

ATLANTA, GA OCTOBER 11-14



# UNLEASHTHE POWER OF IMITLESS CONNECTIVITY





Wireline Access Network

## 100 Mbps DAA Nodes

John Chapman

CTO Broadband Access & Cisco Fellow Cisco Systems





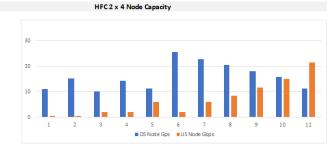


Network Design Considerations

- Review channel and port differences between an I-CMTS and a node
- Introduce DUCR, the DS:US bandwidth ratio. Discuss peak rate versus total capacity.

Bandwidth studies of DAA Nodes and their CIN requirements

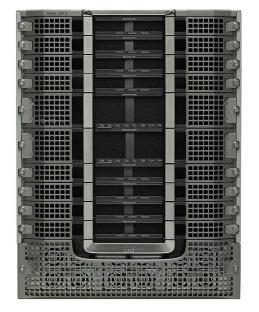
- What is possible today (42 MHz rtn, video)
- What is possible with DOCSIS 3.1
- What is possible with DOCSIS 4.0
- What is possible <u>after</u> DOCSIS 4.0

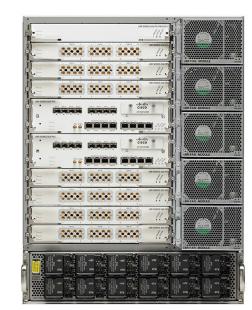



#### **DAA Bandwidth Spreadsheet**

- The basis of this work is from a spreadsheet developed by the author that is available by contacting me on LinkedIn.
- Please send feature requests and bugs to the me.

My address is:


