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1. Introduction 
There has been an explosion in the ability to organize and process large amounts of data over the past 20 
years. The introduction of the world wide web has introduced key services such as search engines and 
social media where massive amounts of data are necessary to sort, filter, and aggregate in ways that 
enhance the value of the services to their customers. To support the new services that now aggregate 
massive amounts of data - new tools, algorithms, and pipeline architectures have been developed and 
have become readily available to attack problems in new disciplines where large amounts of data are now 
becoming available. 

Simultaneously, over the past decade, CableLabs DOCSIS standards have introduced a variety of 
Proactive Network Maintenance (PNM) tests for the collection of operational data from various network 
elements such as Cable Modems (CMs) and Cable Modem Termination Systems (CMTS). The 
operational data available in the network can be extremely large when taken at time intervals sufficient to 
allow pro-active network management. Historically, these sort of data available in the cable network 
required one skilled in the domain of radio frequency engineering to interpret the spectral data available 
from the system. Discerning the quality of an RF spectral signal visually is time consuming and fraught 
with nuance such that human review of this data is done in a reactive manner where issues are already 
known as opposed to a proactive manner to determine where issues are arising that may not yet be having 
major impacts on network performance and quality of service. 

However, this data has not been sufficiently used to automate the detection of network impairments and 
to take remediation measures to alleviate network issues that can result in deterioration of the quality-of- 
service experience by the customers. Recent advances in Machine Learning techniques to analyze large 
quantities of data coupled with higher performing hardware computer algorithms have made it possible to 
evaluate PNM data in near real-time for the purposes of classification of the channel quality and 
identification of impairments. 

This paper explores the use of various Machine Learning algorithms to categorize downstream Full-Band 
Spectrum (FBS) capture data extracted from the CMs. In this evaluation, all RF impairments are lumped 
into a single group where the initial characterization of the group is based on a few simple RF evaluation 
metrics. Various pre-processing techniques to normalize the spectrum data and other challenges that are 
encountered in the processing pipeline are presented. Different ML algorithms with various levels of 
complexity were evaluated to identify and categorize the presence of spectrum impairments. Results of 
our experiments based on real field data collections will be presented. Techniques for closed-loop 
identification of RF impairments are presented. 

2. Challenges of using Machine Learning models for Spectrum 
Identification 

The application of machine learning on spectral samples, while not new, has specific challenges when 
applied for classification. For supervisory based learning systems, training data must be available to train 
the algorithm what anomalous spectral data may look like. For spectral based data there is unfortunately 
no systematic method for obtaining labeled data. Assuming that enough spectral samples are available 
with associated labels, not all systems include spectral energy across the entire Full-Band System (FBS) 
capture. A full-band system from center frequencies 93 MHz to 993 MHz contains 151 6-MHz channels. 
In some cases, only a fraction of the 151 channels are configured for services and include transmitted 
spectral energy. With only a small number of service channels, issues such as RF Tilt or spectral ripple 
may be difficult to observe due to the large gaps between regions with transmitted channel   energy.  
These gaps appear as noise in the full-band spectrum. 
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Another issue is that consumer premise equipment (CPE) necessary to capture the FBS data is not always 
available. CPE may be occasionally powered off, either by the customer or due to loss of commercial 
power services. For downstream data, the CPE is necessary to capture the received data spectrum. For this 
study, CPE were chosen randomly for the dataset. 

When using a supervised algorithm, labeling of data can be difficult and costly. For RF spectrum, labeling 
data may take subject matter experts to meticulously look through samples by manually adding labels to 
those subjectively determined to be abnormal. Lack of precise boundary definitions can confuse machine 
learning algorithms and decrease the performance of the ML algorithms. 

High volume of data associated with a full-band spectrum requires large memory and storage capabilities. 
In this study, we pulled more than 15,000 random FBS records for evaluation. This size of data set 
requires server quality hardware.  For example, this data set was unable to process on a laptop computer 
with 8 GB of memory under the current process implementation. 

