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1. Introduction 
The cryptography world is going through a revolution. As new computation paradigms emerge and 
rapidly advance, like quantum computing (QC), the broadband industry needs to start planning how it 
will address the new security threats that are on the horizon.  

Most of the public key cryptosystems like RSA [Rsa16] or ECDSA [Ec05] will not be considered secure 
when (and if) a large quantum supercomputer is ever built. For the broadband industry this means that, 
because of the dependency on X.509 [X509] certificates and the RSA algorithm, to provide devices with 
secure and verifiable identities, the protocols that are used today, e.g. DOCSIS® protocols [Doc31; 
Doc40], will need to support new algorithms and identities. In fact, network elements like cable modems 
or Remote PHY (R-PHY) nodes [RPhy18] use, today, their RSA private key and associated certificates 
chain to prove they are a legitimate and registered entity on the network. To continue to benefit from 
the security and usability advantages of public-key cryptography (PKC), the broadband industry must 
provide a mechanism for transitioning to quantum-resistant solutions in a cost-effective manner. 
Although our previous results on Composite Crypto (or Hybrid certificates) provided a promising path 
forward for the deployment of multiple keys associated with a single identity, our work still left some 
important questions. For example, an area that was still left to be explored was how to handle complex 
crypto policies for algorithm validation and deprecation. Because of these limitations, encryption was 
also left out of scope. 

This paper describes our new results in multi-key environments that address the open issues from our 
previous work and update its technical details [Pala04]. Specifically, in this work we extend the initial 
proposal and introduce the explicit separation of “AND” and “OR” logic operations across the multi-key 
signature components. Additionally, our work enables encryption for multi-key certificates (e.g., for 
S/MIME or document multi-signing purposes) that was, up to now, still an open problem. Together with 
these important results, this paper also describes our proposal for algorithm revocation and how we 
leverage the details of X.509 certificates’ public key structures together with extensions in CRLs and/or 
OCSP responses to provide a dynamic, centrally managed, and easy to deploy algorithm revocation 
mechanism. 

The rest of the paper is organized as follows: Section 2 provides an overview of the current landscape of 
Post-Quantum (PQ) cryptography and how it addresses the quantum threat. Section 3 describes the 
composite crypto solution and highlights current limitations of multi-key certificates when it comes to 
validations or encryption; Section 4 describes the new results that stem from the introduction of 
Combined Crypto alongside Composite Crypto; Section 5 provides the details on our algorithm 
revocation mechanism. Section 6 addresses the multi-key encryption conundrum and, finally, Section 7 
provides our conclusions and envisioned future work. 
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2. The Post-Quantum Cryptography Landscape 
Although the standardization process that is currently undergoing at NIST has not yet completed, there 
are interesting trends and practical long-term considerations for PQ algorithms deployment within the 
broadband industry that we can already highlight. 

In order to understand how the new algorithms address quantum resistance, it is important to look at 
the principles behind solving the Hidden Subgroup Problem (or HSP) and how quantum computers can 
leverage superposition, entanglement, and interference to efficiently solve HSP for relevant domains. 

2.1. The Hidden Subgroup Problem (HSP) and Factoring Keys 
When it comes to the link between “classic” cryptography, like RSA or ECDSA, and quantum-based 
factorization algorithms, such as the one proposed by Schorr, it is not always easy to understand how 
periodicity comes into play and how post-quantum algorithms address quantum-resistance. 

In this section we provide a qualitative explanation of HSP for the classic and post-quantum use-cases by 
introducing group theory concepts and their intersection with cryptography. 

2.1.1. Groups, Cosets, and H-Periodic functions 
With the use of modular arithmetic, a cornerstone in modern cryptography, we introduce, de facto, 
periodicity in the form of cyclic groups. These mathematical constructs consist of a set (e.g., “integers 
mod N”) and a binary operation that takes two inputs and generates outputs in the same set: 

𝐺𝐺 × 𝐺𝐺
                 
�⎯⎯⎯⎯� 𝐺𝐺 

A group is characterized by three fundamental properties: (a) associativity, (b) a neutral element, and (c) 
all elements in the group have an inverse. Commutativity is not a core characteristic of a group and this, 
specifically, is a key differentiator when looking at quantum-resistance as explained in the rest of this 
section. A commutative group is also called an Abelian group. 

