

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Solving The Mysteries of the Distributed Access
Architecture

A Technical Paper prepared for SCTE by

Matthew Stehman
Comcast

1800 Arch St, Philadelphia, PA
Matthew_Stehman@comcast.com

Ramya Narayanaswamy

Comcast
1800 Arch St, Philadelphia, PA

Ramya_Narayanaswamy@cable.comcast.com

Jude Ferreira
Comcast

1800 Arch St, Philadelphia, PA
Jude_Ferreira@comcast.com

Robert Gaydos

Comcast
1800 Arch St, Philadelphia, PA
Robert_Gaydos@comcast.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Overview of DAA Telemetry .. 5
1.1. Problem Statement .. 5
1.2. DAA Topology and Telemetry .. 5
1.3. Need for Data Aggregation .. 8

2. Implementing Sherlock: a Big Data Analysis Architecture for DAA .. 8
2.1. Requirements ... 9
2.2. Implementation ... 9
2.3. Features ... 11

3. DAA Event Classification and Rankings ... 12
3.1. Event Classification .. 13
3.2. Ranking Methodology .. 15
3.3. Ranking Usage ... 15

4. Practical Use Cases and Example Findings ... 16
4.1. Noise/Ingress ... 16
4.2. SW/HW Upgrades .. 17

5. Machine Learning Applications ... 18
5.1. Clustering Example .. 19

6. Conclusion ... 21

Abbreviations .. 22

Bibliography & References.. 23

List of Figures

Title Page Number
Figure 1 - DAA Topology Metrics Overview .. 6
Figure 2 - Sherlock Implementation Diagram ... 10
Figure 3 - Diagram of Sherlock Modules .. 11
Figure 4 - Event Heatmap for a Single Site Over a Week .. 14
Figure 5 - Sherlock Workflow for Event Classification and Ranking ... 15
Figure 6 - Time Series View of RPD Noise/Ingress Event: a.) vCMTS/GCPP Statuses, b.) RPD Power

Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer Calls, Automated
Alerts, RPD SW/HW Changes and f.) RPD Switch Status ... 17

Figure 7 - Time Series View of RPD HW/SW Event: a.) vCMTS/GCPP Statuses, b.) RPD Power
Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer Calls, Automated
Alerts, RPD SW/HW Changes and f.) RPD Switch Status ... 18

Figure 8 - Clustering Architecture ... 19
Figure 9 - Interpreting Cluster Results via a Decision Tree .. 20

List of Tables
Title Page Number
Table 1 - List of Metrics ... 7
Table 2 - Description of event classifications .. 14
Table 3 - Sample Event List for a Single RPD During US Noise Event .. 16

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

Table 4 - Sample Event List for a Single RPD During SW Update ... 18
Table 5 - Decision Tree Paths for Clusters ... 21

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

As the benefits of a distributed access architecture (DAA) continue to be seen from real world
applications, Comcast is continuing to convert its analog cable modem termination systems (CMTSs) to
virtualized CMTSs (vCMTS). The new technology of DAA not only allows for increased performance of
the network with the switch to all-digital components, but also increased visibility with more
sophisticated real-time telemetry. The DAA framework emits high fidelity telemetry data from many
components, from the primary headend to the customer premises equipment (CPE). The scale of our
DAA footprint is growing rapidly, and it is no longer feasible for humans to monitor all of the raw
telemetry data and identify patterns of interest and issues. This paper introduces a computational
framework and analysis methodology for automated monitoring and alerting for events of interest.

With analog CMTSs, telemetry data is acquired via polling MIBs from the CMTS OS, typically hourly
and even down to five-minute intervals in some cases. Our vCMTS implementation has a dedicated
telemetry core that constantly emits and writes all telemetry data at 15 second intervals to a time series
database, so the real-time data can easily be acquired and analyzed by the DAA team. Each vCMTS
captures thousands of telemetry streams, comprising over 1 billion samples per day from a single physical
server, which houses many vCMTS cores. With this volume of data, we needed a telemetry analysis tool
that could make sense of the data in its current form and continue scale up with DAA in the coming years.
Comcast is currently developing a tool for this purpose, internally named “Sherlock.”

The name isn’t entirely coincidental. As the title of this paper implies, the very act of distributing an
access architecture tends to uncover many infrastructural mysteries that could benefit from a sleuth. Some
relate to the huge amount of data that flows in every 15 seconds from the thousands of broadband-
foundational components within our physical infrastructure. The upstream signal path in particular is a
trove of noise-related anomalies, as one example referenced within this paper illustrates. It represents an
excellent network segment to expose to machine learning (ML) – which thrives on large amounts of data.

While the DAA telemetry covers most of the active components in the network, there are external tools
and data that can significantly enhance the capabilities of Sherlock. As such, Sherlock interfaces with
other systems such as: customer contact, automated support tickets, existing performance metric tools,
etc. The core component of Sherlock is its ability to interface with a wide variety of data sources and
create a single, time-aligned view of the entire system for analysis.

Once the single, time-aligned view of DAA is created, event identification and alerting can be
implemented. Initially, logic-based event tagging is implemented based on common thresholds for events
like partial service, plant-based noise as well as system statuses such as DAA cores offline, remote PHY
device (RPD) reboots, and CPE connectivity. Once these events are determined, analytics can be
performed to evaluate the frequency and severity of events. Using the event statistics, rankings are created
to support the DAA team in prioritizing issues to address as well as keep track of persistent issues. The
analysis and rankings are performed at different levels of aggregation: RPD, physical server, site and even
division and national.

Future research utilizing the core functionality of the tool includes advanced ML techniques to find
patterns/events outside of the standard events identified from traditional logic-based checks. This paper
introduces several active research areas in ML in the DAA space. An overview of the architecture is
introduced, and an example is discussed.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

The development of this tool has had a large impact on the successful deployment of DAA in Comcast’s
footprint. A sample of example findings from Sherlock is discussed as well.

