

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Operational Transformation Optimizing DOCSIS 3.0 Configuration in the Upstream through Applied Reinforcement Learning

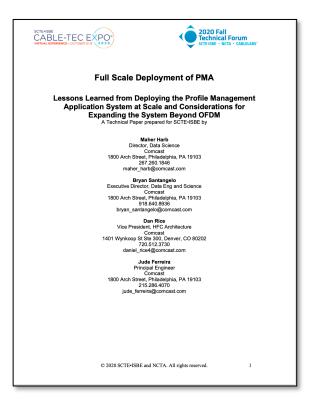
Kevin Dugan

Scientist 3, Enterprise Data Analytics & Data Intelligence Comcast Cable

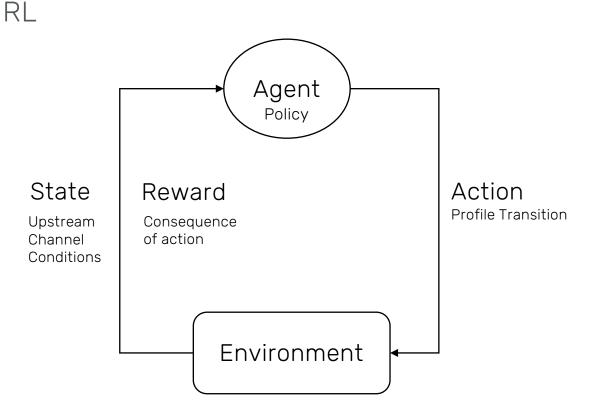
DOCSIS 3.0 Upstream PMA

Background

D3.0 Upstream PMA



Reinforcement Learning



State-Action Value Function

SARSA – on-policy learning

 $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2 \dots$

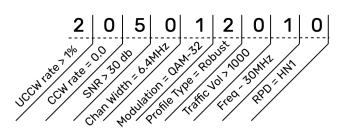
Temporal Difference – TD(0) Difference between estimated & actual reward $Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{(t+1)}) - Q(S_t, A_t) \right]$

 α = learning rate, γ = discount rate

RL States, Actions, and Rewards for D3.0 US PMA

States

Category	Attribute	# Bins
	Uncorrectable Codewords (UCCW)	3
Telemetry	Correctable Codewords (CCW)	3
	Signal to Noise Ratio (SNR)	6
	Channel Width	3
	Modulation	5
Channel	Profile Type	5
Configuration	Traffic Volume	2
	Channel Frequency	6
	CMTS	5
	Total # Possible States	243,000



Actions

- Upgrade, Downgrade
- Same
- On / Off Transient

Rewards

- 1 + Profile Speed Gain, if UCCW < 1%
- -10, if UCCW 1%

Policy Comparison

Global Static Policy

- Static decision criteria
 - Telemetry thresholds
- Manual updates
- One size fits all

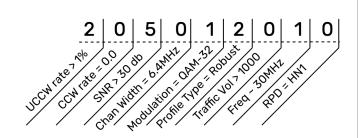
Dynamic Policy

- Flexible decision criteria
 - Learns continuously
 - Needs experience
- Automated updates
- Tailored to systems

RL Policy Training

Building Dynamic Policies

- Methodology used to calculate state-value pairs for the TD(0) equation
- Delayed reward
- Next state and next action become current state/action on next time step

