potential to reduce service setup times, reduce errors 
associated with those setups, offer new management options, and facilitate the introduction of more fine-
grained service offerings. While there is a wide array of use cases that SDN can apply to in the cable 
access network (see [8]), this work focuses on 3 specific use cases: 

 Telephony – Specifically the setup and management of QoS associated with calls 
 Congestion management – Dynamic, rule-based implementation of bandwidth controls/limits in 

response to congestion or individual user abuse  
 Enhanced video services – Establishing QoS for video services 
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Theory of Operation 
An example request sequence will now be presented.   

Referring to Figure 4, Applications at the top corresponding to the 3 use cases from the previous section 
(Telephony, Congestion Management and Video) make requests into the platform.  
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Figure 4 - Request Flow Diagram 

The requests are received by the Request Router and transformed (if necessary) into a RESTCONF 
format for internal handling. Telephony, for example, uses Diameter signaling.  The Diameter request is 
transformed into RESTCONF for forwarding. 

The Request Router reads enough of the request to understand to which ODL instance the request needs 
to be sent. This is basic topological information based on mapping CM IP address spaces to a list of 
CMTSs.   
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The request is forwarded to the correct ODL instance, which manages the relationship with the CMTS via 
COPS-PR. The request will be forwarded to the CMTS with configuration and operational information 
stored in the local ODL datastores. 

10. RESTCONF Request Format 

For consistency, the internal RESTCONF format conforms to the existing YANG model-based 
PacketCable Plugin REST API. An example of the RESTCONF request is provided below. Service 
requests consist of 2 parts, the HTTP call and the associated JSON data. Simple requests for information 
are generally just HTTP calls. 

All of the information in the HTTP call, and any accompanying JSON data, is supplied by the 
APPLICATION and not augmented in the current implementation by the core software. 

The HTTP call format for a flowspec gate set is as follows: 

/restconf/config/packetcable:qos/apps/app/<appId>/subscribers/subscrib
er/<CM_IP>/gates/gate/<gateId>/ 

 
 <appId> - This is a unique label for the requesting agent. This is used internal to the request 

router core and ODL to identify the origin of a request. 
 <CM_IP> - The subscriber IP for the gate request. This address is used to locate the correct 

CMTS and thus the correct ODL instance. 
 <gateId> - This is an internal gate identifier used in ODL to uniquely identify a gate. Note that 

this is a highly overloaded term and is NOT the gateId returned by the CMTS. The gate identifier 
returned form the CMTS is stored in ODL but is NOT used for internal identification. 

Figure 5 shows example JSON content for the flowspec gate set. This type of gate required an extension 
of the existing packetcable plugin, which out of the box only supported a service class name gate 
definition. The information is self-explanatory, with the one note that the <gateId> MUST match the 
gateId used in the HTTP call. 

 
{ 
    "gate": { 
        "gateId": "<gateId>", 
        "classifiers": { 
            "classifier-container": [ 
                { 
                    "classifier-id": "1", 
                    "classifier": { 
                        "srcIp": "10.20.0.3", 
                        "dstIp": "10.20.0.5", 
                        "protocol": "0", 
                        "srcPort": "54322", 
                        "dstPort": "4322", 
                        "tos-byte": "0x01", 
                        "tos-mask": "0x00" 
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                    } 
                } 
            ] 
        }, 
        "gate-spec": { 
            "dscp-tos-overwrite": "0x00", 
            "dscp-tos-mask": "0x00", 
            "direction": "us" 
        }, 
        "traffic-profile": { 
            "flow-spec-profile": { 
                "token-bucket-rate": "400", 
                "token-bucket-size": "40", 
                "peak-data-rate": "400000", 
                "minimum-policed-unit": "400", 
                "maximum-packet-size": "400", 
                "rate": "30000", 
                "slack-term": "0" 
            } 
        } 
    } 
} 

Figure 5 - Example JSON Content for a Flowspec Gate Set Request 

11. ODL Request Sequence 

There are several steps that a request goes through internal to ODL, including the creation and 
management in the internal configuration and operational datastores as defined in the NETCONF RFC 
[9]. 

When a request arrives at an ODL instance, the following internal communications occur (See Figure 6): 

1. Basic verification of the content of the request is made against the relevant YANG models. If a 
mandatory element is missing, the request is rejected and an error returned to the caller.   

2. Upon acceptance of the request, an entry is made in the Configuration datastore and a “200 OK” 
message is returned to the sender (no additional information is provided to the sender). 

3. Using the COPS-PR protocol, the request is forwarded to the CMTS. 
4. The CMTS either accepts and establishes the gate or rejects it. Upon acceptance, a gate ID is 

generated by the CMTS that is unique for the gate on that CMTS 
5. If a gate ID is returned, the established gate information, including the gate ID, is stored in the 

operational datastore. If no gate ID is returned, error information is stored in the operational 
datastore. 

12. Management Considerations 

As currently implemented, ODL does not return any confirmed operational information to the requesting 
application. The only message is a “200 OK” message indicating correct syntax and acceptance of the 
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request. Any additional information about the gate, including whether it was successfully set, must be 
explicitly requested by the calling application. 

Lessons Learned 
Open source has its challenges. Open source holds a lot of promise for rapid development and relatively 
cheap software options. However, there are limitations. Acceptable operational practices in one industry 
may not translate to others. And not all development decisions are good. One of the challenges we ran up 
against was a “native” need for OpenDaylight to access the internet on first start up due to dependency 
issues. This can be resolved, but it required work on our part to create an environment that did not require 
this functionality. 

Open source needs time to mature. The PCMM plugin functioned, but was far from complete. Once 
again, just because software has the right label and uses the right terminology doesn’t mean it is ready for 
prime time. Be prepared for additional work to bring the parts you need up to speed. 

Just because it says “Java” doesn’t mean it is good. Java has many good things going for it, but just 
because it is uses Java doesn’t mean it is well-written. Because it is somewhat ubiquitous, Java suffers a 
bit from a surfeit of average to below average programmers. Be aware that anything “industry standard” 
doesn’t mean “industry leading.” 

Care needs to be taken not to overload terminology.  The code may not care but the ease of 
management is reduced if operators have to work to understand and debug requests or logs because of 
ambiguous terminology. “GateID” turned out to be particularly overloaded in OpenDaylight and the 
PCMM plugin. Pick terms and stick to them and make sure that you leave no ambiguity for your 
organization. 

Conclusion 
SDN is a necessary and inevitable eventuality for the evolution of broadband networks. The agility gained 
and potential for market differentiation will drive this change.   

Moving SDN into DOCSIS driven networks will require some adaptation of traditional network tools to 
the special requirements of the broadband provider but current experience shows that this is very possible 
and realistic and measureable results are possible. With the application of practical knowledge and some 
industry common sense, MSOs can leverage some tools without starting from scratch and start to analyze 
and understand the potential of SDN in their networks. 

Abbreviations 
AP Access Point 
bps Bits per Second 
CM Cable Modem 
CMTS Cable Modem Termination System 
CCAP Converged Cable Access Platform 
DPD Downstream Profile Descriptor 
FEC Forward Error Correction 
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HFC Hybrid Fiber-Coax 
HD High Definition 
Hz Hertz 
SCTE Society of Cable Telecommunications Engineers 
ISBE International Society of Broadband Experts 
OFDM Orthogonal Frequency Division Multiplexing 
OFDMA Orthogonal Frequency Division Multiplexing with Multiple Access 
PNM  Proactive network maintenance 
SDN Software Defined Networking 
SD Software Defined 
SF Service Flow 
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