

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Wireline Access Network

Extended CIN

Deepa Phanish, Ph.D.

Network Planner/Technical Analyst Cox Communications

Collaborations

Alan Skinner, Principal Engineer, Cox Communications John Huang, IP Engineer, Cox Communications Igor Tavrovsky, Reliability Engineer, Cox Communications Ernest Fabre, Design Engineer, Cox Communications

ACKNOWLEDGEMENTS

Deependra Malla, Cox Communications Jason Cole, (previously) Cox Communications Bill Wall, Cox Communications James Stockdill, Cox Communications SCTE

INTRODUCTION

Remote PHY Core

- Remote PHY enables cable operators to deliver Gigabit service
- CCAP Chassis in every facility
- Substantial amounts of rack space, power, and HVAC
- Non-feasible/cost intensive facility augments

Network design to deploy CCAP chassis non-locally?

Cisco cBR8 CCAP

Weight: 429 lb. (195 kg) max Height: 13 RU (22.75 in) Width: 17.45 in no rack mounts,

17.65 in with rack mounts

Lifetime Facility Power : 9000 W
Hardware Facility Power (D3.0): 7300 W
Hardware Facility Power (D3.1): 7900 W
Average fully loaded: 4500 - 5200 W

Agenda

- 1. Network Design
 - Topology
 - Reliability Analysis
- 2. Implementation
 - Networking
 - Video support
- 3. Performance Latency, Throughput, Distances
- 4. Business Impact
 - Capacity planning
 - Cost Estimate
- 5. Conclusion

Topology

FULL CIN VS E-CIN

- In standardized full CIN solution, hub routers uplink to the backbone over metro DWDM
- "Remote site": E-CIN edge facility
- "Host site": CCAP core facility
- What are the topological solutions for E-CIN?
- How to chose an optimal host?

Topology

E-CIN SOLUTION 1

- Direct DWDM links between remote access aggregation device and host hub routers
- Pros: Least hops, low latency
- Cons: Not scalable
- Use case: No growth small site

Topology

E-CIN SOLUTION 2A

- Route via remote hub routers with direct DWDM links to host hub routers
- Pros: Scalable, few hops
- Cons: Hybrid topology, nonoptimal DWDM aggregation
- Use case: Direct fiber pair to subtended site

Topology

E-CIN SOLUTION 2B

- Route via remote hub routers and DSRs back to host hub routers over DWDM links
- Pros: Scalable, standardized topology, optimal DWDM aggregation
- Cons: More hops, higher latency, lower reliability
- Use case: Generic, performance dependent on host selection

Reliability Analysis

2B CASE STUDY

- Metro optical ring spanning ≈1300km, 18 sites
- Individual distances for metro and long-haul

MODELING

- ReliaSoft BlockSim package
- MTTR = 4hrs for comparison, log-normal for last mile with μ = 3.3.4576 and σ = 0.5287
- Last mile simulation with hardware, software, human factor, and power outages, > 1000 blocks, 5 yrs of operation, 5000 iterations

Reliability Analysis SIMULATION RESUTS - METRO CORE

Ex: For "Last mile" drop by 0.00028, customer site J with cBR8 in RDC A has a mean availability of 99.964%. Does it qualify SLA?

Topology Selection

SUMMARY

Priority 1: Subtended hub-hosted (Solution 2a)

• Another hub site as host with direct fiber pair links

Priority 2: **RDC-hosted** (Solution 2b)

• RDC as host with standard L3 hub-and-spoke topology

Priority 3: Hub-hosted (Solution 2b)

• Another hub site, preferably of highest reliability, as host with standard L3 topology

IMPLEMENTATION

Networking

- CIN routing policies apply
- IP addressing and route advertisement updates for reachability between RPA, CCAP core, and boundary clocks (BCs)
- Remote edge leverages host site BCs for timing
- BC preference set by the R-DTI profile

IMPLEMENTATION

Video Support

- Increased operational complexity
- Additional CCAP configurations when channel lineup, ad zones, DSG tunnels, 00B, and PEG channels differ between remote and host sites
- CCAP configuration best practices
 - No more than 6 full BSGs per CCAP
 - No more than 12 BSGs per CCAP including PEG
 - One Conditional Access System per CCAP
 - One main SDV lineup on a CCAP

Multiple remote site hosting options:

- 1. All remote sites on all CCAPs Most flexible, high complexity, potentially reduced DOCSIS SG capacity
- 2. Segregation of CCAPs by serving footprint – optimal configuration, requires tracking of RPD mapping
- 3. Standalone dedicated video core Full CCAP utilization for DOCSIS, only DSG tunnel configurations

DOCSIS Request/Grant Cycle

Latency, Throughput, Distance

- Full downstream and upstream throughput, even on the Gigabit tier, up to 320km
- Exact distance limitation to preserve full Gigabit downloads is still TBD
- During path failover, worst-case at 1200km, downstream throughput inconsistent, not gigabit-class. RPDs and modems remain online and providing service in a degraded state

It is essential to maintain optimization – preferring the shortest path (in steady state) and ensuring symmetrical (forward & return) traffic flow

BUSINESS IMPACT

Capacity Planning

 $A max(Td_H + TCIN_R/2, M * (Tu_H/2 + TCIN_R/2))]$

- $[Td_H/2 + M * TCIN_R]$
- $\bigcirc [max(Td_R, \frac{M}{2} * (Td_R + TCIN_R))]$
- $\bigcirc [Td_R + TCIN_R]$
- T_{x_y} : Total x-stream traffic at y-site
- *M*: Bandwidth margin on the router uplinks, required for heathy tunneled traffic flow

M = 1.5 ensures steady state below 66.66%

Conclusion

- E-CIN is novel to geographically de-couple Remote PHY core from edge
- Useful in reducing footprint at a facility and consolidating resources
- Cost benefit from deferred facility augments and shared core resources
- Unique challenges with reliability, latency, and operational complexity
- Cost expenditure on additional metro-core augments
- Apply E-CIN only where optical separation is low (< 320 Km) and cost benefit is high.
- Pending evaluation within the context of Remote MAC-PHY and virtual CCAP

ATLANTA, GA OCTOBER 11-14

Thank You!

Deepa Phanish, Ph.D.

Network Planner/Technical Analyst Cox Communications +1 404-664-8816 deepa.phanish@cox.com

SCTE.

a subsidiary of CableLabs