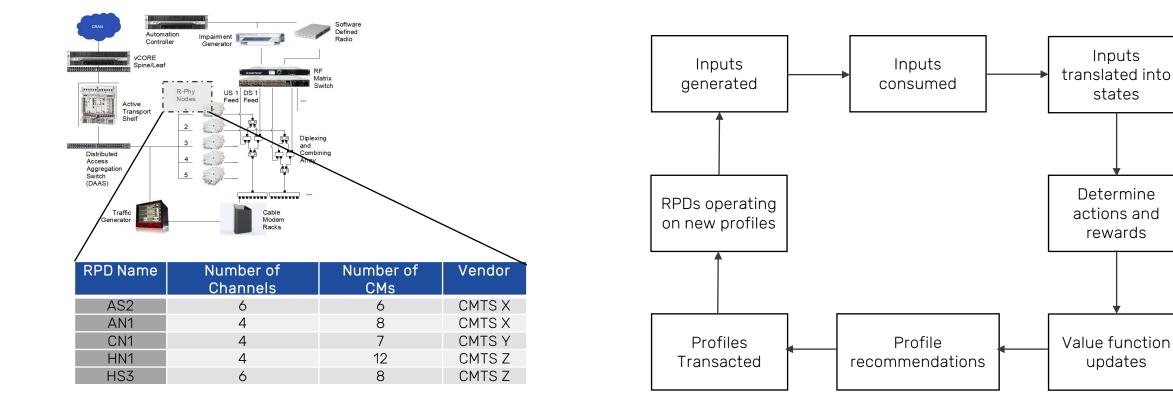


	t		t + 1		
Time Step	State	Action	Reward	Next State	Next Action
24	005004020	upgrade 3	3	005001020	upgrade 1
25	005001020	upgrade 1	2	005000020	same
26	005000020	same	-10	205000020	downgrade 2
27	205000020	downgrade 2	-2	005002020	upgrade 1

RL Data Pipeline

Lab Systems

E2E Closed Loop



Trial Design

- 5 individual trials
 - Profiles set to baseline
 - Single policy makes profile recommendations for all RPDs per trial
 - 1 static policy
 - 4 dynamic policies
 - 25 time steps / iterations per trial
 - Random lab impairments
- 5 RPDs
 - 4 or 6 D3.0 US channels
 - 24 total channels

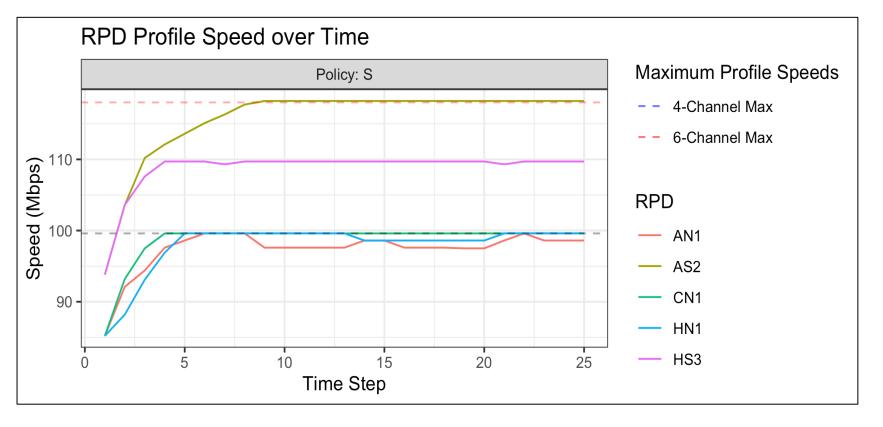
Policy Evaluation

- Profile speeds achieved
 - per RPD (bonding group of channels)
 - considerations for impairments
- UCCW rates
 - Policy response to adverse UCCW
- Latency to best available profile
 - Number of time steps to best possible profile

Static Policy Trial

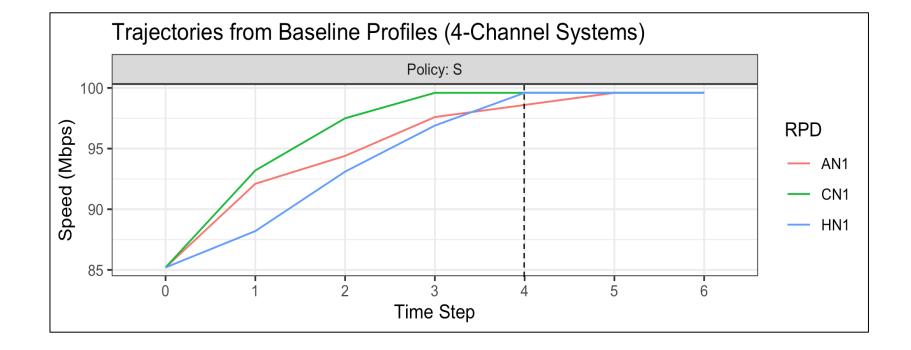
Profile Speeds Achieved

- Most channels achieved optimal profiles
- Some on best-available profiles
- AN1 profile speed dips
- Absence of adverse telemetry
- HS3 channel reporting
 error



