

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWEROFINITLESS CONNECTIVITY

Wireline Access Network

DOCSIS 4.0 - A Key Ingredient of the 2030's Broadband Pie

Zoran "Zee" Maricevic

Engineering Fellow CommScope, Inc.

Acknowledgements

Thanks to My Co-authors:

- James Andis, nbn™ Australia
- Tom Cloonan, CommScope
- John Ulm, CommScope

Begin with the end in mind?

SCTE.

CABLE-TEC EXPO. ATLANTA, GA > OCTOBER 11-14

DOCSIS 4.0 - A Key Ingredient of the 2030's Broadband Pie

- 1. Network Evolution: Drivers and Timing
 - a. Traffic Engineering and Quality of Experience
 - b. Some Potential Future Service Tier Use Cases
- 2. Network Evolution: Various Paths Considered
 - a. Possible Rollout Scenarios
- 3. Network Evolution: Total Cost of Ownership Compared
 - a. CAPEX and OPEX components of TCO
 - b. Sensitivity analysis
- 4. Will Network Capacity Gains Justify Various Upgrade Costs
 - a. Takeaways and Conclusion

Network Evolution: Drivers and Timing

Distribution of Monthly Usage by Hour and Direction

- Total, upstream and downstream, traffic generated by the average user in each hour of the day for one complete billing cycle during May 10th – June 30th, 2012.
- Based on ~55,000 subscribers, from different [#]_{2.5}
 markets
- Average Bandwidth Demand per Subscriber, at Peak Busy Period, is an important "traffic engineering" parameter

Reference:

"Usage-Based Pricing and Demand for Residential Broadband" Aviv Nevo, Northwestern University and John L. Turner, Jonathan W. Williams of University of Georgia, Sep 2013

Broadband Subscriber Traffic Consumption - Tavg

- DS Tavg 3-yr CAGR eases to ~25% from ~30%
 - MSOs' 3-yr CAGRs range from ~16% to ~36%

Fastest growing MSO (B) hits ~420 Kbps,

SCTE

CABLE-TEC EXPO. ATLANTA. GA > OCTOBER 11-14

- Double the US Tavg of the other 3 MSOs
- US Tavg 3-yr CAGR grows ~24%
 - US 3-yr CAGR now very close to DS 3-yr CAGR

DS:US BW Ratio Halts its climb

- Today, MSOs DS:US Avg BW Ratios in 10:1 to 16:1 range
- Big US growth in '21 reduces DS:US BW ratio from ~14:1 back down to ~12:1
- Is the DS:US Ratio leveling off???
 - Implication is that US growth will match DS growth going forward!!
 - Not clear yet how much of 2020 COVID BW changes will stick longer term

Future Downstream and Upstream Average Bandwidth Usage Predictions

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org

One Popular Tmax Bandwidth Growth Prediction for the 2020 Decade

Downstream & Upstream Tmax

Nielsen's "Slowed" Law Of Internet Bandwidth (DS Tmax Growth Rate =15%/YEAR after 2020... US Tmax=25% of DS Tmax)

2G x 500M, 4G x 1G, 8G x 2G Progression

2G x 1G, 4G x 2G, 6G x 3G Progression

2G x 500M, 4G x 1G, 10G x 2G Progression

2G x 1G, 4G x 2G, 7.5G x 3.5G Progression

Network Evolution: Various Paths Considered

Baseline – an N+5 node area to start from

SCTE. CABLE-TEC EXPO. ATLANTA, GA > OCTOBER 11-14

 $\bullet \bullet \bullet$

N+5 node area converted to N+2 topology

N+5 node area converted to N+0 "fiber-deep" topology

Network Evolution: Various Paths Considered

New Coax

Network attribute changes with upgrading N+5 area to N+2 and N+0

Hardline coax New Fiber HFC N+5 HFC N+2

Topology:	N + 5	N + 2	N + 0	
Number of Standard Nodes	1	8	15	
Number of RF Amps	42	34	0	
Number of tap faceplate changes	0 / 286	15 / 286	208 / 286	
New plant; miles	0 miles	1.9 miles	6.5 miles	F
New plant; %	0%	19%	67%	
Fiber to the farthest sub	<7,000 ft	<2,500 ft	<1,600 ft	

