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1. Introduction 
In 2020, Comcast deployed a Profile Management Application (PMA) system (1) for optimizing the 
DOCSIS 3.0 (D3.0) configuration across upstream channels in the network to achieve the proper balance 
between efficiency and robustness (fault tolerance). The established PMA system strengthens 
organizational objectives to increase network capacity, proactively respond to impairments, and support 
robust service optimizations for customers. At its core, the current system adopts a rules-based approach, 
in which a static policy (in the form of defined thresholds) for the different telemetry features (e.g., 
signal-to-noise ratio and codeword error rates) govern the choice of channel configuration.  

Limitations within PMA exist when shaping telemetry thresholds to adapt to a wider range of 
environmental conditions. Currently, configurations are assigned to channels starting with conservative 
profiles and progressively moving toward efficient, yet less robust profiles. Further innovations within 
Comcast’s PMA implementation focus on the delicate balance of applying intelligent, dynamic decision-
making policies while preserving proper configurations for the diverse set of network devices.  

A reinforcement learning (RL) approach for PMA allows, through experience, learning an optimal policy 
and therefore, enhancing the criteria used at various decision points. Simultaneously, RL simplifies policy 
management by consolidating permutations of telemetry boundaries into a single entity, called a ‘state’. 
PMA efficacy improves with RL by reducing the latency of transitioning into optimal, efficient profiles, 
and doing so with increased confidence across varying network conditions (4). Inherent in this 
implementation is the risk reduction for operators to deploy more profile changes that maximize capacity 
without crossing the boundary that introduces disruption in service. This paper introduces a proof-of-
concept RL-based PMA system along with performance study based on initial experimentation conducted 
in our laboratory. 

2. Reinforcement Learning Design for PMA Systems 
The purpose for implementing RL on upstream PMA is twofold: to manage PMA using a dynamic policy 
that continuously learns and to select optimal profile configurations with increased efficiency. An RL-
based system provides the framework to facilitate these two objectives. A dynamic policy that is updated 
over each time step is more attuned to fluid network conditions than a static policy with fixed global 
thresholds. When a dynamic policy is updated, the decision criteria for choosing the optimal profile 
configuration under the current network conditions represents the best-known policy discovered by the 
system (2).  

2.1. RL Concepts for US PMA 

The RL sequence consists of an agent, selecting actions to take from a given state, and calculating the 
value of the action taken with respect to a reward system as the resulting state interacts with the 
environment. Figure 1 represents the sequence of interactions in a feedback loop. As the agent collects the 
rewards, it updates the policy using the value function (Equation  2) that satisfies the Bellman Equation (2) 
to continually refine the values for states-action pairs encountered. This process is called value iteration 
and is the basis of the dynamic policy. 
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Figure 1 - RL Framework of the PMA System. 

State-action values are numeric representations describing how valuable it is to take a given action from 
any state. They are calculated with respect to the next state-action pair, establishing the update process for 
sequential decision-making as Markov Decision Process (MDP). As the system builds experience, 
convergence occurs in the policy whereby updates to state-action pairs change the values over time in 
progressively smaller increments. The calculations of state-action values are based on the acronym 
SARSA. S, A, and R respectively denote State, Action, and Reward. With a subscript referring to the time 
step, SARSA can be represented with the following trajectory:  
Equation 1 – SARSA Trajectory 

𝑆𝑆0,𝐴𝐴0,𝑅𝑅1, 𝑆𝑆1,𝐴𝐴1,𝑅𝑅2, 𝑆𝑆2,𝐴𝐴2,𝑅𝑅3, …    (1) 

In an MDP, the consequences of an action taken within the current state do not depend on maintaining the 
entire history of the trajectory; instead, just updating the state-action pair encountered maintains the 
legacy of experience already gained. The nature of the update considers how rewards are weighed, which 
influences how the policy is learned. For the proof of concept described in this paper, the Temporal 
Difference (TD) SARSA equation, 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) in Equation 2 for online policy improvement is used to 
update the policy. The hyperparameters, α and γ, influence the learning rate and value of the future 
reward, respectively.  
Equation 2 - TD SARSA Equation for Value Updates 

𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡) = 𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡) + 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑄𝑄�𝑆𝑆𝑡𝑡+1,𝐴𝐴(𝑡𝑡+1)� − 𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)]  (2) 

The α and γ terms are both floating point values between zero and one. α is a fixed learning rate where a 
value close to zero slows the learning and closer to one increases the learning rate. γ is a discount rate that 
determines how much to weigh immediate rewards and potential future rewards. As γ approaches one, the 
value of potential future returns influences the state-action pair estimates just as much as the immediate 
return; whereas a value closer to zero treats near-term rewards with more emphasis than future rewards. 
With respect to the US PMA effort, responding quickly to poor telemetry is critical in reducing customer 
impact. Finding an appropriate combination of these hyperparameters is an important objective for the 
problem at hand. 