3. Prior Work 
Much of the prior work done for ML for spectrum analysis is based on the use case of spectrum sensing, 
i.e., identification of whether a spectral block is available for use. Other related work has looked at Time 
Series Classification using Deep Learning [1]. Some work has been done in more specific cases for 
DOCSIS and OFDM. [2] discusses the sources of data available in a DOCSIS network useful for machine 
learning approaches and the application of Deep Learning for classification while [3] evaluates the use of 
convolutional neural networks (CNN) as a multi-label classifier with RxMer data in an OFDM channel. 
This paper will focus on downstream FBS data across the entire plant including SCQAM and OFDM 
spectrum. 

4. A Machine Learning Evaluation Pipeline 
Data is collected from two CMTSs using the PNM Downstream Spectrum Capture using Simple Network 
Management Protocol (SNMP) to setup and trigger each data sample. For each CMTS, data was captured 
from each available cable modem across all service groups at the same time of day once or twice per day 
and placed into a Cassandra database. The full spectrum captures include FBS data from 93-993 MHz 
center-frequency channels sampled at 256 bins per channel representing 151 6-MHz data, video, or 
unused channels. 

The database may be queried by specific CMTS source, date and time of capture, interface index, or 
specific cable modem MAC address. The database includes over two million capture samples. Once the 
data has been ingested into the database, the general process flow is shown in Figure 1. 
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Figure 1 - Full Machine Learning Pipeline 

 

5. Data Set Generation 

5.1. Extract: 

Data queries are generated by an extraction program for data sets of interest. The data is placed in a 
comma separated value format. Data extraction queries may be based on day and time of samples, device 
MAC-address, service group or any combination. In this study, all data samples are pulled randomly from 
available cable modems among all service groups and all available dates and collection times for each 
CMTS system. Extracted data for each CMTS are held in separate files to evaluate differences in results 
pertaining to different unique system characteristics of each system. 

5.2. Auto-Label + Spectral Fill: 

For the purposes of evaluation of ML algorithms we have introduced an auto labeling component. This 
auto-labeling component uses specified RF metric evaluation to determine the relative quality of an 
individual spectral sample. For this exercise, the auto-labeler labeled each full-band spectral sample 
as either good or not good (‘impaired’). The full-band capture was evaluated using the following RF-
based metrics: 

a) Power in one or more channels did not fall within the DOCSIS specification range for received 
power (-15 dBmv to +15 dBmv) 

b) The power level difference from a channel to either adjacent channel was greater than 3.5 dB. 
c) A max3 calculation defined as the change in power of any points within a consecutive 3 MHz 

channel spectrum was greater than 3.5 dB. 
d) A max6 calculation defined as the change in power of any points within a consecutive 6 MHz 

channel spectrum was greater than 3.1 dB. 

 

5 

Samples that failed one or more of the above tests were flagged as ‘impaired’ for the purposes of a 
machine-learning training set. Spectrum samples that passed all tests were labeled as ‘good’. It is 
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important to note that samples labeled ‘impaired’ for this purpose do not necessarily mean customer 
services are impaired. A better description might be that the margin between current operating condition 
and eventual service degradation is less than ideal. 

The FBS captures provide data for all channels between 93 MHz and 993 MHz inclusive. Not all channels 
in this wide range include active video or data services and thus have no transmitted energy in the 6 MHz 
channel. These channels are labeled as ‘unused’. Early tests indicated that unused channels could possibly 
impact the overall performance of the M/L algorithms in categorizing impairments. 

Unused spectrum may also contain ingress from unwanted sources or include other noise sources from the 
cable plant. 