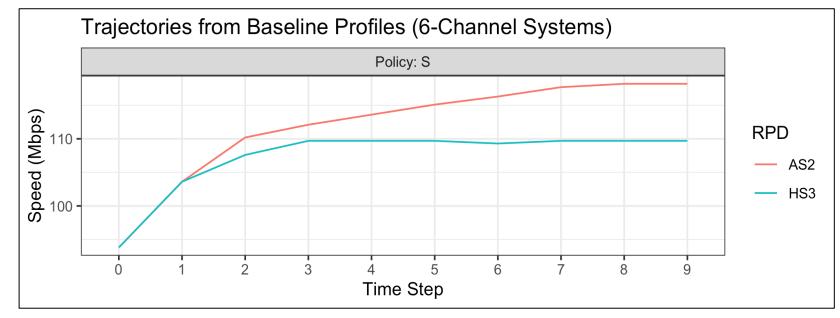
Latency to Best Available Profiles

- 4-channel systems
- Avg 4 time steps to steady state profile
- Cautious steps from baseline
- All achieved optimal profiles by 5th time step



Latency to Best Available Profiles

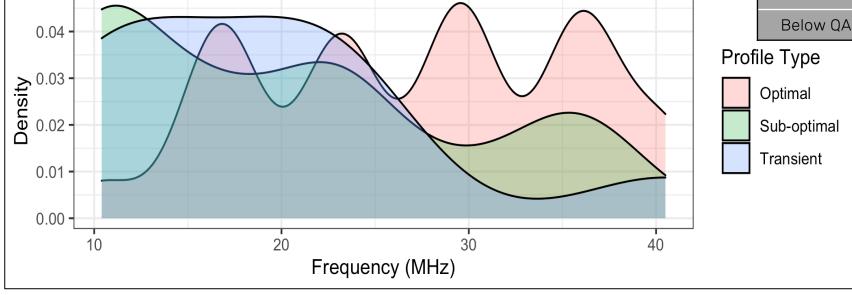
- 6-channel systems
- HS3 reached best available in 3 time steps
- AS2 reached best available in 8 time steps



Profile Density by Frequency

Avg of 104.3 Mbps per iteration (across all RPDs)

Profile Type	% of Total Speed	% Profile Occurrences	
Optimal	88.95%	85.15%	
Sub-optimal	8.83%	8.44%	
Transient	1.37%	2.24%	
Below QAM-64	0.84%	4.17%	