When it comes to group theory, there are two definitions that must be well understood: subgroups and 
cosets. A subgroup H of a group G is defined as a group that still satisfies the group properties and is 
generated by one or more elements of the group (e.g., “h”). A coset is a similar concept to a subgroup in 
the sense that it can be seen as “translated” subgroups with respect to an element of the group G. For 
example, given a subgroup H generated by two elements (h1 and h2) and a third element “x” in the 
group G, the “coset of H with representative x (element of G)” is generated by applying all the 
permutations starting from the element “x” instead of starting from the neutral element. 

The definition of H-periodic functions is strictly connected to the definition of cosets. When a function 
maps the values of a group to a set, it is said to be H-periodic (H is a subgroup) if, for all cosets xH, the 
value of the function is the same on all the elements in xH and differs on all elements of the other 
cosets. 

2.1.2. The Hidden Subgroup problem and classic cryptography 
The solution to HSP over specific groups can lead to breaking classic and post-quantum cryptography by 
leveraging the ability of a quantum computer to efficiently find the period of the underlying H-periodic 
function. 
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An example of this approach is explained in the famous Schor’s paper from 1997 [Shor97]. In his work, 
Shor teaches us how to use quantum computers to efficiently implement the period finding function 
which is at the core of the factorization problem. In the case of “classic” algorithms, like the RSA or 
ECDSA, the underlying groups are commutative and, therefore, easier to deal with. For example, the 
group definition for the RSA case is GRSA= (ℤ𝑁𝑁, +), while GECDSA= (ℤ𝑁𝑁 x ℤ𝑁𝑁, +) provides the definition for 
the ECDSA one. The commutative property of these groups allows us to use the Fourier analysis on 
Abelian groups by using the Quantum Fourier Transform operation. In the RSA case, for example, given 
access to the function 𝑓𝑓 that computes exponentiation modulo 𝑛𝑛, the factorization problem can be 
reformulated as finding a generator of the subgroup 𝐻𝐻 = 𝜑𝜑(𝑛𝑛)ℤ ∈ ℤ , where 𝜑𝜑(𝑛𝑛) is the group order 
and ℤ/𝑛𝑛ℤ is the set of integers modulo n. We can then use the function 𝑓𝑓 as the oracle function for the 
subgroup H as: 

𝑓𝑓: ℤ → ℤ/𝑛𝑛ℤ ∶ 𝑥𝑥 ↦ 𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 

Once the generator 𝜑𝜑(𝑛𝑛) is found through repeated sampling, computing the factorization of 𝑛𝑛 can be 
accomplished by using the greatest common divisor (GCD) technique to find the non-trivial factors from 
the measurements.  

2.1.3. The Dihedral Hidden Subgroup problem and Lattices 
An interesting group that is relevant for post-quantum cryptography is the symmetry group. This group 
is defined as the set of all the possible elements permutations 𝜋𝜋 (i.e., N-1 rotations, N reflections, and 
the neutral element) together with the functional composition operation. The neutral element is, in this 
case, the permutation that maps everything to itself, i.e., the identity element.  

When looking at post-quantum algorithms and their relationship with HSP, we need to start from 
Regev’s 2002 work on HSP. In his paper on Quantum Computation and Lattice Problems [Reg02], Regev 
shows how a solution to the Unique Shortest Vector Problem (SVP) can be obtained under the 
assumption that an algorithm that solves the hidden subgroup problem on the dihedral group by coset 
sampling exists. Regev’s work demonstrates the equivalence between solving SVP on lattices and solving 
HSP on the dihedral group. The main difference with the classic use case is the fact that the group (i.e., 
domain and operation) for which a solution of the HSP is needed are non-commutative. As a reminder, 
the dihedral subgroup is a subset of all the permutations that are automorphisms (or symmetries) of the 
N-cycle (i.e., all the permutations that preserve the structure of the N-sided regular polygon) which 
include rotations and reflections. The Hidden Subgroup Problem for the dihedral subgroup can be 
defined as “given an H-periodic function, find H (or find the generators of H)”. 