https://www.linkedin.com/in/john-t-chapman/




| Summary                                        |            |            |                               |             |                              |             |            |             |             |                  |              |             |
|------------------------------------------------|------------|------------|-------------------------------|-------------|------------------------------|-------------|------------|-------------|-------------|------------------|--------------|-------------|
| 2 x 4 Node Capacity                            | User       |            | OCSIS 3.1                     |             |                              |             |            |             | S 4.0 wi    |                  |              |             |
| Scenario                                       | Calc       | 1          | 2                             | 3           | 4                            | 5           | 6          | 7           | 8           | 9                | 10           | 11          |
| DS End MHz                                     | 1002       | 1002       | 1218                          | 1002        | 1218                         | 1218        | 1794       | 1794        | 1794        | 1794             | 1794         | 1794        |
| DS Start MHz                                   | 714        | 54         | 54                            | 108         | 108                          | 258         | 108        | 258         | 372         | 492              | 606          | 834         |
| US End MHz                                     | 42         | 42         | 42                            | 85          | 85                           | 204         | 85         | 204         | 300         | 396              | 492          | 684         |
| VOD/SDV MPEG-TS                                | 0          | 32         | 32                            | 32          | 32                           | 32          | 32         | 32          | 32          | 32               | 32           | 32          |
| Linear Video MPEG-TS                           | 0          | 64         | 64                            | 64          | 64                           | 64          | 64         | 64          | 64          | 64               | 64           | 64          |
| DOCSIS DS port Gbps                            | 2.3        | 3.2        | 5.3                           | 2.6         | 4.8                          | 3.3         | 10.5       | 9.0         | 7.9         | 6.7              | 5.6          | 3.3         |
| DOCSIS US port Gbps                            | 0.10       | 0.10       | 0.10                          | 0.47        | 0.47                         | 1.48        | 0.47       | 1.48        | 2.11        | 2.93             | 3.75         | 5.39        |
| Ethernet DS Gbps                               | 4.7        | 11.1       | 15.4                          | 10.1        | 14.4                         | 11.4        | 25.8       | 22.8        | 20.6        | 18.2             | 15.9         | 11.4        |
| Ethernet US Gbps                               | 0.4        | 0.4        | 0.4                           | 1.9         | 1.9                          | 5.9         | 1.9        | 5.9         | 8.4         | 11.7             | 15           | 22          |
| DU CR, Avg                                     | 11.6       | 16         | 26                            | 2.8         | 5.1                          | 1.1         | 11.2       | 3.0         | 1.9         | 1.1              | 0.7          | 0.3         |
| DUCR, Peak                                     | 23.1       | 31         | 53                            | 5.6         | 10.2                         | 2.2         | 22.5       | 6.1         | 3.7         | 2.3              | 1.5          | 0.6         |
| ODFM ch per Node                               | 2          | 4          | 6                             | 2           | 6                            | 4           | 12         | 10          | 8           | 8                | 6            | 4           |
| OFDMA ch per Node                              | 0          | 0          | 0                             | 4           | 4                            | 8           | 4          | 8           | 12          | 16               | 20           | 28          |
| DOCSIS DS BW MHz                               | 288        | 372        | 588                           | 318         | 534                          | 384         | 1110       | 960         | 846         | 726              | 612          | 384         |
| Cross-over MHz                                 | -          | 12         | 12                            | 23          | 23                           | 54          | 23         | 54          | 72          | 96               | 114          | 150         |
| DOCSIS US BW MHz                               | 26         | 26         | 26                            | æ           | 69                           | 188         | 69         | 188         | 261         | 357              | 453          | 645         |
| 32 VOD/SDV MPE                                 | G-TS       | 1794       | 1794 DS Stop MHz for D4.0 ESD |             | ESD or F                     | DX for D    | 4.0        | 4096        | OFDM N      | ۸od              |              |             |
| 64 Linear Video M                              |            | 16.4       | US Start                      |             |                              | YES         |            | FDX Tra     |             | 2048             | OFDMA        | Mod         |
| 2 DS ports per No                              | ode        | 24         | ch SC-Q/                      | AM @ 6      | 6 MHz 120 MHz FDX Trans Band |             |            |             | Band        | 256              | SC-QAN       | I Mod       |
| 4 US ports per No                              | ode        | 4          | ch ATDN                       | 1A @ 6.4    | 4 MHz                        | 24          | MHz DS     | unused -    | < 108       | 64               | ATDMA Mod    |             |
| Acceptance Criteria                            |            |            | 2                             | 3           | 4                            | 5           | 6          | 7           | 8           | 9                | 10           |             |
|                                                | Calc       | 1          |                               | -           |                              | -           | -          |             |             |                  | 10           | 11          |
| DS End MHz<br>US End MHz                       | 1002<br>42 | 1002<br>42 | 1218<br>42                    | 1002<br>85  | 1218<br>85                   | 1218        | 1794<br>85 | 1794        | 1794        | 1794<br>396      | 1794<br>492  | 1794<br>684 |
| 1) DS Path ≥ 5 Gbps                            | 42         | 63%        | 42                            | 53%         | 96%                          | 204<br>66%  | 210%       | 204<br>180% | 300<br>158% | 134%             | 111%         | 66%         |
| · · · · ·                                      | 47%        | 127%       | 76%                           | 55%<br>141% | 255%                         | 55%         | 178%       | 152%        | 94%         | 57%              | 37%          | 15%         |
| 2) 2 < avg DUCR < 20<br>3) US SF 1 Gbps, 0.4 K |            | 7%         | 76%                           | 33%         | 33%                          | 55%<br>106% | 33%        | 106%        | 94%<br>151% | 209%             | 268%         | 385%        |
| 4) 100% > 85 MHz US                            | -78%       | -78%       | -78%                          | 55%<br>0%   | 55%<br>0%                    | 217%        | 55%<br>0%  | 217%        | 350%        | 209%<br>526%     | 208%<br>701% | 10519       |
| Combined Results:                              |            | -78%       | -78%                          | 0%          | 0%                           | 55%         | 0%         | 106%        | 94%         | 526%             | 37%          | 10519       |
|                                                |            |            |                               |             | 070                          | 3376        | 0%         | 100%        | 9470        |                  |              |             |
| Acceptance 1                                   |            |            | S path mi                     |             |                              |             |            |             |             |                  | Gritieria    |             |
| Criteria 2)                                    |            | DUCR m     |                               | 20          | DUCR m                       |             | avg        | based       |             | success if > 100 |              |             |
| 3)                                             |            | •          | S SF with                     |             |                              |             | adroom (   | к)          |             |                  | orderline    |             |
| 4}                                             | 100%       | more B     | W than a                      | 85          | MHz re                       | tum pati    | h          |             |             | r                | eject if <   | 90%         |