To assess the impact of data associated with unused channels, the auto-labeler incorporates a channel 
sensing algorithm to generate a list of active channels across the spectrum.   The channel sensing 
algorithm determines 6MHz channel energy and other attributes to compare with thresholds to determine 
presence or absence of a channel. The output of the auto-labeler includes a list of frequencies for which 
active channels are present. The complement of this list is therefore the list of unused 6 MHz channels in 
this spectrum. This complement list is used to evaluate different techniques to aid the final spectral 
classification. The options evaluated are: 

a) do nothing with the channel gaps and process ‘as is’ or 
b) fill the channel slots that have no transmitted energy with a fixed value of -60 dBmV. A fixed -

60dB fill was selected with the notion that the characteristics of a simple ‘line’ fill may ease the 
identification burden on the algorithm from unused spectral capture of a real received rf signal 
which includes random noise power. 

Figures 2 and 3 show a typical RF FBS capture and with a -60 dBmV fill respectively. 
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Figure 2 - Example spectrum capture 
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Figure 3 - Example of Spectrum with -60 dB fill 

The datasets are taken from field data on operational systems. The number of samples that are labeled 
‘impaired’ are a small subset of the overall number of samples included in the set. Once the labeling is 
completed, the data sets are trimmed by removing some of the samples labeled ‘good’ to improve the 
balance between the number of ‘good’ labeled samples and ‘impaired’ labeled samples. The final sets 
have a slight bias toward ‘good’ samples. 

5.3. Feature Extraction: 

Available data sets are fed into a feature extraction program. The objective of the feature extraction 
algorithms is to reduce the total number of features associated with a spectral sample to something 
smaller and more explanatory to the output labels. In absence of the feature extraction algorithm the entire 
dataset is effectively a set of 38k individual features, each spectral bin treated as a data feature. Using a 
feature extraction algorithm, the total number of features per sample may be reduced by orders of 
magnitude to allow for faster and lower cost processing of the data.   The reduced size feature sets are 
used in 3 of the 4 ML algorithms while one of the algorithms uses the FBS spectrum directly. 

TSFresh1 1is a generic feature extraction library utilized for this purpose based on [4]. No specific 
domain knowledge is leveraged for feature extraction. TSFresh is an opensource python package for 
feature extraction of time-series based data but applicable to any uniformly sampled data, in this case 

 

1 https://tsfresh.readthedocs.io/en/latest/index.html 
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spectral samples. TSFresh includes a basic set of 788 single value features extracted from each of the data 
samples where data sample refers to an individual FSB capture. 

Some examples of the features calculated by TSFresh include Absolute Energy, all values in the sample 
are squared and summed to a single value. A second example feature is Max value where only the 
maximum value of the entire sample is retained. Other features include autocorrelation where the 
autocorrelations of each sample are taken with all possible lags (for example delay by 1, 2, 3,.. up to n-1 
bins) and the results are summed together. Upon the calculation of the TSFresh features, the initial 
spectral samples are no longer required, the original labels are retained with the newly computed TSFresh 
feature set. 

Principal component analysis (PCA) is another technique that is further applied to the extracted features 
to reduce the feature set to a smaller set. PCA is a linear algebra technique that accomplishes dimensional 
reduction using linear transformations of features to determine the optimal linear combinations of features 
and their contribution to the overall explanation of the sample output labels, discarding features that have 
insignificant value. An in-depth overview of PCA is available in [5]. In this study, we evaluated the 
machine learning algorithms using the extracted feature set from TSFresh using PCA to further reduce the 
feature set. We evaluated data sets with feature extraction using a PCA threshold of 99% for this paper. 

6. ML Algorithms 
This analysis includes evaluation of the following machine-learning algorithms: 

Adaboost – Adaboost is a decision tree based algorithm that makes use of many simple decision tree 
classifiers. Adaboost utilizes a base classifier, in this case a decision tree classifier. The Adaboost 
algorithm builds a final classifier using weighted sample data over a series of training passes. The best 
decision trees in each pass are added to a final weighted decision tree classifier set. 

Logistic Regression – In logistic regression, a logit function is used to create a best-fit decision boundary 
between samples labeled as good or bad resulting in a linear decision boundary. The LR algorithm is 
optimized using the training data to minimize the error of the fitted data. Samples are compared against 
the constructed decision boundary and labeled accordingly. 