Although also in the noncommutative subgroup problem the use of the Fourier analysis is at the center 
of efficient quantum-based solution, the difficulties of performing it on noncommutative groups makes 
the noncommutative version of the problem very challenging. Ettinger and Høyer [HeHø04] showed that 
efficiently solving the HSP for noncommutative groups is possible. More precisely, they show that it is 
possible to obtain sufficient statistical information about the hidden subgroup with a polynomial 
number of queries (similarly to the “classic” use case) … However, no known efficient algorithm exists 
that can leverage this information to find the generator for the subgroup. In their paper, Ettinger and 
Høyer state: 



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6 

“Our main result is that there exists a quantum algorithm that solves the dihedral 
subgroup problem using only a linear number of evaluations of the function which is 

given as input [...] However, we hasten to add that our algorithm does not run in 
polynomial time. […] the algorithm applies a certain quantum subroutine a linear 

number of times […]. We know how to find the subgroup from the data in exponential 
time, but we do not know if this task can be done efficiently.” 

The original algorithm from Kuperberg from 2003 to solve HSP on the dihedral group runs in sub-

exponential time 𝑂𝑂�(3�2log3 𝑁𝑁). Known improvements on these constructions are due to Regev [Reg04] 

and again Kuperberg [Kup13] where the total computation time is estimated to be 𝑂𝑂�(2�2log2 𝑁𝑁). Table 1 
provides the group details (i.e., domain and operation) and specific application of HSP for different 
groups and well-known applications. For example, solving the HSP for the group of the integer numbers 
domain (ℤ𝑁𝑁) with the addition (+) operation and (0) as the neutral element can be used in RSA 
factorization, while ECDSA and El-Algamal algorithms can be broken by solving the HSP for the group 
identified by the ℤ𝑁𝑁 × ℤ𝑁𝑁 domain with the addition (+) operation. In this case, the operation is the 
component-wise addition, and the neutral element is the pair (0,0). 

 

Table 1 - List of Hidden Subgroup Problem definition and their applications 

HSP Group Operation Application 

{0,1}n XOR Simon’s Algorithm 

ℤ N + 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 Period Finding Function 

ℤN + Shor’s Factoring Algorithm (RSA) 

ℤ𝑁𝑁 x ℤ𝑁𝑁 + Shor’s Discrete Logs (ECDSA, El Algamal) 

“Dihedral Group” Composition of Symmetries 
(rotations, reflections) Approximate SVP (and CVP) 

2.2. Quantum-Resistant Cryptograpy 
As we have seen, lattice-based cryptography does not come, so far, with efficient algorithms, quantum 
or classic, that can solve the underlying problem efficiently. That is why some of the most promising 
algorithms that are still present in the final round of the NIST competition are lattice-based. These 
mathematical objects are, in practice, regular collection of equally spaced vectors or points. In other 
words, lattices are regular arrays (or grids) of points that are generated by a combination of basis 
vectors. Lattice-based cryptography properties are rooted in the hardness of solving certain topological 
problems for which we do not have an efficient algorithm for, like finding the Shortest Vector Problem 
(SVP) or the Closest Vector Problem (CVP) given a specific basis for the lattice. Algorithms like Falcon 
[Fa17] or Dilithium-Crystals [Di17] fall in this category and produce the smallest authentication traces 
overall (i.e., signatures range from 700 bytes to 3300 bytes). 

Another class of algorithms to keep an eye on is the Isogenies-based ones. These algorithms use a 
different structure than lattices and have been proposed for key-exchange algorithms, namely Key 
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Encapsulation Mechanisms or KEMs. Specifically, isogeny-based cryptography combines morphisms (or 
isogenies) among elliptic curves to provide Perfect Forward Secrecy (PFS) properties. Although Isogeny-
based cryptography is computationally very heavy, it uses the shortest keys in the post-quantum 
algorithm landscape. SIKE is an example of such a class of algorithms. 

Together with these two classes of algorithms, there is another type of algorithm that should be kept in 
our minds as a possible alternative: hash-based signature schemes. These algorithms rely on very 
different security property and data structures that are not tractable via HSP. The main issue with 
stateless hash-based schemes is the size of signatures: the lack of structure in the data comes at the 
expense of very large cryptographic signatures (although public keys are extremely small). Although the 
size of signatures hinders, today, their adoption, the security of this class of algorithms is not affected by 
advancements in HSP solving for non-commutative groups. A well-known hash-based algorithm that will 
probably be re-included in the NIST standardization process because of its security properties is 
SPHINCS+ [Sp15]. 