### **Review of an I-CMTS port configuration (Example)**





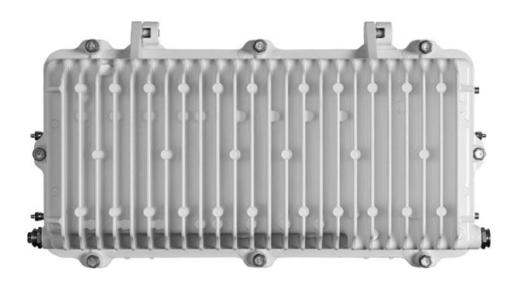
CMTS Capacity depends on:

CMTS ports (DS and US separate)

• 7 LC @ 8 DS x 16 US = 56 DS x 128 US

Channels per port

- DS: 96 SC-QAM, 4 OFDM
- US: 8 A-TDMA, 2 OFDMA


Ethernet capacity

- Dual 100 Gbps
- This represents aggregate capacity and allows for CMTS oversubscription
- Ethernet connectivity drives network costs

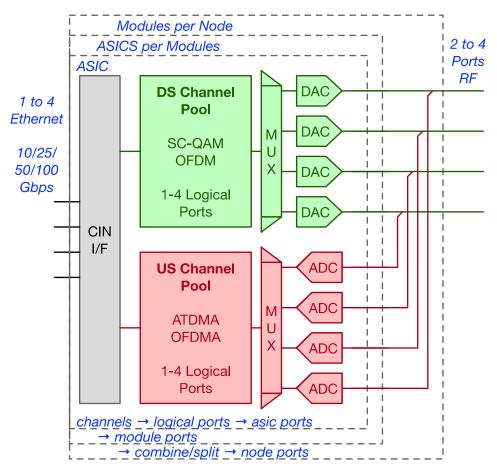
Internal constraints

• bus BW, memory, PPS, redundancy, CPU

### For DAA, the CMTS physical config is now node based



Config rules


- are the same for RPHY and RMACPHY (FMA)
- are different than I-CMTS as they have built-in diplexers, combiners, and splitters.

Nodes have 2 to 4 bi-directional ports with internal combining and splitting

I-CMTS has separate DS and US RF ports

| DS x | US     |          |            |                                                          |
|------|--------|----------|------------|----------------------------------------------------------|
| 1x1  | Single | e-return | 2x2<br>2x4 | Two single 1x1 modules, or one module with newer silicon |
| 1x2  | Dual-  | return   | 4x4        | Two 2x2 modules or future silicon                        |

### Inside a DAA Node



There are:

- Channels per channel group
- One of more channel groups per ASIC
- One or more ASICs per module
- One or more modules to a node
- Splitting and combining in the node

Regardless, a 4x4 DAC/ADC is good for

- DPD (Digital Predistortion)
- Reduction of US noise funneling

So, a 2x4 DAA Node means 2 unique DOCSIS DS ports and 4 unique upstream ports.

SCTE

CABLE-TEC EXF

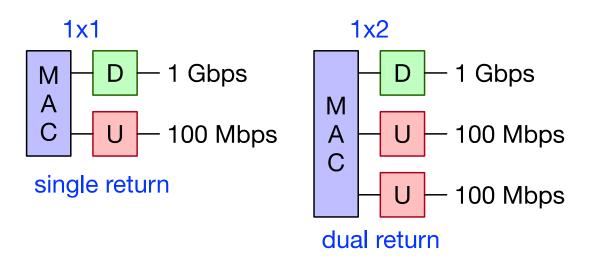


### **Ethernet Connectivity for DAA Nodes**

Backhaul requires one or more Ethernets per DAA node. They may range from 10 Gbps today to 100 Gbps later

|   | Multicast Video | Module |
|---|-----------------|--------|
|   | VOD Video, Data | woule  |
| R | ,               | Node   |
|   | ?               | Module |
|   | VOD Video, Data | Module |

