

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Operational Transformation

Machine Learning for RF Impairment Detection

David Virag

Distinguished System Engineer Commscope

Background

- Past 20 years explosion of data
 - Large scale web-services e.g. search, social media
 - New methods for organizing and processing massive data sets
- New tools and processing pipelines developed
 - Available to everyone
 - Can now leverage new techniques to different problems
- Simultaneously, new PNM methods becoming available for DOCSIS networks
 - Ability to gather large data sets to assess health of plant
 - Need to apply new techniques to large data sets for real-time plant assessment
- Automated methods to detect plant issues beneficial for industry
 - Increased customer satisfaction (fewer/less frequent problems)
 - Lower operational costs for MSO with improved automation techniques.
- Goal of research to evaluate the application of ML algorithms to available data.

Implementing a Closed Loop System

Challenges of using Machine Learning

- Need for Labeled Data
 - Supervisory based systems require lots of labeled data
 - Difficult to label data
 - manual process
 - Requires specific expertise
- Non-service spectrum
 - Full-band spectrum can contain gaps of unused spectrum
 - Gaps appear as noise, can make it difficult to detect wideband issues
- FBS captures include lots of data and require memory and CPU power for processing
 - Storage and compute costs today allow for mass processing of data at much lower cost than a decade ago.

SCTE

Auto-Label

• Supervised Learning – learning based on labeled data sets to map features to labeled output.

- Labeling is a challenge for spectral based samples. How to obtain those labels?
- Manual process requires specific domain expertise and is time consuming.
- Utilize auto-label based on traditional signal processing approaches.
 - Channel framing and detection based on received power levels within 6 MHz bands.
- Impairment Triggers
 - Power outside of DOCSIS specified range (-15 dBmv to +15 dBmv)
 - Adjacent power level mismatch
 - Delta power between successive 3 MHz ranges outside of threshold.
 - Delta power within a consecutive 6 MHz channel spectrum was outside threshold.
- Samples exceeding one or more impairment triggers labeled 'bad'.
 - 'impaired' spectrum does not necessarily mean customer services are degraded.

Full Band Spectrum Capture – 'Good' Example

SCTE.

ATLANTA

CABLE-TEC EXPO.

GA > OCTOBER 11-14

Full Band Spectrum Capture – 'Impaired' Example

SCTE.

ATLANTA.

CABLE-TEC EXPO

GA > OCTOBER 11-14

Spectral Fill

Full-band capture spectrum includes unused spectrum with no signal energy.

- These bands may not be relevant to discerning the overall health of the channelized spectrum.
- Would pre-processing the unused spectrum improve results of the M/L algorithms with greater separation of characteristics from the channelized spectrum?

Evaluated filling unused spectrum with a flat '-60db' value prior to running M/L algorithms to test this notion.

Example of Downstream FBS Capture

Example of Downstream FBS Capture

Feature Extraction

Raw data sets have 151 channels x 256 bins/channel = 38k points data per-sample.

Feature extraction provides method to reduce the points per sample to smaller highly relevant set for M/L algorithms.

Utilize TSFresh library for feature extraction

- Generic feature extraction no specific domain expertise incorporated
- Developed for time-series applications, applicable to uniformly sampled datasets
- Reduces each sample from 38k points to 788 'efficient' features.

Example Features:

```
Absolute Energy => \sum (x_i)^2 for all X in sample
```

```
Max value => Maximum (x<sub>i</sub>) value in sample
```

```
Autocorrelation => Sum of Autocorrelation of (x_i) with (x_{i-lag})
```


Feature Extraction

Principal Component Analysis (PCA) employed to further reduce feature set

- Technique based in linear algebra
- Computes linear combinations of features to maximize feature variance
- Calculates relevance factor for each 'transformed' feature
 - PCA = 99% used for this analysis

PCA Simple Example

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org Source: https://setosa.io/ev/principal-component-analysis/

• Test/Evaluate

Adaboost

• A boosting algorithm that utilizes a Decision Tree as its base classifier. Final classifier based on linear weighted combination of base classifiers.