3. Multi-Keys Trust Environments 
X.509 certificates have, so far, been used to link one public key to a single identity. This is true for Trust 
Anchors (or TAs), Intermediate CAs (or ICAs), and End-Entities (or EE). However, because the encoding of 
public key data structures inside certificates depends solely on the specific OID used to identify them, 
the inner BIT STRING that encodes the key value can be re-engineered to accommodate for any data 
structure. In our original work that was presented at SCTE Tech Expo 2020, we used the algorithm agility 
feature built in into X.509 certificates and defined a new OID to identify a key structure which 
implements a SEQUENCE of SubjectPublicKeyInfo structures. Each of the structures in the Composite Key 
encodes a specific public key which encompass the algorithm identifier together with parameters and 
the key value. 

Practically, when a compositeSignatures schema is used to encode multiple signatures at once, the 
value for the algorithm identifier associated with the signature is defined as follows:  

compositeSignatures OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) 
               dod(6) internet(1) private(4) enterprise(1) OpenCA(18227) 11 } 

The compositeSignatures identifier is used to identify the type of signature, and the corresponding 
value, encoded in the signatureValue field, contains multiple signatures and associated parameters. 
Each of these individual SignatureInfo entries carry the information about one of the signatures 
applied to the certificate in the same order the corresponding public keys appear in the multi-key 
issuer’s certificate. 

3.1. Current Limitations 
When we first drafted the public release of Composite Crypto, there were still few unresolved issues 
that were associated with the use of multiple keys in a single certificate. The main issues were related to 
(a) handling error conditions when only some of the signatures are reported to be bad, (b) the 
complexity of enabling encryption in multi-key environments, and (c) how to handle ecosystem-wide 
algorithm revocation.  
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At the time of publication, specifically, some argued that, although using multiple keys of different type 
is a valuable feature (not only when it comes to backward compatibility or future-looking deployments), 
the complications introduced from the use of multiple keys to validate a single object required the 
deployment of some complex validation policy and additional infrastructure elements. At the same time, 
a second argument against the standardization of multi-key certificates was related to the impracticality 
of modifying current crypto libraries to accommodate for new types of error conditions and API 
changes. A final argument against our idea was based on the difficulty of guaranteeing the correct 
distribution of validation policies across entire ecosystems, like the broadband one, without the need for 
deploying additional infrastructure elements. 

 

 
Figure 1 - Example of new error paths introduced with the use of multiple keys 

Figure 1 sketches an explanatory error scenario where a composite signature, in this case on a 
certificate, has only one valid signature component. In our original work, the decision about the overall 
validity of the signature was left to the crypto library. This ambiguity posed a serious issue for 
consistency in how applications deal with these new mixed error states. In some scenarios, you want the 
possibility for the components of a composite signature to be “alternatives” so that a relying party can 
use the keys they prefer and/or understand (any of the signatures are equivalent). In other situations, 
instead, you want the possibility to report the signature to be valid only if all the components of 
signatures verify correctly. In other words, by providing an underspecified behavior, we inadvertently 
introduced, from an ecosystem perspective, the possibility for unpredictable results. 

A problem that did not have a solution until now. 

Another aspect that must be considered for signature validation is the level of trust in the algorithm 
throughout time. In the above example, let’s imagine that two out of three components of the signature 
are reported to be erroneous. Let’s also imaging that at time t0, the use of ECDSA alone provides enough 
security for the identified application and ecosystem. Let’s now move the clock 3 years forward at a time 
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t1 = t0 + 3 years. Is the signature still to be considered valid? Without additional indications from a 
trusted source, applications and users are faced with an impossible task that cannot be easily resolved. 

The next section explains how we solved the identified problems by introducing a second data structure 
that explicitly defines the relationship across the different key and signature components.  

4. Composite Crypto vs. Combined Crypto 
As described in the previous section, the fact that there were no clear semantics associated with the 
Composite Crypto was the source of the issues we were facing. This was reflected by the need of 
requiring crypto libraries to change their current APIs to support different validation policies. Because 
this might not be practical and might hinder adoption, we defined an alternative mechanism to drive the 
deterministic behavior when validating multi-key signatures. The core of our solution turned out to be 
extremely simple: defining, on top of the current ones, a new set of algorithm identifiers for keys and 
signatures that we call Combined Crypto.  