Multi-layer Perceptron – A MLP is the simplest form of neural network that may be used for 
classification problems. A MLP produces a non-linear decision boundary using a network of simple 
nodes. 

ResNet – ResNet is a convolutional neural network architecture developed for deep-learning [6]. The 
ResNet architecture solves issues associated with vanishing gradients and accuracy degradation with deep 
learning architectures. ResNet is the only algorithm that uses FBS samples directly without feature 
extraction and PCA reduction. 

7. Learning Curves 
Learning curves can be useful to provide guidance on whether an algorithm is being over trained (i.e., 
over-fitting) or is not being trained with enough data. To perform a learning curve analysis, a large data 
set was extracted using System B data. The algorithms were trained using varying amounts of training 
data from 2k samples to 12k samples. For each level of training, test and training accuracy are recorded. 
Learning curves for MLP, LR, and AdaBoost algorithms are shown in Figure 4, Figure 5, and Figure 6 
respectively. These learning curves indicate that training samples above 10-12k provide little 
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additional gain in the overall testing performance of the algorithms. The learning curves are useful to get 
a general idea on the training necessary for the algorithms. Note that the learning curves may be different 
for each of the different data sets – i.e., System A, System B with and without -60db fill. Learning curves 
are generated using a particular set of hyper-parameters for each of the algorithms. Hyper-parameters are 
parameters that impact the algorithmic model configuration. Examples of hyper-parameters are the 
specific method for gradient search, a regularization parameter value, or the specific activation function of 
a neural network. Because we are doing hyper-parameter tuning for each test the actual hyper-parameters 
may change from those used in the learning curves. Nevertheless, the learning curves can provide some 
useful guidance on the data set size, but further testing may be warranted. 

 

 
Figure 4 - MLP Learning Curve 
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Figure 5 - LR Learning Curve 

 
Figure 6 - AdaBoost Learning Curve 
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8. Data Splitting for Train and Test 
For each algorithm, the data set is split into a training set and test set. The split between training and test 
sets are 75% and 25% respectively of the overall data set. 

The training set and test set each consist of the features extracted along with the auto-generated labels. 
The training set is used to train the machine-learning algorithms while the test set is used once the 
algorithms are appropriately trained to evaluate the algorithm on similar but different data that it has been 
trained on. The training set is normalized prior to training to prevent any features from dominating 
training due to scale. 

For each algorithm, hyper-parameters are tuned using both the training set and test sets prior to a final 
training and test evaluation. Once the test set is completed the algorithm performance is calculated based 
on the predicted values of the test set results and the actual values as labeled by the auto-label process. 

Accuracy and confusion matrix results are recorded for each data set. Description of confusion matrix and 
associated definitions are in the Appendix, 13. 

9. Data Sets 
The data sets for this analysis have been extracted from 2 different networks in different geographical 
locations. Both data sets were taken randomly from each network. The characteristics of the data sets are 
provided in Table 1 below. 

Table 1 - Dataset Characteristics 

 

 

Table 1 lists the number of samples, initial bias, and amount of unused spectrum based on the aggregate 
of all the samples in that set. The Unused Spectrum is an aggregate value calculated by counting the 
number of bins in each spectrum capture that have been filled during the Spectral Fill process divided by 
the total bins in each full spectrum capture, each individual sample may have more or less unused 
spectrum than the overall aggregate percent. The Bias is calculated by summing the number of labels = 
‘1’ (‘impaired’) divided by the total number of samples in the set and subtracting from 1. A number 
greater than 50% reflects the situation that the Bias represents a slightly greater number of ‘good’ samples 
than ‘impaired’ samples in each set. 



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13 

Each of the algorithms were run across data sets from two different systems to evaluate performance 
among the algorithms and differences among the data sets. Feature sets were created using Principal 
Component Analysis (PCA) with only features meeting a prescribed threshold of 99% used. For 
reference, the full TSFresh feature set consists of 788 different feature metrics. 

