

ATLANTA, GA OCTOBER 11-14



# UNLEASHTHE POWER OF IMITLESS CONNECTIVITY





### **Security & Privacy**

# Enabling Encryption and Algorithm Revocation in Multi-Key Certificates

#### Massimiliano Pala

PKI Architectures Team, Director CableLabs









### Outline

- Multi-Key Certificates
  - Composite Crypto Limitations
  - Two Separate Data Structures
- Encryption Support
  - Composite Keys encryption
  - Combined Keys encryption
- Key Configuration Revocation
  - Key Configurations as OID sequences
  - Revocation Extensions
- Conclusions

#### **Multi-Key Certificates**







## **Uncertainty and Crypto APIs**

- When using multiple keys and error conditions are found, crypto libraries must have a clear indication of how to proceed
- Users and Crypto Libraries need indications about which algorithms are trusted and how to combine them together when signing and/or validating signatures

#### **Multi-Key Certificates And Error Conditions**





#### **Multi-Key Certificates And Time**







# We need a practical way to provide deterministic crypto library behavior



# An Incomplete Paradigm ?

- In its original formulation we did not provide clear semantics associated with Composite Crypto
- Crypto libraries must change their APIs to support new error cases and crypto-policies validations
- How to distribute these policies across millions of devices?
- Because of the lack of deterministic behavior, even encryption has been currently excluded from current multi-key certificate scope



# **Composite & Combined Cryptography**

- Instead of providing complex policies and associated data structures, we introduce a new type of multi-key public keys
- Same structure as Composite Crypto (different OID)
- The new structures for Keys and Signatures are referred to as Combined Crypto (i.e., Combined Keys and Combined Signatures)
- While Composite Crypto is used to implement the "OR" logic function among the components, the Combined Crypto is used to implement the "AND" logic function



# **Composite Crypto**

- When Signing, all Keys must be used to generate <u>independently</u> verifiable signatures
- When Validating a Composite Crypto signature, <u>ANY</u> of the individual signatures can be used to validate the signed data (OR)

# **Combined Crypto**

- When Signing, ALL Keys that support signing must be used to generate (<u>NESTED</u> signatures?).
- When Validating a Combined Crypto signature, <u>ALL</u> the individual signature must be correctly validated (AND)

### Multi-Key Certificates Signing







### Not-Nested Signing with Combined Crypto

DATA TO BE SIGNED

(Certificate, CRL, OCSP Response, Generic Document, etc.)

**Combined Signature** 

SignatureInfoRSA(data)

SignatureInfoECDSA (data|SignatureInfoRSA's value) Each Signature protects the **data** only, thus allowing for parallel signatures





### **Nested Signing with Combined Crypto**



[\*] prevents stripping when keys are not in a X.509 structure)  $_{14}$ 



# **Enabling Encryption**

- The use of Composite and Combined data structures also solves the ambiguity related to encryption and decryption
- We leverage the "OR" and "AND" logical operation to provide crypto libraries with deterministic behavior also for the Encryption processes
- A **Composite Key** is enabled for encryption if at least one of the components algorithms supports encryption.
- A **Combined Key** is enabled for encryption if all the components' algorithms support encryption.



# **Composite Crypto**

- When Encrypting for a Composite Key, the encryption is performed with all the public keys <u>SEPARATELY</u>
- When **Decrypting** with a Composite Key, the decryption can be performed with <u>ANY</u> of the private keys related to the single public key components (OR)

# **Combined Crypto**

- When **Encrypting**, for a Combined Key, the encryption is performed by using all the public keys <u>TOGETHER</u>
- When Decrypting with a Combined Key, the decryption must be performed using <u>ALL</u> the private keys components of the combined key (AND)



## **Encrypting with Composite Crypto**





### **Nested Encrypting with Combined Crypto**





Each subsequent Key in the Combined Key structure is used to encrypt the previous layer of protection in an "onion-like" encapsulation scheme



SCTE







# **Surviving Algorithms' Failures**

- When using multiple algorithms inside Keys, Signatures, and Encrypted Data, some of these algorithms might face total failures (like for the RSA problem and the quantum-computing threat)
- A mechanism is needed to provide the relying parties that are validating multi-key signatures (but this applies also to single-key certificates) with the indication of which algorithms (or which algorithm combinations) are considered not valid anymore (within the CA)
- The Revocation System can be leveraged to deliver such information safely and when needed – i.e., during certificate validation and from a trusted entity (the Issuing CA)

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org

### **Algorithm Revocation**







## Matching Keys via Tree Searches

Combined Key OID + Composite Key OID + Falcon OID

We can address individual key configurations by using sequences of OIDs that crypto libraries can use to walk the key structure up to the specific key component.



© 2021 SCTE<sup>®</sup>, CableLabs & NCTA. All rights reserved. | expo.scte.org



### Conclusions

- Composite and Combined Crypto provide a complete definition of data structures and associated processing rules by implementing the "AND" and "OR" logic operations
- Different key configurations can be used in certificates to manage algorithm agility and algorithm failures over time.
- The structure of the public key provides clear authentication, validation, encryption, and decryption processing rules for crypto libraries
- CRLs and OCSP responses are used to carry sequences of OIDs (and validity periods) for individual key configuration revocation



ATLANTA, GA OCTOBER 11-14

# Thank You!

#### **Massimiliano** Pala

PKI Architectures Team, Director CableLabs SCTE.

a subsidiary of CableLabs

m.pala@cablelabs.com