With the introduction of these new OIDs (one for subjectPublicKeyInfo identifiers and one for 
Signature identifiers), we now have the possibility to explicitly define, via OIDs, the logic operations 
that crypto libraries must apply when validating the multi-key signatures.  

When the Composite Crypto identifiers (also referred to as compositeOr) are used, the relationship 
across the different signatures is a logical “OR”. This means that the crypto library can use ANY of the 
signature components to determine the validity of the entire signature. A simple deterministic algorithm 
can be defined that goes through the list of signatures and stops at the first correctly validated one. If no 
signatures are correctly validated (i.e., because the values are corrupted or because the entity does not 
support the specific algorithm), the overall signature is not valid. 

When the Combined Crypto identifiers are used instead, the relationship across the different signatures 
is a logical “AND”. This means that the crypto library must, in this case, positively verify ALL the 
signature components before being able to declare the whole signature valid. Also in this case, a simple 
deterministic algorithm can go through the list of signatures and stop at the first incorrectly validated 
one. If even one signature is not correctly validated (e.g., because of erroneous calculations or 
unsupported algorithm), the overall signature is not valid.  



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10 

4.1. Advanced Key Structures 

Figure 2 provides a tree representation of a key structure where the use of the “AND” and “OR” logical 
functions are leveraged. In the provided example, the represented key structure mandates for the use of 
an RSA component in the Combined Key container together with one of the two components from the 
Composite Key one. In fact, as previously discussed, when validating the components of a Combined key 
(as in this example), all of them must be validated correctly and that requires both the RSA and the 
Composite Key signatures to be valid. Back to the specific example, this translated to the need for the 
RSA signature to be valid together with, at least, one of the components in the Composite Key, i.e., the 
Dilithium or the Falcon signatures. 

By following the described approach, CAs and PAs can design their certificate profiles with specific key 
structures for their certificates with deterministic behavior. For example, PKI architects can now decide 
to use a classic algorithm as the first element in a Composite Key to maximize backward compatibility. 
Another optimization strategy could be to maximize efficiency by using the fastest algorithm, from a 
validation standpoint, as the first element in composite keys, while using other FIPS and/or non-FIPS 
algorithms in combined keys to enforce the use of both types of cryptography together (i.e., classic and 
post-quantum). 

Composite Key OID 

Dilithium OID 

Dilithium Public Key 

Combined Key OID 

rsaEncrypt OID 

RSA Public Key 

Falcon OID 

Falcon Public Key 

Combined OID 

rsaEncrypt OID 

Composite OID 

Dilithium OID 

Falcon OID 

Figure 2 - Tree Representation of a Multi-Key Public Key Info structure 
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4.2. A Deterministic Algorithm for Multi-Key Signature Validations 
When using multi-key certificates, the subjectPublicKeyInfo structure of the certificate can have 
two different types of OIDs. The first type of OIDs is a container OID (i.e., the Composite or Combined 
ones) while the second type is a “real” algorithm OID such as, for example, rsaEncryption. Equation 1 
provides a deterministic algorithm for validating multi-key signatures in pseudo programming language.  

For each of the nested components in combined signatures we evaluate it. We stop the validation 
process as soon as one component does not verify correctly. In this case the full combined key is invalid. 
On the other hand, if all components of the combined signature verify correctly, the combined key is 
considered valid.  

For each of the nested components in composite signatures, we also evaluate it. However, differently 
from the combined key container, in this case we consider the composite key valid if at least one of the 
components is valid. The algorithm goes through the list of components and considers the composite 
key valid as soon as one component validates correctly. Conversely, the composite key is invalid if all the 
components (and not just one as in the combined key case) do not validate correctly.  

FUNCTION: Validate Signature Component 

--------------------------------------------------------------------- 

If Signature OID is Combined: 

    For Each Component in Combined: 
        If Signature Component is Combined: 
            ERROR: Recursion 
        End If 

        If Validate Signature Component is NOT Valid  
            Return False 
        End If 

    End For 
    Return True 

Else 

    If Signature OID is Composite: 

        For Each Component in Composite: 
            If Signature OID is Composite: 
                ERROR: Recursion 
            End If 

            If Validate Signature Component is Valid 
                Return True 
            End If 

        End For 
        Return False 

    Else 

        If Validate Signature Component is Valid 
            Return True 
        Else 
            Return False 
        End If 

    End If 

  
Equation 1 - Multi-Key Signature Validation Algorithm 
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5. Algorithm Revocation Via CRLs and OCSP Responses 
With the possibility of algorithms being completely compromised overnight by quantum computers, PKIs 
are faced with a new problem: distrusting certificates that use a specific public key algorithm. 
Independently from the use of multi-key or single-key certificates, the inability, today, to provide such a 
mass-revocation tool can hinder our ability to effectively revoke the use of an algorithm. 