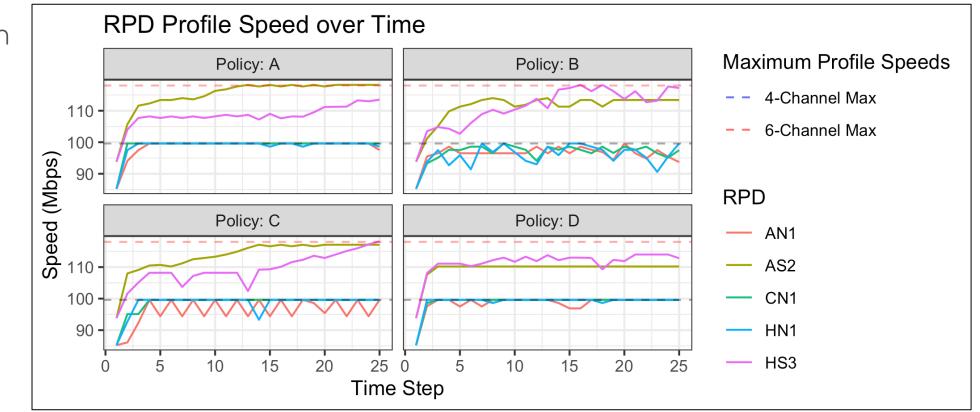


Profiles Utilized by Frequency

Dynamic Policy Trial

Profile Speeds Achieved

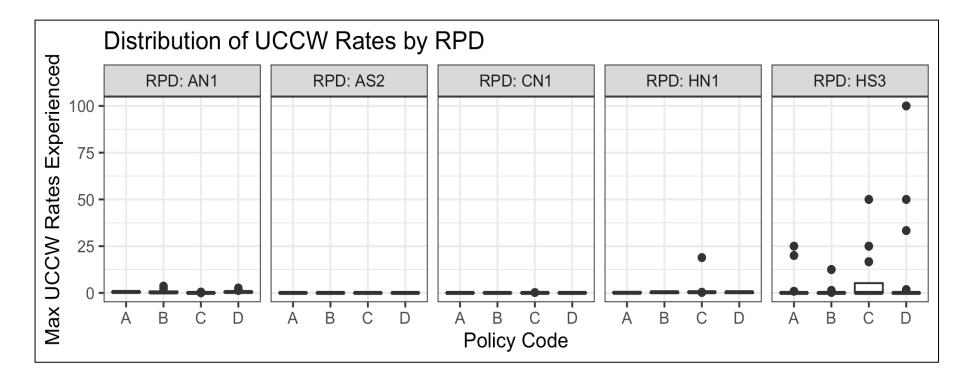
- A & D steady on 4-channel systems
- More UCCW events = more profile movement



Dynamic Policy Trial

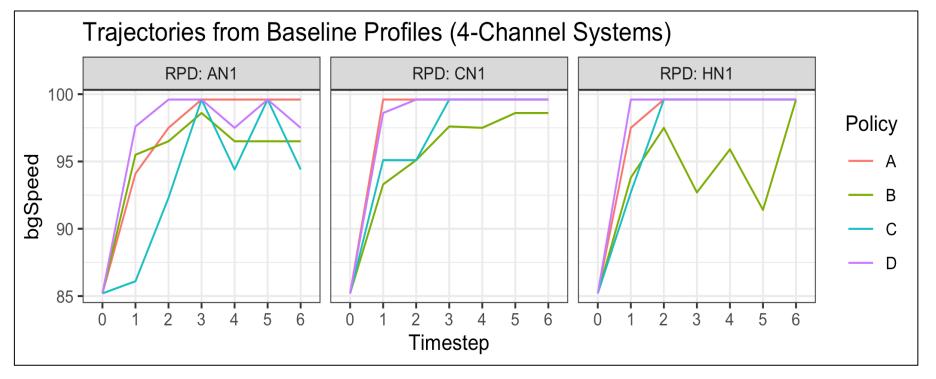
UCCW Rate Evaluation

- 4-channel systems mostly noise-free
- HS3 experienced several adverse rates



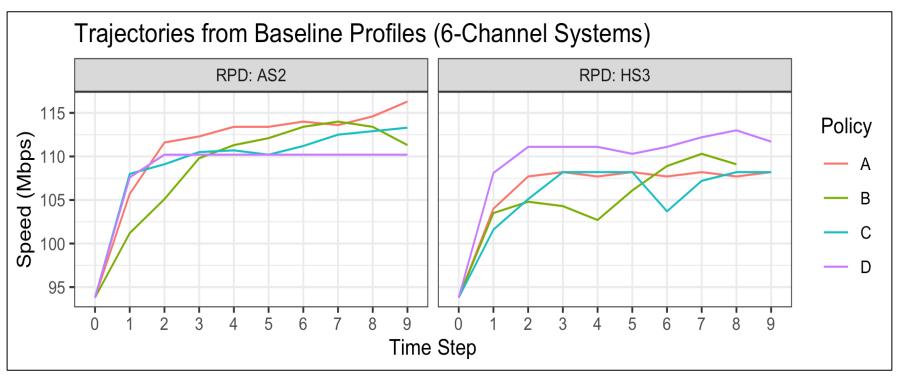
Latency to Best Available Profiles

- 4-channel systems
- A & D avg 2 time steps
- B & C difficulty reaching optimal profiles
- Policy indecisiveness