Multicast:


- Multicast video <u>may</u> be shared across network ports of the same module if designed to do so
- Multicast video <u>cannot</u> be shared across network ports that go to separate modules

Ethernet capacity may become the bottleneck

Leave room for signaling

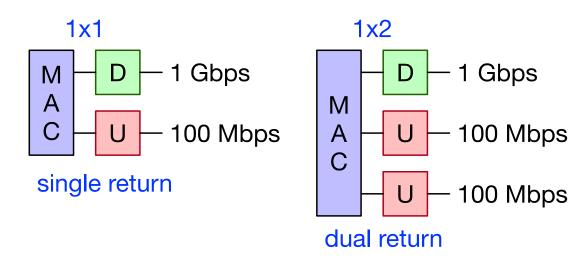


### **Designing for Peak or Capacity**



Suggested rule-of-thumb

Use 1x1


- If a significant number of your subs are
  >> half the peak rate
- Then you are designing for peak rate

Dual return has the same peak capacity (100 Mbps) as a single return but has twice the capacity (200 Mbps) Use 1x2

- If most of your subs are << half the peak rate
- Then you are designing for capacity



### **DUCR – Downstream to Upstream Capacity Ratio**



|              |                            | 1x1                 | 1x2                 |                          |
|--------------|----------------------------|---------------------|---------------------|--------------------------|
| Peak<br>DUCR | peak DS bw<br>peak US bw   | $\frac{10}{1} = 10$ | $\frac{10}{1} = 10$ | => what the<br>CM sees   |
| Avg<br>DUCR  | total DS bw<br>total US bw | $\frac{10}{1} = 10$ | $\frac{10}{2} = 5$  | => what the<br>CMTS sees |

DUCR is a measure of asymmetry that takes ports into account. © 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte. Two upstream ports have more total capacity than one upstream port

DUCR allows capacities to be compared between system configurations.

5G TDD DDDSU is a DUCR of 4 to 5

There is also a CM DUCR

| DU  | CR   |      |                 |
|-----|------|------|-----------------|
| Avg | Peak |      | comment         |
| 20  | 40   | high | TCP limit       |
| 10  | 20   | good | classic         |
| 5   | 10   | best | avg matches 5G  |
| 2.5 | 5    | good | peak matches 5G |

#### **Table Defaults**

| 32 | VOD/SDV MPEG-TS      | 1794 | DS Stop MHz for D4.0 | ESD | ESD or FDX for D4.0     | 4096 | OFDM Mod   |
|----|----------------------|------|----------------------|-----|-------------------------|------|------------|
| 64 | Linear Video MPEG-TS | 16.4 | US Start MHz         | YES | Video in FDX Trans Band | 2048 | OFDMA Mod  |
| 2  | DS ports per Node    | 32   | ch SC-QAM @ 6 MHz    | 120 | MHz FDX Trans Band      | 256  | SC-QAM Mod |
| 4  | US ports per Node    | 4    | ch ATDMA @ 6.4 MHz   | 24  | MHz DS unused < 108     | 64   | ATDMA Mod  |

Optimistic modulation of 2K OFDMA and 4K OFDM

Scenarios are run with either:

- 32 VOD/SVD (unique per port) so duplicated on the Ethernet, and
- 64 linear (shared across ports), so one instance per Ethernet
- remaining bandwidth is DOCSIS (at 6 MHz/channel, this is 576 MHz of video) and
- no video and all DOCSIS