A dynamic policy is interesting to the PMA problem for its adaptive behavior that adjusts state-action pair 
values, and then uses those new values in real-time. With a dynamic policy in place, the RL system can 
adjust decision criteria under clean or adverse conditions. Consider a scenario where network 
impairments are causing high Uncorrectable Codeword error ratio (UCCW) rates and low signal-to-noise 
ratio (SNR). The RL policy, already having been exposed to this state, will recommend a profile change 
toward alleviating the side-effects of the larger problem (UCCW rate). If the issues persist, it is possible 
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for the RL policy to learn to take more aggressive action. The negative reward associated with the more 
conservative step will reduce its state-action value. Once an acceptable profile is reached, the state-action 
value is positively updated. At a point, if the cycle continues, the value of taking the aggressive action 
will become higher than the conservative action. Thus, the agent will then choose the aggressive action 
next time the poor telemetry is encountered. 

In terms of α and γ, having parameters that reflect values associated with learning quickly is an intuitively 
logical approach. When an impairment occurs, the quicker the policy can adapt within the environment, 
the better decisions it will make. An example would be to set α to 0.8 and γ to 0.3. In this paper, multiple 
variations of the policy parameters are explored to inform of system short-term and long-term behavior 
implications associated with different policies.  

2.2. RL Applied to US PMA System 

Within the scope of an upstream PMA system, the states, actions, and a reward system were defined to 
represent characteristics of the current telemetry and configuration data to choose the optimal profile 
configuration for the present conditions (4). A state represents a distinct set of channel configurations and 
their associated network metrics. Each defined action is available for each state. The reward system is the 
mechanism used to influence how valuable it is to take an action from a state. As the system iterates over 
the timesteps, rewards are used to update the policy for the current action.  

One key principle in RL systems is the trade-off between exploration and exploitation. Exploitation 
occurs when the highest-valued action previously encountered is taken from a state. However, that may 
not be the absolute best action to take for that state. To find the optimal action, the algorithm could select 
a random action to evaluate. When operating in production systems, random exploration is a risky 
endeavor because the policy could choose a transition that either introduces elevated UCCW rates, or 
transition to a slower profile when it is completely unnecessary to do so. In this POC, the evaluation of 
dynamic policies omits the exploration step and uses only exploitation to select the best actions available. 

2.2.1. State 

In the RL system for this paper, a state is considered a collection of telemetry metrics and configurations 
that are represented by discrete bins, with each state being unique. Continuous variables, like telemetry, 
were categorized by value ranges. Categorical variables fell naturally into their associated bins. Table 1 
provides a breakdown of attributes to bins. In reality, only a small portion of the possible states will be 
encountered. As an example, not all CMTSs may be configured with six upstream channels and will never 
encounter any state where a fifth or sixth channel is represented.  

A unique state is represented as a concatenated string of the bins as shown in Figure 2. In this example, 
the state of the channel on Remote PHY Device (RPD) HN1 is interpreted as a sub-optimal profile 
configuration that is experiencing a poor UCCW rate and needs to be downgraded to a more robust 
profile configuration. 
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Table 1 - Attributes of a State 
Category Attribute # Bins 

Telemetry 
Uncorrectable Codewords (UCCW) 3 

Correctable Codewords (CCW) 3 
Signal to Noise Ratio (SNR) 6 

Channel 
Configuration 

Channel Width 3 
Modulation 5 
Profile Type 5 

Traffic Volume 2 
Channel Frequency 6 

CMTS 5 
 Total # Possible States 243,000 

 

 
Figure 2 - Example of a Unique State ID 

 

2.2.2. Actions 

For each defined state, the complete set of actions is available to choose from when making profile 
recommendations. Like the states, many actions will never be encountered for certain states. For example, 
if the upstream channel was running on the optimal profile, there is no ability to move to a more efficient 
profile. Therefore, the state-action values for upgrades would all remain at zero.  

In this RL system, three categories of actions were defined: 
1. Upgrade or downgrade 
2. Remain in the same configuration 
3. Transition onto and off the most robust configurations, referred to as ‘transient’ profiles (these are 

designed to deal to dynamic impulse or burst noise) 

Actions were limited to a maximum of four steps to restrict the dynamic policies from taking large action 
steps which would increase the likelihood of entering a poor state. 