1. Overview of DAA Telemetry
Remote PHY (R-PHY) has taken hold as the technology of choice for deployment of DAA solutions. The
concept of a distributed architecture decreases the amount of equipment that traditionally sits in a cable
headend and then connects via hybrid fiber/coax (HFC) to neighborhoods and eventually to customer
homes. DAA moves the PHY, or physical RF layer, closer to the user by deploying RPD-equipped R-
PHY nodes that sit on the access edge of the network. DAA allows for higher speeds to the end-user
because it uses digital fiber optics in place of legacy analog optics. Digital fiber links improve signal
quality and support higher modulation orders. DAA also offers operational savings related to the cost of
headend equipment, power and more, as small hub sites or curbside equipment act as the PHY layer of the
network.

vCMTS technology enables us to shift to a DAA by disaggregating the CMTS. It also allows us to move
to IP-based connectivity and converge voice and data services with video and other legacy services, with
an added benefit of no longer needing to manage and maintain traditional, bulky CMTS gear.

The transition from legacy hardware to a distributed server-based architecture that can run external
software applications allows Comcast extreme visibility into the DAA platform. The scalability and
openness of DAA means the platform can now support applications such as real time telemetry streaming
that would have been too demanding to run on legacy CMTSs. The DAA system is rich in telemetry,
where individual components within the network transmit data as frequently as every 15 seconds to
indicate the health of system/network. Mining DAA telemetry data to identify and detect issues in the
network that could potentially lead to bad customer service is not only challenging but also involves
combing through a lot of existing tools and data sets to build a smart access network.

1.1. Problem Statement

As we scale our DAA deployment to thousands of digital nodes and hundreds of vCMTSs and sites in the
next few years, we anticipate operational challenges. Among them, monitoring and going through all
telemetry data points to determine system health, and correlating the impact of one component in the
architecture to the other key components, while identifying impairments proactively, before customers are
affected.

Sherlock is a tool designed to address those challenges by looking at all the relevant metrics, creating a
time-aligned view at the most granular level, scoring the health of the system, and identifying root cause
of issues. It also proactively identifies anomalous patterns that lead to poor system performance. The goal
of Sherlock is to analyze and identify patterns of impairments and rank them based on several criteria,
that are outlined in Section 4.

1.2. DAA Topology and Telemetry

As mentioned previously, the DAA architecture offers rich telemetry, from the headend all the way to the
CPE. A simplified representation of the telemetry coverage across the DAA topology is show in Figure 1.
A variety of telemetry metrics are reported across the topology, ranging from system statuses to traffic
and even HW/SW versions of the RPDs.

In our topology, the primary headend houses the core servers and provides statuses of the principal and
auxiliary cores for global system health. The primary headend comprises multiple PPODs, or physical

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

point of deployments. A PPOD is a cluster of servers running the necessary services to operate the
connected RPDs. The PPOD the connects to a set of DAAS (distributed access architecture switches) that
transfer data to and from the RPDs. The primary core or GCPP, for Generic Control Protocol Principal,
provides containerized services for automating deployments, managing applications, the initial
authentication of the RPDs, and configuring RPD features and video services. The principal core does not
provide any services (video or data).

The GCPP core performs the following three primary functions:

• Initial authentication of the RPD.

• Initial configuration of the RPD, including the list of cores to which it connects and the
resources that those other cores will configure.

• Configuration of the multicast sources that the RPD uses to populate QAM video (broadcast and
narrowcast) channels. The GCPP allows integrating videos on a standardized, single video
platform.

Figure 1 - DAA Topology Metrics Overview

The auxiliary core or GCP (generic control plane) is the second of the two main control planes within
DAA architecture: The GCP, which sets up a control plane tunnel over a generic transport protocol such
as TCP or UDP. GCP is used to program the R-PHY system upstream and downstream parameters from

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

the CMTS. It is also used to control the R-PHY system, thus if the AUX core is offline, no data can flow
to/from the RPDs.

The secondary headend houses a variety of switches that prepare and breakout the signals prior to
sending/receiving data from the RPDs. The main switch type of interest is the DAAS (distributed access
architecture switch), which aggregates 10 Gbps connections to remote nodes. The DAAS switches report
connection statuses which show the heath of the connection from the fiber port on the switch to the RPD.

In the plant region of the DAA topology, RPD metrics include RPD meta information, interface traffic
and even CPE-level information. Having telemetry in different regions of the network topology allows for
easier identification of where in the topology an issue may have originated. Table 1 includes more detail
of the main metrics that are collected from the DAA network. These metrics were chosen through
discussions with DAA experts as well as iterative exploratory data analyses during the initial development
phases. These metrics, while not exhaustive, cover the key aspects of system/network health as well as
customer experience. The list of metrics is continuing to grow as Sherlock is used in the development and
deployment of DAA.

Table 1 - List of Metrics

Metric Type Metric Description

Platform Status

GCPP Status
GCPP Status captures the state of the Global Control
Primary Plane and indicates if it is operational, offline
or initializing

Aux/GCP Core Status The Aux Core Provides HSD services and the status
indicates if it is online, offline or being configured

Network Status Keep Alives
Keep Alives track the status of the TCP network
connection between the principal cores and the switch
interfaces

Hardware
RPD Reboots Details about RPD reboots such as a reason for

reboot, type and recovery time

DAAS Port Status DAAS port status captures the status of the DAAS
switches located in the secondary headend

Traffic Device, RPD, Routers-
US and DS Traffic

Upstream and Downstream traffic is collected from
various components from PPOD to CPE

Device Status
CPE Registration

Registration status captures the CPE devices attempts
to pair with the vCMTS that must happened every 30s
as dictated by the DOCSIS specifications