100%

Other Possible Future Evolution Path Directions

Network Upgrade Scenarios Considered

Name	Architecture	# of SG	HP/SG	# of nodes	RF split	DS BW
CCAP N+5	I-CCAP	2	~480	2	Mid or high	1,218 MHz
CCAP N+2	I-CCAP	4	~240	8	Mid or high	1,218 MHz
CCAP N+0	I-CCAP	4	~240	15	Mid or high	1,218 MHz
FDX N+0	DAA	4	~240	15	108-684	1,218 MHz
FDX-Lite N+5	DAA	2	~480	2	108-396	1,218 MHz
ESD N+5	DAA	2	~480	2	396/492 UHS	1,794 MHz
ESD N+2	DAA	4	~240	8	396/492 UHS	1,794 MHz
10G PON	OLT in hub	15	64	N.A.	N.A.	N.A.
10G R-PON	OLT in node	8	128	N.A.	N.A.	N.A.

Network Evolution: Total Cost of Ownership Compared

CAPEX Components

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

CAPEX for the nine upgrade paths

OPEX for the nine upgrade paths

24

	5%
• \$0.12/kWh	4% R
• 0.2% - 5% HW/year	3%
 ~1% coax/year 	2%
 ~1% drops/year 	1%
	0%

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

CAPEX; 10G R-PON

10G R-PON CAPEX 60.0% 80.0% 100.0% 120.0% 140.0% Plant, % of underground: 0% 40% \$1.50 \$4.00 \$/ft: 1,100.00 700.00

Upside Downside

Fiber, Material&Labor, Aerial,

Homes passed per parent node:

CAPEX; ESD N+5

ESD N+5 CAPEX

12.0% 14.0% 16.0% 18.0% 20.0% 22.0% 24.0%

Upside Downside

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

PON average OPEX

HFC average OPEX

10.0% 12.0% 14.0% 16.0% 18.0% 20.0%

OPEX; HFC METHODS ON AVERAGE

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org

Upside Downside

TCO; ESD N+5

TCO; ESD N+5

ESD N+5 TCO

40.0% 20.0% 25.0% 30.0% 35.0% 45.0%

Homes passed per parent node:

Old Coax/fiber replacement % per

year:

Plant, % of underground:

Drops replacement % per year:

Discount rate/yr for TVM/NPV

of 2-output bridger amps:

Power cost per kWh:

of 1-output Line Extenders:

NPV(field actives 15 yr fail) %

ESD HW addition factor:

Upside Downside

Total cost of ownership (TCO = CAPEX + OPEX)

SCTE.

CABLE-TEC EXPO. ATLANTA, GA > OCTOBER 11-14

Mid-Split; Tmax_max = (C – Nsub * Tavg) / K

High-Split; Tmax_max = (C – Nsub * Tavg) / K

Total cost of ownership and what it buys

0

Starting Point

CCAP N+5

CCAP N+2

CCAP N+0

FDX N+0

FDX N+0

FDX-Lite N+5

FDX-Lite N+5

ESD N+5

ESD N+5

ESD N+2

ESD N+2

10G PON

10G PON

10G R-PON

10G R-PON

The way of nbn[™]

Summary / Conclusions

Takeaways and Conclusions

FTTP or DOCSIS or both?

Fiber all the way day one?

- If greenfield definite YES
 - CAPEX on par; OPEX 3x lower for FTTP
 - Comes down to the operations folks to implement new fiber-only processes
- Otherwise, if:
 - # of plant miles per node lower
 - # of HP/node higher
 - \$/foot for fiber construction lower
 - Can leverage the existing fiber routes
 - Can leverage innovative approaches

If DOCSIS, D3.1 or D4.0?

For markets where HFC network already exist:

- D3.1 will provide good ROI into the late 2020s and early 2030s- enabling Gigabit rates - even in upstream if high-split
- D4.0 coupled with DAA will enable even higher data rates, into the late 2030s and beyond
- Each D4.0 technology (FDX and ESD) come with its unique set of strengths and weaknesses

Thank You!

Zoran Maricevic

Engineering Fellow CommScope, Inc. zoran.maricevic@commscope.com