2.2.3. Reward System 

The reward function serves to describe to the agent how it ought to behave. The key attribute to direct the 
agent in the simplest way is the UCCW rate. In this implementation, the reward system is boiled down to 
an evaluation of a Boolean condition that answers the question, “Is the UCCW rate greater than 1%?”. If 
it is, a large negative reward (punishment) of -10 is given to the agent. Otherwise, the reward is 1 +
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑔𝑔𝑎𝑎𝑝𝑝𝑔𝑔. A negative reward can still be observed if the UCCW rate is below 1%. For 
example, if a channel is in an optimal profile and the algorithm moves it to a transient profile, the loss of 
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speed is greater than the static bonus of +1 for keeping the UCCW rate low. This simple approach is 
designed to encourage upgrades in good conditions, and downgrades in poor conditions.  

2.2.4. Policy Updates 

The heart of the dynamic policy is the process of value iteration. Value iteration using TD SARSA from 
Equation 2 is the update algorithm that continues to adjust the state-action values until convergence (2). 
For each iteration, and each state and action encountered, the Bellman equation (2) is applied as an update 
rule in the form of Equation 2 and the profile recommendation logic uses the freshly updated policy in the 
same iteration.  

3. System Architecture 

3.1. Lab System 

The lab system architecture was built off the existing Profile Management Application (PMA) Lab 
design. The primary functional groups consist of: 

1. Impairment generation 
2. RF switching matrix 
3. Diplexing/combining components 
4. Cable modem racks 
5. Traffic generation 
6. RPD nodes under test 
7. vCORE and backoffice 

The automation controller randomizes impairment profiles on the generator via an SCPI interface.  It is 
also used to run GNURadio to create bespoke waveforms played back through a software-defined radio.  
The impairment sources are connected to an 8 x 16 port RF switch to steer or distribute the impairments 
to the appropriate devices under test.  The impairments are combined into the appropriate points to feed 
either the RPD upstream burst receiver or the cable modems’ downstream receivers.  For the traffic 
generation loop, the network side interface is connected to the Distributed Access Architecture Switch 
(DAAS) and the CPE ports are VLAN’ed and connected to each cable modem on a high-density, mobile 
rack. 

Five RPDs, with an average of 8 cable modems (CM), made up the population of devices for the trial. 
Each RPD contains a bonding group of either four or six D3.0 upstream channels, with a total of 24 
upstream channels across the RPDs. Random impairments (none to severe) were introduced to evaluate 
the policies under both clean and adverse telemetry. 

Table 2 - Lab Devices 
RPD Name Number of Channels Number of CMs Vendor 

AS2 6 6 CMTS X 
AN1 4 8 CMTS X 
CN1 4 7 CMTS Y 
HN1 4 12 CMTS Z 
HS3 6 8 CMTS Z 
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Figure 3 - Lab System Architecture 

3.2. Data Pipeline 

Each section of the pipeline is decoupled from the other sections to accommodate for experimentation and 
manipulation of policy parameters, states, actions, or other logic that would benefit from incremental 
changes. The sequence of the pipeline is shown in Figure 4: 

 
Figure 4 - Data Pipeline Sequence 

The primary inputs are the attributes that make up a unique state (described in Section 2). Once collected, 
the current state can be assigned for each channel on the RPD. The data is associated with a timestamp 
that can be used, if necessary, to retrain a policy through the sequence of actions taken using historical 
data.  

Arranging the data points by timestep for each upstream channel, the sequence of actions taken, and states 
encountered in order can be observed and rewards assigned. Being an independent step in the pipeline, 
this gives the opportunity to update the reward function or actions, and to be able to run the updates over 
the complete set of historical data or just the latest data points that need updated. In this pipeline, 
acquiring the action taken is not solely dependent upon the profile recommendation from the previous 
step, which makes determining the action taken delayed. A separate transaction manager must apply the 
recommendations first, and that function may or may not have succeeded.  
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In the policy update step, the latest timestep that needs to run through the SARSA equation with the full 
suite of the current state, action, reward, next state, and next action data is collected. The collection of all 
updated state-action pair values is preserved for use in recommending profiles. 

Making profile recommendations is relatively trivial after the policy has just been updated; however, 
there are special cases to account for to either prevent abnormal behavior or change the degree of 
exploration desired. In most cases, the agent simply looks for the highest-valued action for the current 
state, also known as exploitation. Exploration is the selection of a random action a specified percentage of 
the time. In a production environment, either the exploration is very limited or not used at all. The profile 
recommendations in this paper for RL-based policies were all derived using exploitation – selecting the 
highest-valued action in all cases. 

It is possible for the RL system to encounter states not seen before. When this happens, conventional 
logic is to select a random action. This could be detrimental to the channel’s capacity on live CMTSs. In 
this described RL system, logic was added to directionally influence the profile recommendation based on 
the UCCW rate for the channel if a state is encountered for the first time. There is no need to downgrade a 
channel’s profile if the telemetry is obviously adequate for consideration of upgrading.  