US/DS Bonding Status Bonding Status for each US/DS interface per CPE
device is captured

FEC Corrected and
Uncorrected Codewords

CCW and UCCW are collected at device and interface
levels. These can be an indicator of impairments
within the plant/faulty modems that need to be
proactively identified and addressed

Customer Contact Truck Rolls, IVR Calls
Truck Rolls and IVR Calls capture customer contacts
and are key metrics used within Comcast to measure
operational efficiency

Originally, we were focused on finding metrics that correlated with trouble calls/truck rolls, since
customer-facing technician appointments were thought to be a good indicator of system health issues.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

However, it was found that trouble calls were highly sporadic, because of inherent human aspects, e.g.,
different tolerances to service interruptions and when calls happen relative to an issue. After exploring the
customer-facing aspects, it was determined that Sherlock should focus on the engineering side of the
DAA data and let the data drive the insights. Customer contact and technician visits are still evaluated,
since those are valid indicators of issues, albeit not as straightforward to identify as data that comes
directly from the system data itself.

1.3. Need for Data Aggregation

DAA telemetry has several dimensions, such as frequency of data, type of data (event-based and
telemetry-based), the level at which telemetry is captured (device, RPD, PPOD, etc.), and traffic direction
(downstream and upstream). This makes it challenging for a tool to thoroughly mine, to provide views at
different levels in the network that help identify the health of the system, or identify areas of problem
spots in the network.

In addition to the multi-dimensionality, data is transmitted and stored at different locations, which creates
the need for a central data repository. As well, standardization of the data elements across different time
intervals is needed, so as to have the data accessible for analysis and modeling while minimizing data
transfer and storage costs.

To solve the problems stated in Section 2.1 as efficiently as possible, identification of the common
components across DAA and outside data logs would enable the aggregation of information in either
signal direction and still get the desired visibility of network health and customer experience. Considering
the current DAA architecture, aggregating telemetry data points at the RPD level would enable us to
focus on a specific RPD and its associated cable modems, or aggregate it to PPOD/site/vendor level.
Aggregating at a device level, by contrast, would create millions of rows of data per metric, which would
be computationally intensive and would not provide a view that would help operations or the DAA
engineering team in understanding network/platform health. Aggregating data at a PPOD level would
mask the issues encountered at an RPD level, given the mix of device types, software versions running on
the RPD or vendor type.

2. Implementing Sherlock: a Big Data Analysis Architecture for DAA
As discussed, our DAA data is generated from many different components and are stored in a variety of
different specialty database systems. The individual systems are customized specifically for the
applications. While having compartmentalized data storage solutions for each type of data is simpler from
a development and maintenance standpoint, it can make analysis tasks that require several data sources
quite cumbersome.

To allow for efficient analysis of all relevant DAA data with minimal manual operations to join, clean and
analyze the data, Sherlock was built using a big data analysis architecture. Sherlock has the ability to
interface with a variety of existing cloud and on-premise data storage solutions (APIs, SQL databases,
Prometheus, AWS), and combine all the relevant data for efficient analysis.

Building a centralized framework to combine all the different data sources, however, is only half the
battle. This task is even more challenging considering the growing scale of the DAA data streams.
Consider: A typical RPD has thousands of metrics that are stored at 15 second intervals, and each PPOD
can link hundreds of RPDs, so, in total, a single PPOD will generate billions of data points a day. Given
that we are continuously deploying new vCMTSs, Sherlock needs to be able to scale with the growing
DAA footprint and require minimal maintenance. It is easy to see why this operation must be automated,

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

since it is not feasible to expect a team to manually process data at this scale and frequency. This section
discusses the requirements, implementation, and core features of Sherlock.

2.1. Requirements

Sherlock is meant to be used by the DAA deployment and operations teams to actively monitor and
address any DAA deployment and operational issues. Thus, the tool must meet the following
requirements:

• Full footprint coverage
• Scheduled analysis reports
• Ad hoc analysis abilities
• Fast computation

Those requirements ultimately allow for ML to discover hidden trends and patterns in the data. An
overview of the requirements is presented below.

Since the vCMTS deployments are occurring nationwide, Sherlock must be able to analyze data at
different levels of aggregation, from a single RPD to a headend and all the way up to the national level.
The varying levels of analysis allow experts to not only understand issues with a single RPD but
understand if that same issue exists elsewhere and to what extent.

Sherlock should be able to perform automated analyses and generate reports on a schedule so the
deployment team can consistently monitor performance. The scheduled runs can be weekly or even daily
if needed. The automated runs should produce a concise and consistent output to enable efficient tracking
of performance metrics.

Even though scheduled analysis runs are great for consistent summaries of deployment statuses over a
known time window, there will inevitably be ad hoc analysis tasks that require a specialized analysis and
output. Therefore, Sherlock should also have a manual interface to easily interact with the core data
structures and perform a specialized analysis if needed.

Finally, Sherlock must be computationally efficient when performing operations. There is no specific
metric for this requirement, but the general motivation is that the computational framework should
support the frequency of the scheduled runs in the above requirement. In addition, ad hoc analyses should
be able to be completed in a reasonable time frame. That is, if it takes 10 hours to compile the data and
prepare an analysis, the tool would not be useful. To allow for efficient interactions and analyses,
computational operations should take only a few minutes in general, such that the analyst can stay
engaged while working with the data.

2.2. Implementation

Given the requirements listed in Section 3.1, significant effort went into developing Sherlock’s
implementation, such that all requirements would be met, while still allowing future scaling as DAA
continues to grow. The initial stage of development was to become familiar with the data sources, and in
this stage, it became very apparent that an advanced solution would be required.

