

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Wireline Access Network

Configuring and Deploying Low Latency DOCSIS Networks

Greg White

Distinguished Technologist CableLabs

Introduction

Low Latency DOCSIS (LLD) is a recent update to DOCSIS 3.1 technology

Can be deployed as a firmware upgrade to existing DOCSIS 3.1 equipment (CM & CMTS)

Significantly Reduces:

- Average Packet Latency
- Latency Variation (jitter)
- Packet Loss

Nearing deployment:

- Multiple CMTS and Certified CM implementations available
- Lab testing underway at multiple MSOs

Brief LLD Overview

Low Latency Technology

- Dual Queue (ASF)
- Classifiers
- Queue Protection

- IAQM
- Classic AQM (Coupled)
- WRR Scheduler

Low Latency Technology (2)

- Proactive Grant Service (PGS)
- MAP interval
 - MAP processing time
- Channel Configuration
 - Upstream: OFDMA frame size or SC-QAM Minislot size
 - Downstream: OFDM Interleaving or SC-QAM Interleaving

Guide to configuring & deploying LLD

- Meant as a reference for engineers planning LLD deployment
- Covering:
 - All of the LLD features
 - What the configuration options are
 - Recommendations
 - Configuration methods
 - How to monitor performance

ent	ATLANTA, GA OCTOBER 11-14	
	Configuring and Deploying Low Latency DOCSIS Networks	
	A Technical Paper prepared for SCTE by	
	Grag White Distinguished Technologist CableLabs g.wiite@cablelabs.com	
	Karthik Sundaresan Distinguished Technologist CableLabs k.sundaresan@cablelabs.com	
	CableLabs 858 Coal Creek Circle, Louisville, CO,80027 3036619100	
	© 2021, SCTE [®] CableLabs [®] and NCTA. All rights reserved.	

Brief overview of Pre-LLD latency features (Chapter 2)

Describes Latency Management Features that Pre-date LLD

- Buffer Control (D3.0/D3.1)
- AQM (D3.1)

Low Latency Service Configuration (Chapter 4)

- Provides details on configuration options and recommendations for each feature
 - Aggregate Service Flow service rate
 - Low Latency Classifiers & DSCP Overwrite
 - Queue Protection
 - Immediate AQM and Coupled AQM
 - Classic AQM
 - Scheduling Weight
 - Buffer Sizing
 - Proactive Grant Service
 - CMTS MAP Interval

LLD Configuration Mechanisms (Chapter 5)

Covers the available configuration mechanisms :

- Aggregate QoS Profile (AQP) Table
- Using existing CM config files & Service Class Name expansion
- Options for new CM config files
 - Using Aggregate QoS Profiles
 - Explicit config file TLVs
- Overriding AQP table parameters
- Classifier Merge Operation
- Primary Service Flows
- Device Capabilities
- Compatibility with pre-LLD CMs
- IPDR Ramifications

AQP, CMTS SCN

Performance Monitoring (Chapter 6)

- New Service Flow Stats counters
- Latency Histograms
 - How to enable histogram calculation on CM and CMTS
 - How to retrieve histogram data
 - SNMP
 - TFTP file upload
 - Examples of using histograms

Two Great Queues

"Classic" Queue and "Low Latency" Queue

<u>Not</u> High Priority / Low Priority

Both queues are optimized for the type of traffic they are designed to carry

- "Queue Building" flows (HTTP, video streaming, downloads, bulk data) will prefer the classic queue
- "Non Queue Building" flows (latency sensitive apps) will prefer the low latency queue

Classification of Traffic

The application decides which queue would work better for it

LLD Classifier identifies non-queue-building traffic based on packet marking

- For low data-rate flows, use "DSCP" ("Differentiated Services Code Point") in the IP packet header per IETF "Non-Queue-Building" definition
- For high data-rate flows, use emerging IETF standard "L4S" ("Low Latency, Low Loss, Scalable Throughput")

Low Latency Traffic Identification

NQB and DSCP marking

"Non-Queue-Building" application flows:

- Send packets at a smooth rate, less than the available capacity
- Sender marks traffic with known DSCP