We are missing, today, an important tool in PKIs that is relevant for Post-Quantum algorithms 
deployment efforts, and that is Algorithm Revocation. 

We can easily see the impact of the lack of such tool with the latest example of algorithm deprecation 
that required a long time to complete (SHA-1). Specifically, when looking at the evolution of the 
deprecation process, we notice how it has happened very slowly and its resolution used ad-hoc criteria 
and deployment strategies instead of delivering formal ways to revoke its use across entire ecosystems. 
As a result, Certification Authorities, although they are there to guide the ecosystem and have the 
authority to revoke identities as needed, they still lack practical tools and options to enforce algorithm 
deprecation. 

5.1. Policy Authorities as Sources of Trust 
Since we introduced the concept of algorithm revocation in conjunction with multi-key environments, 
some critiques have been directed at the chosen trust model arguing that an external authority should 
be the one to provide algorithm deprecation information. Because this is an important governance 
principle, we want to provide additional considerations that can help understanding the principles we 
rely on when extending existing revocation mechanisms. 

The trust model that is usually assumed in PKIs mandates for CAs to keep all participants in the 
ecosystem behaving according to a common policy. Therefore, CAs are already entities with a clear 
mandate to protect the integrity of the ecosystem by following verifiable procedures - this includes the 
possibility to revoke certificates. CAs are, therefore, the entities that, in accordance to defined policies, 
should provide indications about which type of keys should not be trusted throughout the PKI lifecycle. 

In a trust infrastructure, besides the set of CAs that provide their services to the community, it is 
common practice to deploy a Policy Authority that is responsible for the ecosystem Certificate Policy 
(CP). When available, the content of the policy document is used to align CAs requirements across the 
whole ecosystem. In the DOCSIS PKI, the Policy Authority is operated by CableLabs on behalf of the 
entire ecosystem and is appointed with the task of making sure that the whole PKI is secure. As this 
governance model has been successfully exported to other ecosystems of interest for the broadband 
industry, our work can be extended and adopted in other device-centric ecosystems where a common 
trust infrastructure enables interesting and effective crypto-migration strategies (e.g., Wi-Fi 
Alliance/Passport 2.0, CBRS-A, etc.) 
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5.2. Algorithm Revocation vs. Certificate Revocation 
When considering revocation and its practical impact over the ecosystem, an important consideration to 
make is related to the scalability of algorithm revocation vs. certificate revocation. Today, when a crypto 
algorithm needs to be replaced because of possible security risks or compromises, CAs must revoke 
every single affected certificate to make sure that the faulty algorithm is not used anymore.  

Even when the higher levels of the PKI are protected with quantum safe algorithms (i.e., Root and 
Intermediate CAs), the option of using traditional revocation mechanism, i.e., via serial numbers, comes 
with very high costs related to adding many certificates to the revoked lists – both CRLs and OCSP 
servers are negatively impacted by these massive revocation events and can easily collapse under this 
added load (e.g., in the DOCSIS PKI the number of active certificates to revoke can be in the hundreds of 
millions). Conversely, the revocation mechanism described in this invention provides a very efficient way 
to mass-revoke certificates when and if needed. The mechanism is lightweight both on the Certificate 
Service Providers (or CSPs) when creating and distributing this information, and on the client when 
validating certificate chains and signatures. The rest of this Section provides a detailed description of the 
data structures, procedures, and extensions we defined to enable algorithm revocation. 

5.3. Algorithm Revocation and Multi-Key Environments 
The lack of standardized secure mechanisms to provide algorithm revocation is not a new problem. 
However, with the introduction of multiple keys within a single certificate, the problem of algorithm 
revocation becomes more evident.  