The first implementation attempt was to load the DAA telemetry data with basic Python packages directly
via API requests to the DAA time series database. While this was quickest way to start accessing the data
and start developing a plan for how the data should be compiled, cleaned, represented, and analyzed, it
was not performant enough to meet the design requirements. Using this approach along with standard

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

Python parallel processing packages, it was taking hours to load a week’s worth of data from just a
handful of RPDs (representing a very small fraction of Comcast’s RPD footprint). It became evident that
a more computationally-efficient and robust solution would be required. At this stage, the first
implementation was deliberately done at very small scale for exploratory analysis (for determining useful
telemetry metrics and experimenting with different processing/visualization methodologies).

Once it was clear what data was important and how it was going to be analyzed, the team designed a
production system to meet all the requirements. The diagram of the implementation is shown in Figure 2.
The chosen implementation solution utilizes Amazon EC2 (Elastic Compute Cloud) computing resources,
which can scale to the meet the needs of a specific task. The source code is written in Apache Spark,
which is an open source distributed processing framework specifically for big data. Databricks is used as
the resource management system that manages Spark sessions and coordinates the EC2 instances to
complete the computation tasks. The raw data is processed and stored in Delta Lakes1 that are optimized
for efficient reading and writing of big data on the distributed Spark framework.

Figure 2 - Sherlock Implementation Diagram

Once the computing and storage frameworks were stood up for use, the data engineering team built the
Sherlock backend. It consists of a pipeline of scheduled jobs that consistently read in the raw DAA data
from the variety of sources previously discussed, to process them into efficient formats. The resulting data
structures are saved to Delta Lakes for efficient access from the main Sherlock application. With the
backend responsible for acquiring the data and pre-processing it, the main Sherlock application can then
just reference these extremely efficient tables at analysis run time. The main application then uses this
centralized data structure to perform a variety of analyses, which are discussed in later sections, as well as
to provide the base data set for ML applications. An in-depth discussion about the main features/modules
of the Sherlock application can be found in Section 3.3.

Once the end-to-end architecture was developed, the performance against two of the main requirements
(full footprint coverage and fast computation) were evaluated. An analysis pipeline, including data
loading, processing, event detection and plotting, was run for the entire DAA footprint (representing
thousands of RPDs) for a one-week duration. This pipeline finished in less than one hour – the same
amount of time it took to merely load 20 RPDs worth with standard Python processes. Similar analyses
on subsets of the footprint take less than 20 minutes, and in the future the aim would be to build
specialized pseudo-real-time operations that can be performed much quicker (such as real-time event
detection with ML). These performance metrics surpass the design requirements discussed earlier.
Scalability with the DAA framework also doesn’t seem to be a concern at this point, either, due to the
scalable and distributed computing framework provided by Databricks and Spark.

1 Delta Lake “…is an open-source project that enables building what is called a Lakehouse architecture on top of
existing storage systems such as S3, ADLS, GCS, and HDFS.” For more information, see https://delta.io/

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

2.3. Features

Sherlock has five modules that handle different aspects of the analysis functionality: core, visualization,
event classification, ranking and ML. The breakdown of module responsibilities is shown in Figure 3.

Figure 3 - Diagram of Sherlock Modules

The core module handles most of the data integration, such as loading the data from all the supported
sources and converting to a time aligned view for each RPD. The core data structure in Sherlock is a
Spark DataFrame with rows for each five-minute timestamp, for every RPD of interest, and columns for
all the available metrics. Having the lowest level of aggregation at the RPD level was chosen since this
allows for easy aggregation up in higher levels like sites, divisions, vendors, etc., while still being able to
meaningfully aggregate CPE-level metrics (for example, upstream transmit and receive power). This core
data structure is the foundation for the other modules.

Once the single time aligned view is created, the event classification module identifies events of interest.
This module has a fully configurable pipeline that runs through a variety of event detection algorithms
and combines the results into a summary table with the event type, start/end times and any other useful
metadata about the event. The specifics of the event classification pipeline and logic are discussed in
detail in Section 4.1. At this stage, any events identified for individual RPDs are available for use by other
modules to support in-depth analyses.

The ranking module uses the events identified from the event classification module to rank the
RPDs/sites, from worst to best, and prioritize any issues on the network. The ranking is performed at the
RPD level and can thus be aggregated up to other levels as desired. Weights are assigned to each event
based on several factors, and the final RPD ranking is the weighted sum over the events for each RPD.
The ranking algorithm is discussed in further detail in Section 4.2.

The RPD/site-level rankings are then used to filter down the raw data to regions where there are a lot of
interesting characteristics requiring investigation. The visualization module is then used to create charts
that highlight the specific areas where the issues occurred. Currently, Sherlock generates plot files on
request, given that the project is still in development at this writing (summer 2021). However, once the
concept views are finalized, a dashboarding solution with all the views will be stood up to allow for easier
access to plots. The two main plot types are RPD timeline and site timeline. An example RPD timeline
plot is shown in Figure 6.

The RPD timeline views combine a wide variety of data. Although these plots are currently stand-alone
files, they are fully interactive HTML plots. Even though Sherlock is in the development stage and
production dashboards are not implemented yet, users of the output significantly benefit from the ability

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

to zoom/pan on events of interest. Having this ability allows for more productive interactions with the
visualizations and serves as a proof of concept (PoC) for production visualization, to gather feedback for
the production views. Figure 6a contains the AUX and GCPP core statuses. Figure 6b shows the battery
level for the backup power supplies feeding the RPD. Figure 6c displays the CPE status information
including counts of devices online/offline, and in different partial service states across the RPD. Figure 6d
shows US/DS traffic in the form of total octets transferred, as well as US forward error correction (FEC)
percentages (including unerrored codewords [UECWs], corrected codewords [CCWs] and uncorrected
codewords [UCCWs]) across all interfaces on the RPD. Figure 6e contains all event-based information,
including customer calls, automated alerts, technician repair tickets, and RPD SW/HW updates. Figure 6f
contains the DAAS switch status between the RPD and vCMTS core.