3.3. Closed Loop 

The closed loop system consists of the lab architecture and operation, the data pipeline, and the profile 
transaction manager. The lab generates telemetry and maintains configurations, which is processed 
through the pipeline, and the profile recommendations are applied onto the systems. Pipeline cycles are 
scheduled to complement the noise transition schedule in the lab by executing just prior to the noise 
transitions, ensuring that the next profile recommendations are based on the most current telemetry.  

4. Building Dynamic Policies 
Training a dynamic RL policy from an absolute baseline in this problem space would require more 
iterations over the pipeline than is realistically feasible to allow for adequate exploration of the state-
action space in a live feedback loop. An approach to priming the state-action pair values in the policy is to 
leverage historical actions from the existing static policy. Starting from this point enables the policy 
tuning to occur in less timesteps, while also allowing for liberal exploration of the state-action space. 

4.1. Initial Policy from Historical Data 

The approach in using historical data for initially creating a RL policy follows concepts from imitation 
learning (IL) and inverse reinforcement learning (IRL). Both disciplines use a demonstration - a 
replication of behavior sequences in the problem space – to acquire experience and learn a policy. “The 
inverse reinforcement learning problem is to find a reward function that can explain observed behavior” 
(3). With a reward system in place, determining the right policy is a matter of exploring values of α and γ 
for the TD SARSA equation. 

The static policy represents the human-generated data, taking directionally accurate (not necessarily 
optimal) actions under various network conditions. Doing so approximates state-action pair values toward 
their true values, which are refined over future value improvement iterations. The historical data is 
transformed into an ordered set of actions associated to states, as in Figure 5. 
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Figure 5 - Ordering Historical Data for Learning RL Policy 

For each row, the  𝑆𝑆0,𝐴𝐴0,𝑅𝑅𝑡𝑡+1, 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑡𝑡+1 observations needed to update the policy are arranged by 
windowing over the data and observing the sequence of profile transitions. This arrangement of historical 
data is the model used in future cycles when training RL policies using any decision-making policy. With 
the de-coupled implementation of the data pipeline, each step of data collections and transformations can 
be re-processed in their entirety. This becomes useful when adjusting a reward function or making any 
changes to the state or actions.  

4.2. Tuning the Initial Policy 

To build a true RL policy from the static policy’s historical data, the RL policy itself is used to make 
profile recommendations and receive the resulting state condition through tens of thousands of state 
encounters. Over the iterations, the policy learns the highest-valued actions to take for many common 
situations using progressively restrictive variations in the trade-off between exploration and exploitation.  

Initially, the policy was allowed to explore 100% of the time with the goal of starting to refine the state-
action values. The exploration variable was decreased incrementally over time to the point where no 
exploration occurred to allow for the policy evaluation.  

4.3. Multiple Policies  

For each iteration, variations of policies can be trained on the actions taken by another policy. Values of α 
and γ are permuted to build multiple policies simultaneously. Since the parameters influence learning rate 
and reward weighting, the permutations of the parameters build policies that behave differently from one 
another, but still directionally appropriate.  

5. Performance Study 
The performance study focuses on comparing the static policy and the dynamic policies; specifically, 
evaluating profile speeds, profile sequences used, and policy responses to impairments. The objective is 
to identify a dynamic policy that can match or exceed the performance of the static policy.  

5.1. Design 

Every policy in the study will manage the profiles for five RPDs having either four or six upstream 
channels between 10.4MHz – 40.5 MHz along the spectrum. A minimum of 25 iterations for all five 
RPDs through the data pipeline will provide opportunities for the system to experience impairments from 
the randomized noise transitions from the lab. The dynamic policies are configured to not conduct any 
random exploration; they will behave in a similar manner as the static policy by always taking the best-
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known action from a given state – even if the best-known action dynamically changes during policy 
updates. 

Prior to each iteration, the profiles on all upstream channels are set to a baseline that mimics the 
configuration on a CMTS / RPD when it is onboarded into the PMA system. The channels lower on the 
spectrum begin in a transient profile configuration, while the upper 6.4MHz channels (above 27MHz) 
begin in sub-optimal profiles configured at modulation QAM-64. If the system has a sixth channel, it 
starts in a transient profile as well. For each dynamic policy pipeline run, updating the policy includes 
updating the other policies in consideration by applying the actions taken to different values for α and γ. 
In a sense, the decision-making policy is demonstrating actions to take for the other policies that get 
updated by evaluating decision-making policy’s actions.  

The four-channel configurations are all 6.4MHz wide, while the six-channel configuration adds a 3.2MHz 
channel below and a 1.6MHz channel above the four-channel configuration. 