In our work we focus on revocation of key structures, rather than a simply focusing on algorithms, to 
provide the possibility to better manage algorithm trust. For example, there might be the need to 
revoke a specific key configuration across the whole set of issued certificates (i.e., a specific algorithm or 
a specific algorithm hierarchy) without having to completely revoke its use in other cases. To address all 
these use cases, our work allows the ecosystem administrators to revoke, for example, the use of RSA as 
a primary key type in certificates or within Composite Key containers, but still allow the use of the RSA 
algorithm when used as a component of a Combined Keys (e.g., RSA + Post-Quantum Algorithm). 

An example of the complexity that raises with the introduction of multi-key certificates can be easily 
shown by looking at the evolution of algorithm deprecation over an extended period. Let’s imagine the 
case where a relying party correctly verifies the signatures on a specific document or certificate and let’s 
also imagine that this process is repeated over and over – while the validation results do not change, the 
trust in the algorithm itself can change. For example, one of the algorithms used in the PKI might be 
compromised or there might be a new requirement, during uncertainty, to prevent the use of classic 
and/or post-quantum algorithms by themselves (e.g., you must use a combined RSA and Falcon 
signature). 

The mechanism described in this work addresses all these cases. 

5.4. Key Configuration Revocation 
The key configuration revocation mechanism we introduce in this paper focuses on revoking specific key 
configurations via the use of key configuration revocation lists. To this purpose, we needed to provide a 
way to identify key configurations that must be distrusted. As discussed in Section 4.1, we can represent 
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key configurations as binary trees where the Composite and Combined nodes provide the bifurcations in 
the tree structure, while the individual components represent the end nodes (or leaves) of the tree. Few 
example configurations are provided in Figure 4. 

 

Figure 3 - Example Key Configurations for different types of primary algorithms. 

For each of the key configurations that the CA wants to deprecate or revoke (or is instructed to do so by 
the PA), the CA generates a sequence of OIDs that we refer to as the KeyConfigRevocationData. 
This list of algorithm OIDs is then embedded as the value of an extension in OCSP responses and CRLs 
that are issued from the CA (or the delegated signer). The value of the KeyConfigRevocationList 
extension is implemented as a SEQUENCE OF KeyConfigRevocationData. 

More specifically, each of these entries provides information about how to uniquely identify the specific 
key configuration (e.g., “(Start)  RSA” or “(Start)  CompositeCrypto  RSA”). Additionally, it is 
possible to specify an optional trust period for the algorithm in the form of doNotUseBeforeDate and 
doNotTrustAferDate fields.  

The KeyConfigRevocationList data structure and associated identifier(s) are defined as follows: 

keyConfigRevocationList-id OBJECT IDENTIFIER ::=  
         {iso(1) identified-organization(3) dod(6) internet(1) 
          private(4) enterprise(1) OpenCA(18227) 13 } 

KeyConfigId ::= 1..MAX OF OBJECT_IDENTIFIER 

KeyConfigRevocationData  ::=  SEQUENCE  { 
        keyConfig               KeyConfigId, 
            --- Identifier of the specific Key Configuration 
            --- identified by this data structure 
        doNotUseBeforeDate   [0]  GENERALIZED_TIME      OPTIONAL, 
            --- Time before which the key configuration 
            --- should not be used 
        doNotTrustAferDate   [1] GENERALIZED_TIME    OPTIONAL, 
            --- Timestamp after which the key configuration 
            --- identified by keyConfig should not be trusted 
            --- by the ecosystem clients anymore } 

KeyConfigRevocationList  ::= SEQUENCE (1..MAX) OF KeyConfigRevocationData 
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To deprecate a specific algorithm when validating certificates (e.g., RSA), the data structure of the key 
revocation extension (i.e., the keyConfigRevocationList) carries the specific algorithm identifier as 
the only value in the keyConfig field. This configuration would not prevent, however, the use of the 
identified algorithm inside Composite or Combined keys because the algorithm identifier’s list would be 
different. To deprecate both the use of an algorithm as a primary key in the certificate and as a 
component of Composite Keys (but leaving the possibility to leverage it in a Combined Key), the CA 
would generate two entries. The first one carries a sequence that comprises only a single identifier, e.g., 
the RSA algorithm identifier. This sequence deprecates the use of the algorithm as a primary key. The 
second one carries the sequence “Composite Crypto OID  RSA algorithm OID”. This sequence 
deprecates the use of the algorithm as a component of Composite Keys (i.e., using RSA inside Composite 
Crypto keys). 