Sherlock is the first tool in Comcast to make all this data readily available and digestible in a concise
visualization. It is easy to see how powerful this timeline view is, as it allows clear visibility into events
across the entire architecture, from vCMTS statuses in the headend all the way to customer experience
and contact.

While the RPD view is very useful for deep-diving into specific events affecting areas of the DAA
network, it doesn’t easily allow for accessing the scale of the event. For example, power outages would
likely affect multiple RPDs at time, whereas other issues, like noise ingress, are likely to be very
localized. To help visualize and assess the scale of the events across the footprint for a given time
window, Sherlock produces event heatmap plots, as shown in Figure 4. This view aggregates the
individual RPD levels to the site level. The time dimension is hourly and the heatmap shows the count of
RPDs that experienced a specific event in each hour. This type of view allows for a very quick review and
determination of how widespread specific issues are across a given aggregation level.

The final module in Sherlock is the ML module, which can utilize the results of the other modules. The
ML portion of Sherlock is talked about in detail in Section 6. The main goal of this module is to use all
the core data generated through Sherlock’s operations as training data for ML algorithms. Given the
obvious richness in the DAA data set, there is a clear benefit to applying novel ML applications to mine
the dataset and uncover complex patterns. The immediate use cases are:

1. Finding similar events via clustering.
2. Using pattern recognition to discover complex patterns and relationships across the vast

dimensions of the data set.
3. Prediction of future issues based on current data.

These applications, if successful, have the potential to completely transform the DAA space. More
discussion on the ML aspect of Sherlock is presented in Section 6.

3. DAA Event Classification and Rankings
As part of building a reliable and robust access network to deliver fast speeds to customers, we need to
ensure our plant, network and platform health are constantly monitored to proactively detect and mitigate
issues and reduce impact to customers.

There are cable industry standards and specifications which are widely used within Comcast to
characterize the health of the HFC plant, CMTS and the connection to cable modems. Some of the more
common metrics that are tracked are signal-to-noise ratio (SNR), modulation error ratio (MER), transmit
power, receive power, and FEC, to and from CMTS. Each of these metrics has acceptable ranges. When
telemetry data point goes above or below those ranges, the variance and the duration could indicate

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

different issues within the network. Comcast tooling currently classifies and captures those anomalies and
alerts are sent out. Sherlock leverages those existing alerts to measure DAA plant health.

As stated previously, it becomes an operational challenge to mine through all the data using Grafana or
existing dashboards, to pinpoint where and when things go wrong. Thus, Sherlock implements a scalable
event detection pipeline to automatically detect events of interest. Sherlock can then leverage the
detection of events to rank sites, PPODs and RPDs, based on the occurrence of said events, and help
prioritize teams to address issues.

3.1. Event Classification

Sherlock makes use of the centralized core data structure with the telemetry metrics discussed in Section
2.2 to implement an automated event detection pipeline at several levels of aggregation. The lowest level
of aggregation is currently the RPD level, while events can also be detected at PPOD level and above.
The individual event criteria are specified as objects in the pipeline, and then the pipeline executes each
object on the raw data to detect events.

Currently, the events are logical/threshold-based, because that is a great starting point to easily identify
any known types of events. The types of events include offline status, anomalous trends in each metric,
RPD reboots, SW/HW upgrades and even customer contact. While a single event only looks at specific
metrics, the pipeline groups multiple events into a single event to infer when a more complex event is
happening. This is especially useful in cases of known maintenance, such has RPD SW/HW upgrades,
since these events will undoubtably cause outages and anomalous traffic patterns. This ability allows us to
connect any maintenance/upgrade events to corresponding outages so they can be scored differently than
unplanned outages.

The event pipeline is typically run on a weekly basis, which allows for analytics and tracking to be
performed to document the type and frequency of events across the footprint. The event findings are
summarized and automatically distributed to the DAA team to evaluate.

A brief description of the currently implemented events for the RPD level are presented in Table 2. As we
continue to add new telemetry metrics and develop the existing list of events, this area will be constantly
fine-tuned.

Once these events are identified in the RPD data, they can be aggregated up to higher levels to determine
whether events are local, or more widespread. As previously mentioned, Figure 4 displays a visualization
known as an event heatmap, which shows the number of RPDs in each site exhibiting a given event at a
given time throughout a week. In this example, most events are a spread across a few RPDs, however,
there are pockets of “no event found” flags that occur daily at the same time. These specific events were
determined to be nominal nightly CPE reboots where the DAA system is healthy, but most CPE devices
are offline performing scheduled updates. These types of dense views provide an extremely useful view
of the network at a glance and easily display any major issues on the network that would require further
investigation.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

Table 2 - Description of event classifications

Event Name Event Description

auxOfflineEvent Aux core is offline
DAASOfflineEvent DAAS port is offline
datagapEvent Telemetry drop outs
gcppOfflineEvent GCPP core is offline
keepAlivesEvent RPD keep alive counter is non zero
noEventFound No other event is flagged
rpdBatteryDrainEvent RPD is on backup battery power
rpdHealthyEvent RPD is online with expected CPE connectivity
rpdIopEvent Automated ticket assigned to RPD
rpdIvrEvent Customer support call
rpdMacUpdateEvent RPD hardware was changed
rpdRebootEvent RPD rebooted
rpdSWUpdateEvent RPD software was changed
rpdTcEvent Technician dispatched
usFecEvent US FEC UCCW exceeded threshold
usOctetsEvent US RPD traffic out of family

usPartialServiceEvent
Number of CPEs in US partial service above
threshold

usPerfEvent OpTek US System Alert

Figure 4 - Event Heatmap for a Single Site Over a Week

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

3.2. Ranking Methodology

Based on the events mentioned in the previous section, Sherlock ranks sites, PPODs or RPDs with events
that are impacting customers for any given duration the most, and assigns them the highest rank. Ranking
is aimed to identify sites, PPODs or RPDs with widespread events or events that occur frequently,
causing service disruption to customers.