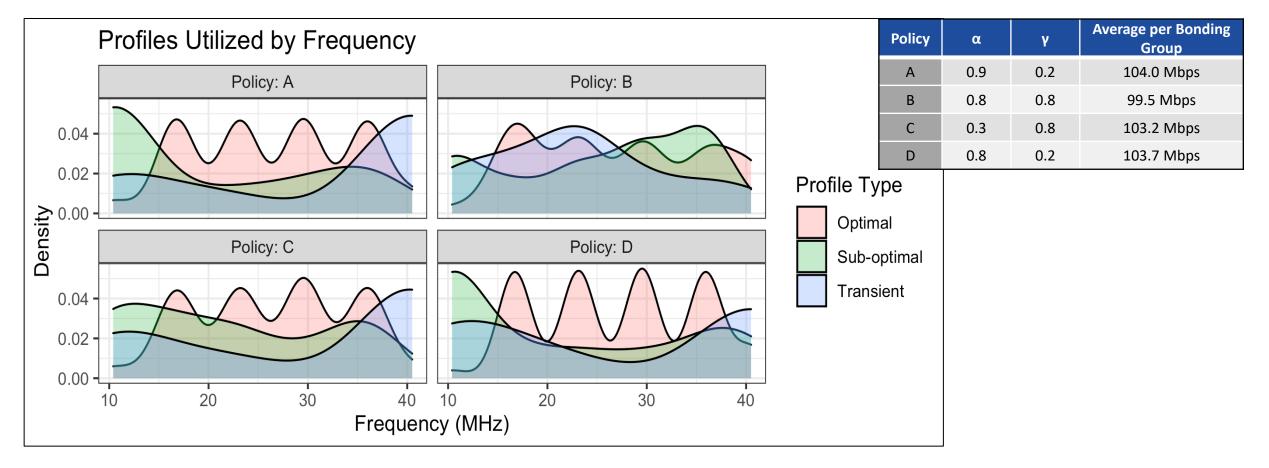


Latency to Best Available Profiles

- 6-channel systems
- Policy A steady growth on AS2, 9 time steps to max
- HS3 UCCW rate impacted policies
- Policy A & D reached best-available profiles in 2 steps on HS3

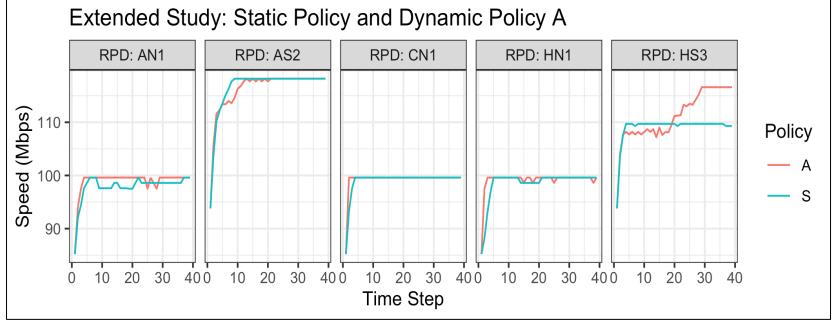


Profile Density by Frequency



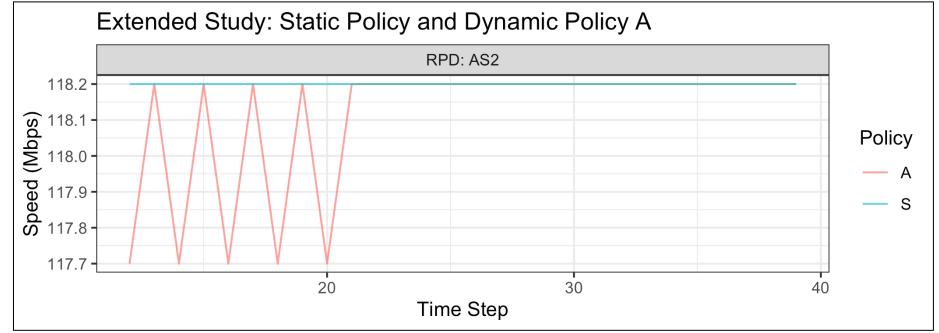
Extended Study Results

- Policy A vs static policy
- Similar behavior for most RPDs
- Policy A avg bonding group speed: 104.2 Mbps
- Static policy avg boding group speed: 104.6 Mbps



Example of RL Policy Learning New Action

- Policy A fluctuated between optimal and sub-optimal
- Learned new action (stay in optimal profiles)



Opportunities for Enhancement / Steps Forward

- Train initial policy from scratch
 - Eliminate influence of static policy patterns
- Synchronize impairments per time step
 - Cleaner comparison of policy behavior
- Consideration of using n-step TD prediction methods
 - Accounts for evaluating longer sequence of changes

Thank You!

Kevin Dugan

Scientist 3, Enterprise Data Analytics & Data Intelligence Comcast Cable kevin_dugan2@cable.comcast.com