5.2. Policy Behavioral Expectations 

Under good network conditions, the policies are expected to upgrade profiles for more efficiency and 
capacity until the most efficient profile is reached. The channel would ideally remain in the optimal 
profile if conditions are supportive. As UCCW rates climb over the 1% threshold, the policies are 
expected to downgrade the profiles to those more suited to handle noisy conditions. By doing so, the 
UCCW rate may recover at a point in the downgrade process, whereby the policy is expected to attempt 
periodic upgrades to check if the issue has been cleared. Otherwise, the policies are expected to learn to 
remain at a lower profile over time. This study was not designed to observe policy changes for long-
running impairments, mostly due to time and resource constraints. 

5.3. Performance Evaluation 

Profile speed is a heuristic that can be used to represent the overall health of a bonding group (the 
collection of each upstream channels on each RPD). As the bonding group approaches the maximum 
profile speed, it is representative of the policy taking appropriate actions under good telemetry conditions. 
The maximum possible speeds are calculated by summing the optimal profile speeds for each upstream 
channel per system. Observing instances where maximum profile speed is not reached, determination of 
the cause falls into three categories: network impairments, poor decision by the policy, or an error 
external of the data pipeline (RPD channel error, transaction manager failure, etc).  

UCCW rates are indicators where policies are expected to upgrade or downgrade profiles, if possible. 
Policies are expected to begin upgrading the profiles as conditions improve, downgrading under poor 
conditions, and remain in the best profile possible.  

Achieving the best possible profile, as quickly as possible, is measurable by the number of timesteps it 
takes to achieve the optimal profile in a clean environment. To ensure a fair side-by-side comparison, the 
dynamic policies were limited to the largest transition step allowed in the static policy. The trajectory 
while transitioning off the baseline profiles is indicative of how assertive the policy is with respect to 
reaching the best-available profile.  

5.3.1. Static Policy 

The static policy has deterministic behavior, albeit through a combination of several thresholds. It was 
designed to reach optimal profiles by making transitions that are proportional to multiple telemetry metric 
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thresholds. Conservative decision criteria were purposefully built into the logic to greatly reduce 
introducing negative impact for customers.  

5.3.1.1. Profile Speed Analysis 

Observing the transaction history for each of the 25 timesteps, the static policy’s ability to reach and 
maintain a steady state for the majority of RPDs indicates only few impairments were encountered. This 
allowed the policy to continue to use optimal profiles on many of the individual channels.  

 
Figure 6 - Static Policy Profile Transitions in Terms of Speed 

Under the static policy, the distribution of profile speed values is correlated to the UCCW rate values 
above and below 1%. Figure 7 affirms the behavior of the static policy achieving a steady state with 
mostly optimal profiles under the network conditions experienced in the iterations. AS2, CN1, and HN1 
achieved the maximum possible speed for the bonding group and maintained during a significant portion 
of the study. A channel error occurred on HS3 that prevented the policy from achieving full speed for the 
bonding group. For that purpose, the policy achieved the maximum speed possible for the remaining five 
channels. 

 
Figure 7 - Bonding Group Speed Distribution 
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Figure 8 illustrates how the RPDs were unaffected by the random noise generation from the lab. Despite 
experiencing majority clean UCCW rates, not all RPDs reached optimal profiles for all channels. A single 
channel on AN1 fluctuated between the top two profiles relating to reported SNR values and thresholds 
associated with SNR in the policy. Otherwise, the static policy behaved as expected, and under the 
conditions of the test environment, achieved the optimal profile available for the channel given the 
telemetry feedback.  

 
Figure 8 - UCCW Rates Encountered (Static Policy) 

5.3.1.2. Latency to Optimal Profiles from Baseline 

The number of timesteps the static policy took to reach a steady state operating on mostly optimal profiles 
for four-channel RPDs is represented in Figure 9. Omitting step zero, it took an average of four timesteps 
to get all three systems to a steady state on optimal profiles. Each RPD was upgraded at a slightly 
different rate, indicating a factor besides UCCW rate was affecting how large of a transition to make for 
each channel (SNR or CCW rates). The average SNR for RPDs CN1 and HN1 was below 30 dB for four 
of the six timesteps, while AN1 enjoyed an average SNR above 40 dB for the same timesteps. In spite of 
this, AN1 was the last to reach a steady state on optimal profiles.  