Individual events are assigned weights based on severity, duration, and customer impact. The final
ranking is thus the weighted sum of the event coefficients to determine the most impaired
sites/PPODs/RPDs. There are some nuances that go into ranking, where events that occur during a
nightly maintenance window are ranked lower than events during non-maintenance windows for the same
duration and frequency. Additionally, most of the events that occur immediately after RPD HW/SW
changes are assigned a lower rank or aren’t counted, as the entire system resets to clear current
configurations and make the assigned changes. While customer contact events are not directly used in the
weighted sum, because of the reasons discussed in Section 2.2, they can be used to break ties when two
items have the same score.

Figure 5 shows the workflow that takes the telemetry data through event classification and ultimately to
the final rankings. Once the rankings are complete, they are sent to the DAA team for evaluation. Section
4.3 discusses how the rankings are used.

Figure 5 - Sherlock Workflow for Event Classification and Ranking

3.3. Ranking Usage

Once Sherlock generates weekly rankings for the entire footprint, or ad hoc rankings based on business
needs, reports and views are stored within AWS. Reports capture highest ranked sites and RPDs based on
events listed in Section 4.1, and list all the different events that were captured for that time period. This
report serves as a starting point for engineering and operations teams to pinpoint any potential issues
within the vCMTS architecture.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

Using the ranking report, the heat map views at the site and PPOD are used to quickly see if the issue is
widespread or isolated, and if there are specific events that occurred more frequently than the other
events. The next layer analyzes the time series view at the RPD level and compares all the metrics that
feed into Sherlock to ascertain end-to-end system health. RPD-level views also provide an events
summary, with event duration and type, with the functionality to zoom into those events. Each event is
assigned a unique ID, which helps in further analysis. This way we can quickly identify events at various
levels in the network, and interdependencies between events as well as impact on customers. Ranking and
views generated by Sherlock also help in flagging changes made to the system, such as hardware or
software upgrades that caused a specific set of events and customer impairments.

Sherlock reports provide week-over-week trending, which helps in highlighting chronic vs. transient
issues. Since homes-passed-per-RPD are relatively small in DAA, compared to analog nodes, some of our
existing tools can prioritize the number of customers affected by events that would otherwise under-rank
DAA issues. As such, Sherlock reports are specifically designed to better understand the DAA network
and highlight problem spots in digital nodes, regardless of the number of homes passed.

Sherlock has an integration point with our internal messaging service where reports and visualizations are
posted. Plans are underway to migrated to a web-based UI to provide enhanced analysis functionalities to
DAA teams.

4. Practical Use Cases and Example Findings
In this section we illustrate the power of Sherlock with examples of specific events and views that
highlight the health of the system.

4.1. Noise/Ingress

Table 3 and Figure 6 indicate an upstream noise event which is seen in the form of elevated UCCW.
During the upstream noise event, plant and hardware elements (Figure 6a, b, c, e and f) appear to be
functioning normally, whereas Figure 6d shows a drop in CCW and a corresponding increase in UCCW.
In a DOCSIS plant, transient noise is a normal upstream event and the impact to customer service is
minimal. Several tools already exist to sends alert on such events. Table 3 shows a sample of events
determined by Sherlock during a portion of this noise ingress example. Most notably, Sherlock identifies
usFecEvents as well as usPerfEvents (OpTek) events, indicating that our existing upstream performance
monitoring tools are catching these events as well. The exact details of the OpTek events could be
overlayed to determine more specific information, such as number of interfaces affected, etc.

Table 3 - Sample Event List for a Single RPD During US Noise Event

Event Type Event Start Time (UTC) Event End Time (UTC)

usFecEvent 6/25/21 9:35 6/25/21 9:35
usPerfEvent 6/25/21 16:35 6/25/21 22:35
usPerfEvent 6/25/21 22:50 6/26/21 2:15
usFecEvent 6/25/21 23:50 6/25/21 23:50
usFecEvent 6/26/21 1:05 6/26/21 2:00
usPerfEvent 6/26/21 2:35 6/26/21 3:10
usPerfEvent 6/26/21 4:40 6/27/21 0:35

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

Figure 6 - Time Series View of RPD Noise/Ingress Event: a.) vCMTS/GCPP Statuses, b.)

RPD Power Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer
Calls, Automated Alerts, RPD SW/HW Changes and f.) RPD Switch Status

4.2. SW/HW Upgrades

Table 4 and Figure 7 show a planned software update. This event is marked in Figure 7e with the
initiation of the event as the RPD reboot/reset. Then corresponding dynamics across the other telemetry
metrics are shown in Figure 7a, c, d and f. When the RPD software is updated, the AUX core goes offline,
the CMs go offline (with some partial service along the way), traffic dips below nominal levels and the
DAAS port also goes offline. Having the context of a software upgrade is key, since under other
circumstances these types of system responses would be not ideal. However, software upgrades are
performed during maintenance windows to minimize customer impact.