#### 2x4 Node, DOCSIS 3.1, with/without MPEG video

| 2 x 4 Node Capacity | D    | OCSIS 3. | 1 with M | PEG vide | 90   | DO   | CSIS 3.1 | with no | MPEG vi | deo  |
|---------------------|------|----------|----------|----------|------|------|----------|---------|---------|------|
| Scenario            | 1    | 2        | 3        | 4        | 5    | 1    | 2        | 3       | 4       | 5    |
| DS End MHz          | 1002 | 1218     | 1002     | 1218     | 1218 | 1002 | 1218     | 1002    | 1218    | 1218 |
| DS Start MHz        | 54   | 54       | 108      | 108      | 258  | 54   | 54       | 108     | 108     | 258  |
| US End MHz          | 42   | 42       | 85       | 85       | 204  | 42   | 42       | 85      | 85      | 204  |
| DOCSIS DS port Gbps | 3.0  | 5.1      | 2.5      | 4.6      | 3.1  | 8.7  | 10.9     | 8.2     | 10.3    | 8.8  |
| DOCSIS US port Gbps | 0.10 | 0.10     | 0.47     | 0.47     | 1.48 | 0.10 | 0.10     | 0.47    | 0.47    | 1.48 |
| Ethernet DS Gbps    | 10.8 | 15.1     | 9.7      | 14.0     | 11.0 | 17.4 | 21.7     | 16.4    | 20.7    | 17.7 |
| Ethernet US Gbps    | 0.4  | 0.4      | 1.9      | 1.9      | 5.9  | 0.4  | 0.4      | 1.9     | 1.9     | 5.9  |
| DUCR, Avg           | 15   | 26       | 2.6      | 4.9      | 1.0  | 43   | 54       | 8.7     | 11.0    | 3.0  |
| DUCR, Peak          | 30   | 51       | 5.2      | 9.8      | 2.1  | 87   | 108      | 17.5    | 22.1    | 6.0  |

### 2x4 Node, DOCSIS 3.1, with/without MPEG video

#### Scenario 1 & 2: 42 MHz return with 1002/1218 MHz forward

- US bw is 100 Mbps. DUCR ratios are too high (with no video) which is not good.
- US can be expanded to 150 to 200 Mbps with OFDMA below 42 MHz, which halves DUCR
- DS bw is 3-5 Gbps with MPEG video and 9-11 Gbps without MPEG Video. Awesome!
- → Removing MPEG video can triple DOCSIS DS performance but US is limited.

#### Scenario 3&4: 85 MHz return with 1002/1218 MHz forward

- 470 Mbps upstream with 2.5-10 Gbps forward. DUCR ratios are great
- → This is optimized D3.1 performance (per DUCR), especially with dual return

#### <u>Scenario 5: 204 MHz return with 1218 MHz forward</u>

• 1.5 Gbps return with 3-9 Gbps forward. DUCR ratios are low



#### 2x4 Node, DOCSIS 4.0 ESD/FDX with MPEG video

| 2 x 4 Node Capacity |      | DOCSIS      | 4.0 ESD     | with MPI     | EG video |      | DOCSIS 4.0 FDX with MPEG video |      |      |      |      |      |
|---------------------|------|-------------|-------------|--------------|----------|------|--------------------------------|------|------|------|------|------|
| Scenario            | 6    | 7           | 8           | 9            | 10       | 11   | 6                              | 7    | 8    | 9    | 10   | 11   |
| DS End MHz          | 1794 | <b>1794</b> | <b>1794</b> | 1 <b>794</b> | 1794     | 1794 | 1218                           | 1218 | 1218 | 1218 | 1218 | 1218 |
| DS Start MHz        | 108  | 258         | 372         | 492          | 606      | 834  | 108                            | 108  | 108  | 108  | 108  | 108  |
| US End MHz          | 85   | 204         | 300         | 396          | 492      | 684  | 85                             | 204  | 300  | 396  | 492  | 684  |
| DOCSIS DS port Gbps | 10.3 | 8.8         | 7.7         | 6.5          | 5.4      | 3.1  | 4.6                            | 4.6  | 4.6  | 4.6  | 4.6  | 4.6  |
| DOCSIS US port Gbps | 0.47 | 1.48        | 2.11        | 2.93         | 3.75     | 5.39 | 0.47                           | 1.29 | 2.11 | 2.93 | 3.75 | 5.39 |
| Ethernet DS Gbps    | 25.5 | 22.5        | 20.2        | 17.8         | 15.6     | 11.0 | 14.0                           | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 |
| Ethernet US Gbps    | 1.9  | 5.9         | 8.4         | 11.7         | 15       | 22   | 1.9                            | 5.2  | 8.4  | 11.7 | 15   | 22   |
| DUCR, Avg           | 11.0 | 3.0         | 1.8         | 1.1          | 0.7      | 0.3  | 4.9                            | 1.8  | 1.1  | 0.8  | 0.6  | 0.4  |
| DUCR, Peak          | 22.1 | 6.0         | 3.7         | 2.2          | 1.4      | 0.6  | 9.8                            | 3.6  | 2.2  | 1.6  | 1.2  | 0.9  |