 
Figure 9 - 4-Channel Upgrade Trajectory from Baseline (Static Policy) 

The six-channel RPDs demonstrated a wider disparity in terms of steps to reach a steady state. HS3 took 
two steps before leveling off, albeit notably by not upgrading the single channel that incurred reporting 
errors during the trial. AS2 reached a plateau after eight timesteps. This is attributed to the number of 
upgrades that had to occur for the upstream channel at 10.4MHz. Since it starts at the lowest possible 
profile, and limits upgrades to a maximum of four steps, this channel takes the longest to reach an optimal 
profile. 
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Figure 10 - 6-Channel Upgrade Trajectory from Baseline (Static Policy) 

5.3.1.3. Summary Statistics 

Over 25 iterations, the static policy achieved an average speed of 522 Mbps per iteration (all five RPDs), 
for an average bonding group (RPD) speed of 104.3 Mbps per iteration. Table 3 has the breakdown of 
profile usage: 

Table 3 - Static Policy Profile Speed Metrics 
Profile Type % of Total Speed % Profile 

Occurrences 
Optimal 88.95% 85.15% 

Sub-optimal 8.83% 8.44% 
Transient 1.37% 2.24% 

Below QAM-64 0.84% 4.17% 

 
Also of interest is the relationship between which profiles were used in which locations along the 
spectrum during the trial. The transient profiles exist largely on the low end of the spectrum, as expected 
with clean telemetry throughout. Optimal profiles occurred often on the 6.4MHz channels from 
approximately 16MHz – 36MHz.  

 
Figure 11 - Profile Type Utilization by Frequency (MHz) on Static Policy 
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5.3.2. Dynamic Policies 

The four dynamic policies chosen for illustration in this paper were selected considering the values of α 
and γ that affect the learning rate and the weight placed on future rewards, respectively. Table 4 describes 
which values were used per policy, along with a high-level summary for how the policy generally 
behaved. 

Table 4 - Dynamic Policy Information 
Policy α γ Policy Behavior 
Α 0.9 0.2 Achieved optimal profiles on 4 out of 5 RPDs 
Β 0.8 0.8 Indecisive, did not reach steady state, fluctuated profiles 
C 0.3 0.8 Not as assertive as policy A, fluctuated profiles 
D 0.8 0.2 Similar to policy A, optimal profiles on 3 out of 5 RPDs 

5.3.2.1. Profile Speed Analysis 

The dynamic policies experienced elevated UCCW rates on RPD HS3 during the trial. This prevented any 
of the policies from achieving optimal profiles in a steady form on that system. Policy A exhibited the 
most similar behavior as the static policy, maximizing the four-channel systems and reaching optimal 
speed on one of the six-channel bonding groups. Policies B and C have the most severe ‘indecisiveness’, 
fluctuating between profiles and largely not showing the ability to maintain a steady speed.  

 
Figure 12 – RPD Profile Speed over Time (Dynamic Policies) 

Figure 13 illustrates how the dynamic policies performed over the 25 iterations with respect to profile 
speeds distributions for each CMTS. The tight distributions observed on systems AN1, CN1, and HN1 
indicate a lack of impairments over the iterations and affirm the observations in Figure 12. Certain 
policies quickly achieved optimal profiles and maintained throughout. The larger distributions are found 
in the six-channel systems, AS2 and HS3. Almost all the dynamic policies struggled to achieve consistent 
optimality on the two RPDs. Policy A had the most success and tended to be the most assertive of the 
policies. 
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Figure 13 - Profile Speed Distributions by Dynamic Policy 

UCCW rates did have an impact on system HS3 over the course of the trial for each of the dynamic 
policies. At one point, policy D experienced a channel with a severe UCCW rate of 100% (Figure 14). 
Since channels with severe impairments will not achieve the best profile, RL policies adapted to reaching 
profiles suitable for the impairment event.  

 
Figure 14 - UCCW Rates of RPDs by Dynamic Policy 

Figure 15 highlights the UCCW rates observed on each iteration for each policy in relation to the overall 
profile speeds for each timestep on system HS3. In almost all cases, as a UCCW rate above 1% was 
detected, a decrease in profile speed for the bonding group indicates one or more channels downgraded to 
a slower, more robust profile. This is the expected behavior from both the static and dynamic policies. 
The change can be subtle for the channels less that 6.4MHz wide since those have less capacity to begin 
with, and the speed difference between profiles is a tighter distribution. 
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Figure 15 - Changes in Profiles with UCCW Rates on RPD HS3 

As shown by policies A, B, and C, as UCCW rates improved, the policies continued to upgrade the 
profile configurations for more capacity. Observing the trends both with and without noise demonstrates 
the RL policies’ ability to make directionally accurate decisions.  