A sample of the event list is given in Table 4 showing a subset of the events identified in this time frame.
It is worth noting that since the RPD reports its SW version at any given time, software upgrades like
these can be determined directly from the data without relying on a ticketing system or external
dependencies.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

Table 4 - Sample Event List for a Single RPD During SW Update

Event Type Event Start Time (UTC) Event End Time (UTC)

auxOfflineEvent 6/17/21 14:50 6/17/21 14:50
usOctetsEvent 6/17/21 14:50 6/17/21 14:50
rpdRebootEvent 6/17/21 14:50 6/17/21 15:45
rpdIopEvent 6/17/21 14:50 6/17/21 14:50
keepAlivesEvent 6/17/21 14:50 6/17/21 14:50
DAASOfflineEvent 6/17/21 14:50 6/17/21 14:50
datagapEvent 6/17/21 14:50 6/17/21 14:50
rpdSWUpdateEvent 6/17/21 14:55 6/17/21 14:55

Figure 7 - Time Series View of RPD HW/SW Event: a.) vCMTS/GCPP Statuses, b.) RPD
Power Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer

Calls, Automated Alerts, RPD SW/HW Changes and f.) RPD Switch Status

5. Machine Learning Applications
As discussed earlier, the data aggregations and processing done by Sherlock represent an ideal setup for
ML applications. The DAA data spans many dimensions, and ML/data mining techniques should be used
to extract as much useful information as possible to optimize deployments and, ultimately, customer
experiences. While the Sherlock ML module is nascent, three immediate use cases are currently being
explored.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

Clustering: The first application of ML is clustering. Clustering attempts to find smaller groups of similar
samples in the raw data. This is especially useful when trying to determine if certain populations of data
are more impacted than others, as well as understanding if there are subgroups of data inside major
groups. An example of how this could be applied in the DAA space would be taking an RPD event
classified via the methods in Section 4.1 and attempting to see if there are sub-populations of RPDs that
experienced a given event for different reasons to help triage the event. Specifically, if partial service
events are identified, clustering would be able to determine if some RPDs have CPEs in partial service
mode because of noise ingress, platform-related issues, configuration issues, scheduled maintenance or
even CPE-specific issues. This information could then be used to address the root cause of the
individualized partial service issues. A simplified example of this is shown in Section 6.1.

Pattern Recognition: The next application of ML is advanced pattern recognition. As discussed earlier and
as per industry standards, events on the network are typically identified via logic-based threshold
exceedances, where an event is identified when a certain metric exceeds a predetermined value. While
this is useful is many cases, it is limited when it comes to multi-dimensional events with complex
relations, because completing a comprehensive detection algorithm with nested if/then logic becomes
very cumbersome and hard to maintain. This is where ML shines: If example patterns in the data can be
labeled by experts, models could be trained to find the important relationships across many different
metrics to identify more complicated patterns than traditional logic-based approaches. An example use
case of this in DAA could be identifying RPD backup battery degradation by looking at current and
voltage drain during power outages. This application is in development.

Prediction: The third initial application of ML in DAA is the prediction of future issues given real-time
data. At Comcast, customer experience is paramount and the ability to forecast and address issues before
customers are aware of them is groundbreaking. Given the expansive coverage and real time nature of
DAA telemetry, it is possible to use ML methods to find leading indicators of customer impacting events
that are classified by the methods discussed earlier. An example of this for DAA could be forecasting
when core server load will be too high, to the point of potentially shutting down.
This can be proactively addressed to obviate an outage. This application is also in development.

5.1. Clustering Example

This section presents a real-world use case for clustering DAA data. The example used here is trying to
identify clusters of issues that cause partial service events at the RPD level. Using the Sherlock event
classification module, partial service events were identified across all RPDs, where an event is classified
as 25% or more of CPEs are in US partial service mode for at least 15 consecutive minutes.

Since the Sherlock data is very high dimensional and time-based, the first action is to perform a
dimensionality reduction, to help the model focus on important features of the data. Several methods are
possible here: traditional feature extraction/engineering, principal component analysis and even auto-
encoding neural networks. This compresses the data into a smaller feature domain for the model to learn
patterns. The architecture for clustering is shown in Figure 8.

Figure 8 - Clustering Architecture

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 20

Clustering algorithms require a distance/proximity matrix that contains the distance between every pair of
points in the sample data. This is often an area that requires a significant amount of tuning, because the
choice of distance metric used has a huge impact on results. In most cases, Euclidean distance is used.
However, in cases where the data set contains mixed continuous and categorical data, Euclidean distance
hardly makes sense and typically custom distance metrics are derived for the specific problem at hand.
Developing custom distance metrics can be extremely time consuming. For this reason, Sherlock is using
a relatively novel distance calculation that relies on a type of ML method called “random forests,” which
can handle continuous and categorical data simultaneously with minimal pre-processing. The random
forest is run on the data with training mode off, which essentially splits the data based on inherent
similarity (typically entropy or Gini index.) The result can be turned into a proximity matrix as the
number of times pairs of samples ended up in the same leaf node across all the trees in the forest.

The proximity matrix is then passed to a clustering algorithm to attempt to find clusters. Since the
underlying structure of the data is not known a priori, representation-based clustering algorithms such as
K Means are likely not a good fit. Instead, density-based methods such as density-based spatial clustering
of applications with noise (DBSCAN) are utilized, since they make no assumptions about the
shape/structure of the clusters. DBSCAN is also a good choice, since it does not require the desired
number of clusters to be specified and instead attempts to identify the ideal number of clusters as well as
any outliers. Once the clusters are identified, interpretability techniques should be employed to identify
what clusters represent in the real world.

Once the cluster labels for each sample are determined, the data can then be passed to an interpretable ML
classification algorithm. Essentially, the raw data and the corresponding cluster labels are used to train a
classification model. In this case, the model is a single decision tree, to determine the path a sample takes
to its classification target. Once the model is trained, it can be investigated to understand if the cluster
labels have any real-world meaning.

In the example of US partial service clustering, the event pipeline discussed in Section 4.1 was run on the
full footprint of DAA for three weeks, during which 897 partial service events were identified. The
features for the clustering algorithm are a wide data table with Boolean flags for other events that
occurred in proximity to the USPartialServiceEvents. In this example, the only other events considered
were usFecEvents and rpdRebootEvents (to simplify the analysis); all events would be considered in a
full analysis. The clustering algorithm was able to identify four clusters. Those four clusters were then
passed as labels in addition to data as training samples to a decision tree. The resulting decision tree is
shown in Figure 9.