"NQB" DSCP:

- Given same priority as Best Effort (default) traffic
- In bottleneck links (e.g. DOCSIS, WiFi) provide a separate queue from Best Effort
- Defined in IETF Draft: draft-ietf-tsvwg-nqb

DSCP Usage Today

Recommended to be classified into LL queue

	COTER			
(C.	SUF	(anielans	X, NICLA AILFIGHTS RESERVED L	ΘX
		CUDICLUDS	a nen a nights reserved.	0/(

		DSCP	WMM	Usage
		AF21 (18)	Bckgrnd	Teams Screen Sharing
		AF41 (34)	Video	Teams Video Webex Prioritized Video FaceTime Video
		AF42 (36)	Video	Webex Opportunistic Video
7		CS5 (40)	Video	Windows10 ExcellentEffort & AudioVideo Zoom Video & Signaling Several Multiplayer Online Games CableLabs Recommended DSCP for gaming/NQB
		NQB (45)	Video	Future IANA & CL Recommended DSCP
		EF (46)	Video	Teams Audio Webex Audio Vonage Audio FaceTime Audio
po.scfe	e ora	CS7 (56)	Voice	Windows10 Voice & Control Zoom Audio

Classifier & Overwrite Recommendations

Configure *both* LL SF and Classic SF to overwrite DSCP in both directions

Classifier & Overwrite Recommendations

NQB DSCP changes through the network

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

What is "L4S"?

"Low-Latency Low-Loss Scalable" Throughput

- Architecture to enable new congestion control for capacity-seeking applications
- Can be utilized by TCP & QUIC, or by Real-Time Applications
- Solves TCP scalability problem: a single flow can fully utilize a multi-Gbps link
- Solves TCP buffering & delay problem: Can maintain sub-millisecond queuing delay, without causing packet loss
- Can coexist with "classic" TCP via "DualQ-Coupled AQM" or flow-queuing AQM

Defined by IETF & Supported by LLD

Perfect for applications that want high data rates, consistent ultra-low latency, and nearzero packet loss L4S – How does it work?

Requires support in sender, receiver and network bottleneck

• Sender support

L4S Topics

- A congestion controller built against the "Prague requirements", e.g.:
 - TCP Prague, QUIC Prague, BBRv2 (TCP/QUIC), SCReAM (UDP/RTC)
- Marking IP packets as "ECT1" in the Explicit Congestion Notification field
- Bottleneck link support
 - Provide immediate feedback as to level of queuing delay using Explicit Congestion Notification marking
 - Sender no longer needs to infer congestion based on RTT variation or loss
 - Disambiguates congestion from other delay sources
 - Two implementations
 - Dual-Q Coupled AQM (e.g. LLD)
 - fq_codel+iaqm
- Receiver support
 - "Accurate ECN" feedback

L4S topics

ECN Traversal

ECN field MUST NOT be bleached

• Per RFC3168 & RFC8311, the only allowed transitions by a network are:

DOCSIS ToS Overwrite has the power to overwrite ECN some MSOs have incorrectly configured it! At interconnection, some MSOs are bleaching ECN!

Received as:

NotECT (00)

ECT1 (01)

ECT0 (10)

CE (11)

Allowed to send as:

NotECT (00)

ECT1 (01) or CE (11)

ECT0 (10) or CE (11)

CE (11)

ECN Traversal Probe Network

- CableLabs has launched a network of probes to help MSOs identify routers that are bleaching ECN
- Two target probe locations:
 - In the "cloud" (e.g. AWS, Azure, GoogleCloud)
 - Behind customer broadband (DOCSIS) links
- Seeking volunteers to create probes in additional locations
 - Buy a Raspberry Pi, install the software, plug it in to your home network
 - Create an Ubuntu VM

Contact me if you'd like more info!

• g.white@cablelabs.com

Via this network, we've already found a bug that affects ISP routers that use a particular 10 Tbps NPU

ATLANTA, GA OCTOBER 11-14

Thank You!

Greg White

Distinguished Technologist CableLabs g.white@cablelabs.com

Karthik Sundaresan

Distinguished Technologist CableLabs