Logisitic Regression

- A classifier based on a linear regression model.
- Multi-Layer Perceptron (MLP)
 - A basic neural network classifier allowing for non-linear decision boundaries.

Convolutional Neural Net (ResNet)

• A convolutional neural network. Resnet utilizes the spectral samples directly and not the extracted feature set allowing for a simpler processing pipeline.

All M/L algorithms evaluated have associated hyper-parameters impacting performance.

• Some level hyper-parameter performance tuning was performed prior to running full dataset to optimize performance.

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved. | expo.scte.org

Learning Curves

- Evaluate algorithms across training set sizes
 - Indication on how much data to be effective
 - Appears diminishing returns at 10k samples or more
- Run with specific set of hyper parameters
- Useful tool to provide guidance on the amount of training data needed to train algorithms.

Learning Curves

Data Splitting for Train and Test

- Data set is split between Train & Test
- Training set used to train algorithm
 - Normalized prior to training
- Test set used to evaluate algorithm after training
 - Accuracy and Confusion Matrix data captured

2 Data Sets evaluated – one from each CMTS network

• CMTS networks are unrelated

Raw data samples exhibit high bias toward 'good' samples

• Reduced data set to achieve close to equal bias or 'good' to 'bad' ratio close to 1

Data sets exhibited different levels of unused spectrum

Each data set includes two types:

- Unused spectrum left as is in data sample 'no-interpolation'
- Unused spectrum filled with constant -60dBmV value.

Results

System A - Test Accuracy - PCA = 99

System A	PCA = 99			
	NoFill	-60db Fill	Diff	
AdaBoost	88.42	89.6	1.18	
LR	90.13	89.6	-0.53	
MLP	92.45	92.98	0.53	
ResNet	92.8	94.9	2.1	

- Strong Overall Results for all algorithms -٠ Simply guessing would provide about 50% accuracy.
- Synthetic fill improved most results • - Exception: Logistic Regression
- MLP & Resnet (Neural Networks) had best ٠ results.

Results

System B - Test Accuracy - PCA = 99

System B	PCA = 99			
	NoFill	-60db Fill	Diff	
AdaBoost	83.21	87.58	4.37	
LR	84.34	85.08	0.74	
MLP	86.87	88.61	1.74	
ResNet	89.6	91.2	1.6	

- Strong Overall Results for all algorithms -Simply guessing would provide about 50% accuracy.
- More unused spectrum than system A. •

٠

- Results not as good as System A
- Synthetic fill greater improvements than system A.
- MLP & Resnet (Neural Networks) had best ٠ results.

- All ML Algorithms performed significantly better than a 'dummy' classifier
- System A and System B results were different
 - Possible due to difference in amount of un-used spectrum
 - System A had less un-used spectrum and better results
- Synthetic -60dB fill generally improved performance
 - LR on System A was exception
 - LR generates linear decision boundary, may limit performance
 - Larger improvements on System B using synthetic -60dB fill
 - System B had more unused spectrum
- ResNet and MLP algorithms had best performance
 - Capable of non-linear decision boundaries

- Use of Machine Learning to detect RF Impairments using FBS is very promising
 - Proactive maintenance focus, improved customer satisfaction
- Enhanced models more and/or improved data points:
 - Multi-level categorization to identify specific types of impairments
 - Impairment grouping within topology
 - Feature development using specific RF domain knowledge
 - Customer experience/feedback, environmental data, operational data (e.g. plant modifications/changes)
- Model tuning to improve results
 - Hyperparameter adjustments
 - Node level aggregation

Implementing a Closed Loop System

SCTE.

CABLE-TEC EXPO. ATLANTA, GA > OCTOBER 11-14

Thank You!

David Virag Distinguished System Engineer Commscope david.virag@commscope.com

COMMSCOPE®