For each algorithm, the ML classifier was trained using the training set.   The specific approach to 
training differs depending on the ML algorithm. For example, with MLP, the entire training set is passed 
through the algorithm, called an epoch, after which a cost function is used to update the MLP weights 
using a statistical gradient descent search and learning rate. After many epochs, the MLP weights 
approach the optimal values for performance.   Once training is complete, the test set is passed through 
the MLP. The specifics of training for each of the algorithms are different, the general concept of 
optimizing the performance using the training set and evaluating using the test set is the same. For each 
sample in the test set, an output prediction (‘good’ or ‘impaired’) is generated. The prediction is then 
compared with the actual label for that sample. Accuracy is defined as the total number of correct output 
predictions divided by the total number of samples in the test set. 

10. Results 
Figure 7 and Figure 8 show the results using the 99% PCA feature set for systems A and B in graphical 
format respectively while Table 2 and Table 3 provide the results in tabular format. Table 2 and Table 3 
include an additional column providing the difference in accuracy between the case of no fill and that of - 
60dB fill. The number is referenced to the case of no-fill so that a positive number represents the case 
where a -60dB fill improved the results. Table 4 shows the number of PCA extracted features for each 
dataset. 

In reviewing the results, it is apparent that all ML algorithms evaluated performed significantly better 
than simply categorizing all samples as ‘good’ which would provide about a 51% accuracy. 

Second, the performance of System A and System B were not identical, System A generally tended to 
have better results than System B across all the ML algorithms. This observation could be related to the 
fact System A had fewer unused channels than System B. 

At the individual algorithm level, ResNet tended to have better results than the other algorithms with 
MLP being a close second. These algorithms are based on neural network models capable of creating 
complex decision boundaries. 

With the exception of LR, all the algorithms benefitted from the synthetic -60db fill with Adaboost 
performance bumping by over 4% when using System B data. One possible explanation for LR is that LR 
generates a linear decision boundary. Given the feature set extracted, the actual decision boundary is 
likely not linear which may limit the general overall performance of LR. Additionally, the level of 
improvements from using the synthetic -60dB fill were greater in System B. This may also be due to the 
fact that System B included a greater amount of unused spectrum than System A making the synthetic fill 
more impactful across the samples in System B. 



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14 

 
Figure 7 - System A Results 

Table 2 - System A Accuracy 
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Figure 8 - System B Results 

Table 3 - System B Accuracy 
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Table 4 - Number of features by data set, PCA = 99 
System Fill Extracted 

Features 

A None 251 

B None 258 

A 60db 172 

B 60db 152 

 

11. Summary 
This paper evaluated the use of several M/L algorithms for the case of categorization of full band spectral 
data from DOCSIS systems to categorize ‘impaired’ spectrum from spectrum which is not impaired. The 
M/L algorithms evaluated are supervisory based algorithms where labeling for training and testing was 
provided using traditional RF signal processing approaches. Data sets were generated from field FBS 
captures from 2 different CMTS with different configurations and network characteristics. The results of 
applying the M/L algorithms to the data show that the use of M/L algorithms provided significant gain in 
identifying impaired spectrum from non-impaired spectrum according to the labeling system used. In 
addition, using a spectral fill algorithm consisting of a simple constant value for unused spectrum 
improved the categorization accuracy by over 4% with the Adaboost algorithm and nearly 2% with the 
ResNet algorithm in one case. In general, neural network based algorithms tended to provide the best 
overall prediction accuracy. The system with the least unused spectrum exhibited the best performance 
while using the synthetic -60dB fill provided a greater performance improvement for the system with the 
greater amount of unused spectrum. 