#### 2x4 Node, DOCSIS 4.0 ESD/FDX with no MPEG video

| 2 x 4 Node Capacity | D    | ocsis 4 | .0 ESD w | ith no M     | PEG vide     | 0    | DOCSIS 4.0 FDX with no MPEG video |      |      |      |      |      |  |
|---------------------|------|---------|----------|--------------|--------------|------|-----------------------------------|------|------|------|------|------|--|
| Scenario            | 6    | 7       | 8        | 9            | 10           | 11   | 6                                 | 7    | 8    | 9    | 10   | 11   |  |
| DS End MHz          | 1794 | 1794    | 1794     | 1 <b>794</b> | 1 <b>794</b> | 1794 | 1218                              | 1218 | 1218 | 1218 | 1218 | 1218 |  |
| DS Start MHz        | 108  | 258     | 372      | 492          | 606          | 834  | 108                               | 108  | 108  | 108  | 108  | 108  |  |
| US End MHz          | 85   | 204     | 300      | 396          | 492          | 684  | 85                                | 204  | 300  | 396  | 492  | 684  |  |
| DOCSIS DS port Gbps | 16.1 | 14.6    | 13.4     | 12.2         | 11.1         | 8.8  | 10.3                              | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 |  |
| DOCSIS US port Gbps | 0.47 | 1.48    | 2.11     | 2.93         | 3.75         | 5.39 | 0.47                              | 1.29 | 2.11 | 2.93 | 3.75 | 5.39 |  |
| Ethernet DS Gbps    | 32.1 | 29.2    | 26.9     | 24.5         | 22.2         | 17.7 | 20.7                              | 20.7 | 20.7 | 20.7 | 20.7 | 20.7 |  |
| Ethernet US Gbps    | 1.9  | 5.9     | 8.4      | 11.7         | 15           | 22   | 1.9                               | 5.2  | 8.4  | 11.7 | 15   | 22   |  |
| DUCR, Avg           | 17.2 | 4.9     | 3.2      | 2.1          | 1.5          | 0.8  | 11.0                              | 4.0  | 2.5  | 1.8  | 1.4  | 1.0  |  |
| DUCR, Peak          | 34.3 | 9.8     | 6.4      | 4.2          | 3.0          | 1.6  | 22.1                              | 8.0  | 4.9  | 3.5  | 2.8  | 1.9  |  |

### 2x4 Node, DOCSIS 4.0 ESD/FDX

- Scenario 6: 85 MHz return (not a real D4.0 scenario for ESD or FDX)
- FDX: Nice avg DUCR (10) with video 10Gx 470 Mbps (940 Mbps aggregate)
- ESD: DUCR is too high for all data, but good for video+data and for < 1794 MHz Scenario 7: 204 MHz return
- Optimum DUCR values for ESD and FDX
- Scenarios 8 thru 11:
- Low DUCR ratios mean the US may not get fully utilized with asymmetrical traffic.
- 396 MHz is 2x the throughput of 204 MHz and may be the best choice of the group
- 684 MHz is less practical as it is near symmetric