5.3.2.2. Latency to Optimal Profiles from Baseline 

The dynamic policies took varying paths on the four-channel systems from the baseline profiles. Policy D 
took the most efficient route of the policies, reaching a steady state on optimal profiles in an average of 
two steps (actual = 1.7). Similarly, policy A averaged two steps, however, took a slightly less efficient 
route. Also notable, as policy D reached the optimal profile, a channel began fluctuating between the 
optimal profile and a two-step downgrade. This is a flaw within the policy. The same fluctuation activity 
is observed on policies B and C – both of which had more difficulty achieving and maintaining optimal 
profiles.  

 
Figure 16 - 4-Channel Upgrade Trajectory from Baseline (Dynamic Policies) 
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The six-channel systems (AS2, HS3) had a more difficult path toward achieving optimal configurations. 
With the impairments on HS3, reaching the optimal profiles is not expected; however, reaching the best 
profile available is expected. The consistency between policies on HS3 indicates that impairments had a 
strong influence in keeping the profiles sub-optimal. The channels were influenced to use lower profiles 
to reduce the poor telemetry responses from the network in reaction to the chosen profiles. None of the 
policies on AS2 achieved optimal profiles, but the speeds were higher, indicating clearer telemetry. Policy 
D settled early after two timesteps, but at a sub-optimal overall speed. This indicates that the wrong action 
was valued highest for a particular state. The policy needs to explore different actions to overcome this. 

 
Figure 17 - 6-Channel Upgrade Trajectories from Baseline (Dynamic Policies) 

5.3.2.3. Summary Statistics 

Over 25 iterations, the dynamic policies achieved varying average bonding group speeds, as shown in 
Table 5 as an average speed per bonding group. 

Table 5 - Dynamic Policy Raw Profile Speed Totals 
Policy Average per Bonding Group 

A 104.0 Mbps 
B 99.5 Mbps 
C 103.2 Mbps 
D 103.7 Mbps 

Despite none of the dynamic policies achieving the 104.3 Mbps average, the measurement from the static 
policy, each of the dynamic policies experienced adverse UCCW rates that prevented the policies from 
upgrading into optimal profiles and remaining there. Yet, Policy A fell just short of attaining the static 
policy’s benchmark. 

Figure 18 has the breakdown of profile usage by profile type as it pertains to contributions to the overall 
speed values. Viewing the results by profile type is useful in understanding how the profiles were utilized 
across the iterations.  

Notable in the profile density plot is the use of optimal profiles for policies A, C, and D in relation to the 
other profile types. Policies A and D exhibit the best consistency of optimal configurations. 
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Figure 18 - Profile Type Utilization by Frequency (MHz) for Dynamic Policies 

5.3.3. Summary Evaluation 

Overall, policy A outperformed the other dynamic policies and will be the subject of a final extended 
study with respect to the static policy. Both policies ran for a total of 40 timesteps to provide additional 
insight into whether an RL based policy is definitively capable of being more performant than the static 
policy. Figure 19 shows the profile speed results comparing the two policies together over time.  

 
Figure 19 - Profile Speed over Time, Static vs Dynamic 

A notable difference is on RPD HS3 when dynamic policy A runs were no longer encountering poor 
UCCW rates and saw a total increase of approximately 10Mbps from step 20 to step 30. The policy 
maintained that speed approaching the end of the study. The discrepancy of speed between the two 
polices is due to a channel reporting erroneous telemetry in the static policy iterations. It is unknown 
whether the static policy would have encountered poor telemetry or not as it upgraded, therefore it cannot 
be definitively proven by profile speed alone which is the better policy. Policy A increased to an average 
of 104.2 Mbps per bonding group of raw profile speed, while the static policy maintained an average of 
104.6 Mbps. The high UCCW rates incurred on the systems during the trial runs for policy A explains 
much of the difference.  
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One other interesting point related to RL specifically occurred on RPD AS2. Figure 20 shows a zoomed 
in view of the change that took place. As policy A reached the optimal profile speed, a single channel had 
learned the highest valued action in that state was to downgrade by one step. Over four total cycles of 
fluctuating between the optimal profile and the sub-optimal one, the policy was getting updated by being 
penalized for moving down and rewarded positively by moving up. After those four cycles, the best 
action from the optimal profile for that channel changed to the action of remaining in the optimal profile 
under good telemetry conditions.  

 
Figure 20 - Dynamic Policy Learning Better Action 

Optimal profile configurations on policy A trials account for more of the overall aggregated speed than 
for the static policy. The static policy spent less time on transient profiles, however that is due to the 
differences in telemetry between the policy trials. Sub-optimal profiles – those that are between the 
optimal and transient profiles – accounted for almost twice as much of the total speed on the static policy 
than on dynamic policy A.  