 

12. Implementing A Closed Loop Approach to Managing Spectrum 
This paper has analyzed the potential for using full band spectrum capture data for the identification of 
potential impairments in a DOCSIS plant. As with any machine learning exercise, many steps of data 
processing and cleansing are needed prior to actual training and testing of the algorithms. Moreover, 
feature extraction and training of models are both time and resource consuming processes. Fortunately, 
once a model is trained, using the model to classify actual samples is a much quicker process. 

Figure 9 depicts the various processes necessary in a closed loop system.   Given a set of CMTS’ 
managing a DOCSIS network, a Data Extractor must periodically extract the full-band spectrum data 
from the devices in the network. This can be a periodic task performing a PNM FSB test on each device 
once per day, preferably during early morning low utilization times, storing the results in a database. The 
classification and clustering system extracts data on a daily process to classify each device to be 
potentially problematic or good. Additional clustering may also be employed using meta data from the 
captures such as service group identifiers. This would allow grouping devices with common network 
topology to help localize issues within the network distribution system. The classification system 
generates a report indicating devices that may be problematic and any indications of potential network 
trouble spots. Finally, Model Training may be performed periodically using updated data collected and 
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placed in the database. Updating models may be necessary in the event of network changes. As new 
training takes place, model evaluation should be done from the prior model to the new model to obtain 
some indication on the dynamics governing the value of re-training the network. 

 

 
Figure 9 - Closed loop implementation using ML 

13. Appendix 
Note on Accuracy and Confusion Matrix Definitions A typical confusion matrix is show in Figure 10. . 

 
Figure 10 - Confusion Matrix 

 

In this paper, samples for spectrum are labeled 0 for ‘good’ spectrum and labeled 1 for ‘impaired 
spectrum. The confusion matrix is given in this example as Good samples (0) or Impaired samples (1). 

The definitions used in this paper are as follows: 

Accuracy = (T0 + T1) / (T0 + F0 + T1 + F1). Accuracy is the total number of correct 
classifications over the entire set of tested samples. 

Precision = T1 / (T1 + F1). Precision is useful to describe the relevancy of the ‘impaired’ samples 
resulting from the testing predictions. For example, if all samples classified as ‘impaired’ by the 
algorithm are actually labeled ‘impaired’ the Precision value would be 100%. If 25% of those classified 
as ‘impaired’ by the algorithm were ‘good’ samples mistakenly classified as ‘impaired’, the accuracy 
would be 75%. 
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Recall = T1 / (T1 + F0). Recall is useful to describe the completeness of the classified set as 
determined from the algorithm.   If the results classified as ‘impaired’ included every ‘impaired’ sample 
in the actual data set, the Recall would be 100%. If 25% of the actual ‘impaired’ samples were classified 
as ‘good’ they would not appear in the ‘impaired’ list. The resulting Recall in this case would be 75%. 

Note that 100% Precision does not imply 100% Recall or vice-versa. 

14. Accuracy and Confusion Matrix data 
The following tables provide the confusion matrix details for each of the trials. In the following tables, the 
Precision and Recall numbers are provided in reference to ‘impaired’ classifications. The of the table 
values are prefixed by the algorithm, e.g., LRT0 is the True 0 value for the Logistic Regression, ABF0 is 
the False 0 for the AdaBoost algorithm, and MLPT1 is the True 1 value for the MLP algorithm. 
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Abbreviations 
 

DB Database 
CM Cable modem 
CMTS Cable modem termination system 
CNN Convolutional neural network 
CPE Consumer premise equipment 
dBmv Decibels relative to 1 millivolt 
DOCSIS Data over cable system interface specification 
DSSA Down stream spectrum analysis 
FBS Full band spectrum 
FTP File transfer protocol 
LR Linear regression 
MHz Megahertz 
ML Machine learning 
MLP Multi-layer Perceptron 
OFDM Orthogonal Frequency Division Multiplexing 
PCA Principle Component Analysis 
PNM Proactive Network Maintenance 
QAM Quadrature Amplitude Modulation 
RF Radio frequency 
SCQAM Single channel QAM 
SNMP Simple Network Management Protocol 
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