#### Ethernet

• Dual 10 Gbps Ethernet is not enough for 2x4 D4.0. A shared 25 or 40 Gbps is better © 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org



#### 4x4 Node, DOCSIS 3-GHz ESD/FDX, no MPEG video

| 4 x 4 Node Capacity | Pos   | t DOCSIS | 4.0 ESD | with no | MPEG vio | deo  | Post DOCSIS 4.0 FDX with no MPEG video |       |       |       |       |       |  |
|---------------------|-------|----------|---------|---------|----------|------|----------------------------------------|-------|-------|-------|-------|-------|--|
| Scenario            | 6     | 7        | 8       | 9       | 10       | 11   | 6                                      | 7     | 8     | 9     | 10    | 11    |  |
| DS End MHz          | 2946  | 2946     | 2946    | 2946    | 2946     | 2946 | 2946                                   | 2946  | 2946  | 2946  | 2946  | 2946  |  |
| DS Start MHz        | 108   | 258      | 372     | 492     | 606      | 834  | 108                                    | 108   | 108   | 108   | 108   | 108   |  |
| US End MHz          | 85    | 204      | 300     | 396     | 492      | 684  | 85                                     | 204   | 300   | 396   | 492   | 684   |  |
| DOCSIS DS port Gbps | 27.5  | 26.0     | 24.9    | 23.7    | 22.6     | 20.3 | 27.5                                   | 27.5  | 27.5  | 27.5  | 27.5  | 27.5  |  |
| DOCSIS US port Gbps | 0.47  | 1.48     | 2.11    | 2.93    | 3.75     | 5.39 | 0.47                                   | 1.29  | 2.11  | 2.93  | 3.75  | 5.39  |  |
| Ethernet DS Gbps    | 110.1 | 104.2    | 99.6    | 94.8    | 90.3     | 81.2 | 110.1                                  | 110.1 | 110.1 | 110.1 | 110.1 | 110.1 |  |
| Ethernet US Gbps    | 1.9   | 5.9      | 8.4     | 11.7    | 15       | 22   | 1.9                                    | 5.2   | 8.4   | 11.7  | 15    | 22    |  |
| DUCR, Avg           | 58.8  | 17.5     | 11.8    | 8.1     | 6.0      | 3.8  | 58.8                                   | 21.4  | 13.1  | 9.4   | 7.3   | 5.1   |  |
| DUCR, Peak          | 58.8  | 17.5     | 11.8    | 8.1     | 6.0      | 3.8  | 58.8                                   | 21.4  | 13.1  | 9.4   | 7.3   | 5.1   |  |

### 4x4 Node, DOCSIS 3 GHz ESD/FDX, no MPEG video

- ~25 Gbps DOCSIS DS
- 100 Gbps Ethernet required
- 4x4 forces one upstream port per downstream port.
- Peak DUCR = Avg DUCR
- 396 MHz US provides a DUCR ~10
- 684 MHz US provides a DUCR of 4-5 (same as mobile)



### **DAA Node Summary**

#### Design Principles

- Node capacity involves constraints from ASIC/Module/Node
- DPD and lower noise funneling benefits from 4x4 ASIC to node connectivity, even if node is 2x2 or 2x4
- Multicast video impacts Ethernet BH
- DUCR is a great tool for rating solutions
- Design for capacity or peak rate
- CIN can be reused for Business Ethernet, PON, FWA, 4G/5G small cell

#### DAA Node Ethernet Requirements

1x1 or 1x2 node

• D3.1 needs 10 Gbps BH

#### 2x2 or 2x4 node

- D3.1 can work with dual 10 Gbps BH but
- D4.0 needs 25 Gbps BH
- 2 x 10 Gbps can be hard to configure with multicast video

#### 4x4 node

- D3.1/4.0 needs 40 Gbps
- DOCSIS NG 3 GHz needs 100 Gbps



-



## Thank You!

#### John T Chapman

CTO Broadband Technologies & Cisco Fellow Cisco Systems jchapman@cisco.com https://www.linkedin.com/in/john-t-chapman/



..|...|.. CISCO