

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Operational Transformation

Bandwidth Planning During the Age of CoVID

Keith Alan Rothschild, Ph. D.

Senior Principal Engineer Cox Communications

Bandwidth Planning Process

- Strategize
- Model
- Plan
- Deploy

Required Capacity $\geq P_{95} + T_{Max}$

Rush-Hour Traffic

OOKLA' SPEEDT	3/29/2015 6:18 PM GMT							
DOWNLOAD 921.43 Mb/s	UPLOAD 935.93 Mb/s	PING 3 ms						
GRADE: A+	(FASTER	THAN 99% OF US)						
ISP: COX *** SERVER: LOS ANGELES, CA (~ 50 mi)								

Highest Advertised Single-Customer Speed Tier

Optimize the bandwidth we currently have: Optimize Technologies Used for Service Offerings Increase Efficiency (MPEG-4, OFDM/OFDMA) Re-allocate Spectrum Between Service Offerings

Create more bandwidth:

Change Downstream to Upstream (change the "split") Fewer Customers Share Bandwidth (e.g. Node Splits) Increase Bandwidth Available (Upgrade)

972 MHz Sub-Split (40/54 Diplex)

US d t x r		Video Spectrum (70 ch)	96 MHz Trapped	48 SC-QAM	96 MHz OFDM					
	Migration to Mid-Split (85/102 Diplex) – "reduce" 7 6 MHz Channels									
US	d t x r	Video Spectrum (63 ch)	96 MHz Trapped	48 SC-QAM	96 MHz OFDM					
Expansion to Third DOCSIS Block – re-allocate 16 6 MHz channels + 96 MHz from trap										
US	d t x r I	Video Spectrum (47 ch)	48 SC-QAM	96 MHz OFDM + 192 MHz (DFDM					
870 MHz Sub-Split (40/54 Diplex)										
	Migration to Mid-Split (85/102 Diplex) – "reduce" 7 6 MHz Channels									
US	d t x r	Video Spectrum (62 ch)	48 SC-QAM	96 MHz OFDM						
Expansion to Third DOCSIS Block – re-allocate 16 6 MHz channels + 96 MHz into roll-off region										
US	d t x r I	Video Spectrum (46 ch)	48 SC-QAM	192 MHz OFDM	96 MHz OFDM					

DOCSIS Expansion Required Reducing 23 Video QAMs MPEG-2 (4:1) to MPEG-4 (6:1) results in a 33% Bandwidth Savings (69 -> 46)

Typical Weekday Bandwidth Impact

During CoVID

Before CoVID

Network Planning Goals

Modeling Considerations

Customer Demand: Cloud Storage, Video surveillance and other emerging applications are driving upstream growth.

Node Action Goal: Each node action should allow the node to grow for 4-6 years without having to be revisited

Impact of Current Technology: Factor various impacts from options like OFDM/OFDMA, FDX, Extended Spectrum DOCSIS (ESD), and PON

Evolution of Technology: Innovations like DOCSIS 4.0 are creating alternate paths to Multi-Gig Symmetry.

Scenario Planning: A significant amount of "what-if" scenario planning must be done to compare alternatives and ultimately create a plan for the systems

Enterprise Node Load Forecast Comparisons

Month of state_date

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

77

Automated Node Action Comparison

Activity Overview

CABLE-TEC EXPO. ATLANTA, GA > OCTOBER 11-14

SCTE.

Plan

Deploy: Solution Certification Process

Example of scheduling. Timing may range from 6 – 18 months Carrier Nodes

Total 5th Upstream

ACoE Node Prioritization Dashboard

		Node Prioritization									cox		
Prioritization Sort		Node	Interface	CMTS	3M US	1M US	LW US	Max. Customer	Ultimate Classic	Gigablast	US Channel	US Channel	Node Priori
300								Count	Customers	cuscomers	rieg	Date	ty
Upcoming Action Filter		LVADH	Cable9/0/4	SWSTCAPC04	46.98	46.57	47.61	294	17	102			1
(AII)	•	1326R	Cable1/0/2	ELCNCAPC02	54.28	54.77	53.74	315	11	62	Mid-Split	2021-01-21	2
		NE115	Cable2/0/3	NOE1CAPC01	77.94	74.49	62.12	434	12	45	Mid-Split	2020-11-18	3
Completed Action Filter		EB16	Cable8/0/4	ILH1CAPC01	75.28	62.14	64.54	26	0	0	Mid-Split	2021-01-22	4
(AII)	-	01853	Cable3/0/5	BELLCAPC05	79.46	82.69	81.92	494	8	60	Mid-Split	2021-06-14	5
Region		7YDY1	Cable3/0/5	SNTBRPCC23	78.07	60.77	50.96	362	6	62	Mid-Split	2021-07-06	6
(AII)	٠	01047	Cable6/0/2	BELLCAPC07	76.46	68.63	53.61	444	16	78	Mid-Split	2021-07-20	7
Site		8AWB1	Cable2/0/1	MCDLRPCC01	60.69	65.72	68.60	220	5	15	Mid-Split	2020-11-09	8
(All)	•	7YEB1	Cable6/0/6	SNTBRPCC23	44.62	43.52	45.13	540	7	34	Mid-Split	2020-11-02	9
Wandand		353L	Cable2/0/2	DT1XCAPC04	75.54	75.54	76.44	390	18	65	Mid-Split	2021-07-27	10
(AII)	•	7YAD2	Cable2/0/1	SNTBRPCC24	75.14	75.14	54.30	443	26	25	Mid-Split	2021-07-19	11
1200		91	Cable1/0/4	DT1XCAPC01	79.44	79.22	77.15	503	4	43			12
CMTS		3488	Cable7/0/6	DT1XCAPC04	78.33	72.67	69.86	312	4	4	Mid-Split	2021-07-21	13
(All)	٠	7YDA1	Cable3/0/6	SNTBRPCC23	75.97	65.42	67.86	584	73	20	Mid-Split	2020-08-26	14
Node		24718	Cable6/0/2	VISTCAPC06	77.52	76.45	69.70	336	3	15	Mid-Split	2021-06-11	15
(All)	٠	7YAV1	Cable2/0/9	SNTBRPCC24	77.35	72.79	65.40	320	12	8	Mid-Split	2021-02-18	16
CRTier		NE105	Cable6/0/3	NOE1CAPC01	76.54	74.86	76.85	432	6	54	Mid-Split	2021-06-10	17
(All)	•	TC035	Cable3/0/6	TYCRCAPC05	75.79	62.27	46.65	318	7	15	Mid-Split	2021-07-06	18

5C Enablements

Utilization and 5C

ATLANTA, GA OCTOBER 11-14

Thank You!

SCTE.

a subsidiary of CableLabs*

Keith Alan Rothschild, Ph.D.

Senior Principal Engineer Cox Communications kar@cox.com