Figure 9 - Interpreting Cluster Results via a Decision Tree

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 21

From Figure 9, one can see the learned set of rules the tree uses to assign the cluster labels to a given US
partial service sample. A tabular summary of the tree paths for each class is given in Table 5. From here it
is easy to see that the decision tree can learn the cluster meanings relatively well. It is worth mentioning
that the cluster label -1 is provided from the DBSCAN algorithm as outlier points that don’t fit in to
particular clusters, thus the decision tree has no path to correctly label those samples.

Table 5 - Decision Tree Paths for Clusters
Cluster
Label

Number of
Samples Decision Tree Path Decision Tree Label

Accuracy
0 409 (usFecEvent <= 0.5) and (rpdRebootEvent <= 0.5) 95%
1 344 (usFecEvent > 0.5) 99%
2 119 (usFecEvent <= 0.5) and (rpdRebootEvent > 0.5) 100%
-1 25 N/A N/A

The results from the above clustering example can be used to identify why RPDs experience widespread
partial service events and lead to further mitigation-related enhancements to try in the future. In this case,
partial service seems to be driven by usFecEvents and rpdRebootEvents. Further work could be done to
understand the samples that had no usFecEvent and no rpdRebootEvent. While the results from this
analysis are not too surprising, the architecture is a springboard for correlating different types of events
and trying to identify where to dig deeper in understanding non-trivial issues. It is easy to see how this
type of analysis could be expanding to more complex issues like understanding sporadic
auxOfflineEvents, provided the correct data was fed to the ML architecture.

6. Conclusion
When Comcast began deploying DAA, the need for an automated big data analysis framework was
immediately apparent. The DAA framework enables extremely rich telemetry with high frequency
sampling rates, making two things true: 1) manual data analysis was infeasible, and 2) exposing the large
amounts of data that is perfect for ML-based analysis. Our solution, internally called Sherlock, combines
high fidelity data from a variety of sources across our physical infrastructure into a single centralized data
structure that can be easily accessed for an assortment of analyses. Creating a centralized data structure
with relevant DAA data proved to be instrumental in providing actionable insights from Sherlock
analyses.

Sherlock was implemented using state-of-the-art technology that will allow for future scaling as we
continue to grow our DAA footprint. Sherlock’s core data structure allows for a multitude of analysis
implications including event detection, event ranking, visualization, as well as ML advancements. These
features allow us to identify and prioritize system issues at a glance, whereas such analyses were
previously much more involved and required many manual operations. These analyses are currently being
used by our internal teams to monitor DAA deployments and overall system stability.

While Sherlock is a relatively new tool, it is already starting to expand with applications to enhance the
power of the insights provided to the DAA teams. As part of this work, we are exploring ML applications
to find important trends in the complex DAA data. The immediate ML applications include clustering,
pattern recognition and future event prediction. We are also working to integrate Sherlock into our
expanding network topology graph, which will also open up new possibilities for advanced insights on
the DAA network. The goal was and is to build a platform that can identify issues and recommend
preventive maintenance before customers are impacted. Sherlock has proven to be extremely powerful in

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 22

its present state and is expected to become even more useful as the next generations of features are
developed.

Abbreviations
API application programming interface
AUX auxiliary
AWS Amazon Web Services
CCW corrected codewords
CM cable modem
CMTS cable modem termination system
CPE customer premise equipment
DAA distributed access architecture
DAAS distributed access architecture switch
DBSCAN density-based spatial clustering of applications with noise
DOCSIS Data-Over-Cable Service Specifications
DS downstream
EC2 [Amazon] Elastic Compute Cloud
FEC forward error correction
GCP generic control plane
GCPP Generic Control Protocol Principal
HAGG headend aggregation switch
HFC hybrid fiber/coax
HTML hypertext markup language
HW hardware
ID 1) identification; 2) identifier
IP Internet Protocol
MER modulation error ratio
MIB management information base
ML machine learning
OS operating system
PHY physical layer
PoC proof of concept
PPOD physical point of deployment
QAM quadrature amplitude modulation
RPD remote PHY device
R-PHY remote PHY
SCTE Society of Cable Telecommunications Engineers
SNR signal-to-noise ratio
SQL structured query language
SW software
TCP Transmission Control Protocol
UCCW uncorrected codewords
UDP User Datagram Protocol
UECW unerrored codewords
UI user interface
US upstream
vCMTS virtualized cable modem termination system

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 23

Bibliography & References
https://www.cisco.com/c/en/us/td/docs/cable/remote-phy-
devices/rpdsw51/b_rphy_system_startup_config_5_x/gcpp_support_for_remote_phy.pdf

https://www.cisco.com/c/en/us/td/docs/cable/remote-phy-
devices/configuration/guide/b_rphy_management_8_x/rpd_reset_8x.pdf

http://mibs.cablelabs.com/MIBs/DOCSIS/

https://www.nctatechnicalpapers.com/Paper/2018/2018-node-provisioning-and-management-in-daa

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

	1. Overview of DAA Telemetry
	1.1. Problem Statement
	1.2. DAA Topology and Telemetry
	1.3. Need for Data Aggregation

	2. Implementing Sherlock: a Big Data Analysis Architecture for DAA
	2.1. Requirements
	2.2. Implementation
	2.3. Features

	3. DAA Event Classification and Rankings
	3.1. Event Classification
	3.2. Ranking Methodology
	3.3. Ranking Usage

	4. Practical Use Cases and Example Findings
	4.1. Noise/Ingress
	4.2. SW/HW Upgrades

	5. Machine Learning Applications
	5.1. Clustering Example

	6. Conclusion
	Abbreviations
	Bibliography & References