Table 6 - Profile Speed Metrics, Static vs Dynamic 
 Policy A Static Policy 

Profile Type % of Total Speed % Profile 
Occurrences 

% of Total Speed % Profile 
Occurrences 

Optimal 91.67% 84.69% 88.95% 85.15% 
Sub-optimal 5.11% 5.78% 8.83% 8.44% 

Transient 2.42% 6.8% 1.37% 2.24% 
Below QAM-64 0.79% 2.72% 0.84% 4.17% 

Both policies have proven to behave very similarly in the interest of managing a US PMA system. 
Dynamic policy A only slightly edges out the static policy based on the following criteria: 

• Policy A achieved optimal profiles on the four-channel systems from the baseline in an average 
of two steps, whereas the static policy took an average of four steps.  

• Policy A utilized the optimal profile configurations more often than the static policy. 
• Static policy achieved higher overall profile speed over the 40 iterations, with the caveat that the 

RPDs using policy A experienced more noise from the lab. 

A key advantage the dynamic policy has over the static policy is the ability to learn on the fly. These 
policies are capable of correcting for changing conditions and adapting to what is normal for each RPD 
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system. As was demonstrated, policy A changed behaviors in the middle of the trial toward the more 
optimal action – this after experiencing several timesteps with poor telemetry.  

While policy A, at a minimum, matches the behavior of the static policy, it also introduces the ability to 
build customized policies for individual RPD or CMTSs. Geography, weather, ingress, and other external 
factors impact network service to varying degrees – making a one-size fits all policy advantageous for 
many systems, but not applicable to all. Changes in one policy will not affect all systems, just the system 
for which it manages.  

Balancing the many permutations of telemetry and configuration values using RL states removes 
complexities involved with tuning thresholds and applying the conditional logic in the algorithm for all 
thresholds.  

5.4. Opportunities for Enhancement / Potential Future Steps 

The proof of concept described in this paper is a promising step toward building more intelligent PMA 
systems. Below is a list of opportunities to improve the current policy building process and suggestions 
for future steps that would move this work forward. 

• Training a dynamic policy from scratch – given enough time and resources, a policy trained from 
scratch would not be influenced by the initial historical data used in this POC.  

• Synchronize noise settings from the lab such that each RPD and policy experiences the same 
sequence of impairments. Measuring responses of devices at each transition would provide a 
clearer picture of policy behavior differences. 

• Improve the policy training process using n-step TD prediction methods, whereby more steps in 
the sequence and the rewards from those steps is used to estimate state-action values. This POC 
used the current state/action and next state/action to calculate values. Additional states and 
actions in the sequence can be bootstrapped for learning. 

• Adaptation for scalability – architect solution capable of managing tens of thousands of RPDs. 
This may sound daunting at initial glance, however, the state-action space to maintain is 
significantly smaller than the collective set of possible states. In this study, .007% of the 243K 
possible states were encountered.  

6. Conclusion 
An upstream PMA system operating through a static policy is a proven effective strategy for configuring 
D3.0 channels across an entire network. By taking a cautious approach, the single policy caters more to 
the adversely impacted RPDs and CMTSs as the lowest common denominator when establishing 
thresholds that need to apply to a wide range of devices and conditions.  

To improve profile configuration management, RPDs and CMTSs would benefit from a policy that best 
suits the individual operational environments. In fact, through the current implementation, a primary static 
policy manages the majority of Comcast’s footprint, and a secondary policy manages a small set of 
devices with special requirements. Following a path of creating multiple static policies that manage 
different sets of devices would become difficult to manage.  

One option for establishing self-managed dynamic policies is to apply an RL-based decision-making 
process that updates in real-time and is flexible enough to tune for either groups of devices or individual 
devices. The finer-grained management leads to confidently bolder profile transitions to reach steady state 
operations in less time than the static implementation. While both policies performed similarly in the trial, 
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the advantages a PMA system gets with an RL implementation may make the RL approach more 
appealing for large networks.  
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Abbreviations 
CCW correctable codewords 
CM cable modem 
CMTS cable modem termination system 
CPE customer premise equipment 
DAAS Distributed Access Architecture Switch 
D3.0 DOCSIS 3.0 
D3.1 DOCSIS 3.1 
DOCSIS Data Over Cable Service Interface Specification 
dB decibel 
IL imitation learning 
IRL inverse reinforcement learning 
Mbps megabits per second 
MDP Markov Decision Process 
MHz megahertz 
α alpha 
γ gamma 
PHY physical layer 
PMA Profile Management Application 
POC proof of concept 
QAM quadrature amplitude modulation 
RL reinforcement learning 
RPD Remote PHY Device 
SARSA state, action, reward, state, action 
SCPI Standard Commands for Programmable Instrumentation 
SNR signal to noise ratio 
TD temporal difference 
UCCW uncorrectable codewords 
US upstream 
vCORE core voltage 
VLAN virtual local area network 
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