5.5. Deprecating the use of multi-key certificates 
CAs might also need a mechanism to deprecate the use of Composite Crypto or Combined Crypto within 
the ecosystem for when, for example, a transitioning period is over, and infrastructures and devices 
have fully transitioned to the new algorithms. 

In this case, no additional mechanisms are required because the very same approach described in this 
paper can also be used to deprecate multi-key certificates: the CA generates a 
KeyConfigRevocationData entry where the keyConfigId carries only the Composite Crypto or the 
Combined Crypto object identifier(s) as needed. 

6. Solving the Multi-Key Encryption Conundrum 
Multi-key environments can provide interesting options to address encryption under today’s 
cryptographic uncertainties. For this discussion, we choose the use case that deals with encrypting a 
document for a specific recipient as the explanatory relevant use-case. Specifically, the open problem 
we are focusing on is how to determine which key or set of keys should be used to encrypt a document 
for a recipient in the presence of multiple certificates and algorithms.  

Similarly to the algorithm revocation case, linking multiple keys to the same identity is not a new 
problem and still we have no standardized solutions for it. In fact, there is no accepted procedure, 
today, to securely link together identities contained in different certificates that might even be issued 
from different CAs or different PKIs.  

6.1. Encryption, Certificates, and Multiple Algorithm Support 
To better explain the issues that crypto libraries and applications need to address when supporting 
multiple algorithms to encrypt data, let’s go back to our example and describe the process of encrypting 
a document that is to be shared with a single recipient. In our example, let’s assume that multiple 
algorithm support (e.g., RSA and Dilithium-Crystals) is required but only single-key certificates are 
deployed. This can happen, for example, when encrypting an e-mail for a recipient that might have 
multiple certificates, i.e., one with an RSA key and another with a Dilithium-Crystals one. For brevity and 
clarity, in the rest of the discussion we omit the description of the procedures for encrypting the data via 
a symmetric algorithm (not relevant for our discussion) and focus on the differences, when considering 
the encryption process, between single-key and multi-key certificates.  
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Before encrypting, applications must validate the revocation status of the recipient’s certificate by 
accessing the certificates’ revocation information (i.e., CRLs or OCSP responses) from the appropriate 
URL for all the certificates in the validation chain of the recipient. This is an essential step that prevents 
the leakage of the encrypted information for compromised certificates or keys. Without any indication 
of what the status of the algorithm (or key configuration) is or might be in the future, applications will 
happily encrypt the data for each of the certificates and possibly leak the encrypted content if one of the 
algorithms is broken. 

This simple example shows the two main issues that the industry faces under the current crypto 
uncertainty when single-key certificates are used: dealing with the inefficiency of using multiple 
certificates connected to a single identity (i.e., need to interact with multiple infrastructures/services for 
a single encryption/validation operation) and the inability of efficiently communicating how to leverage 
the security of multiple algorithms together (i.e., “AND” or “OR” operations).  

When looking at the first issue, multi-key certificates provide a distinct advantage: the need for less 
queries to the infrastructure. Specifically, because applications have to validate only one certificate 
chain per recipient, the number of requests to OCSP and CRL servers is greatly reduced. For example, in 
a three-tier infrastructure (i.e., Root CA, Intermediate CA, End-Entities) with three different algorithms 
deployed via single-key certificates, applications might need to perform up to six different OCSP or CRL 
queries and securely store 3 different Root CAs, while when multi-certificates are used, applications 
might need up to only 2 different queries and securely store a single Root CA. When looking at the 
second issue, the application that is performing the encryption is faced with the same uncertainty we 
noticed in the first formulation of our composite cryptography proposal (i.e., lack of deterministic 
behavior) because there is no possibility to dictate if the keys in the different certificates are equivalent 
or if they must be used together.  

Ultimately, this one-to-one paradigm (i.e., one key for one identity) is also reflected everywhere in X.509 
trust infrastructures where the assumption is that different certificates are associated with possibly 
different identities. Multi-key certificates solve the underlying conundrum by using a single identity, thus 
enabling the use of multiple algorithms across the board: from network functions to document signing. 

6.2. More Efficient Encryption Process with Multi-Key Certificates 
As described earlier, the ambiguity that was introduced with the initial proposal for multi-key 
certificates is completely resolved in this work by using explicit logic operations across keys and 
signatures that are completely defined by the specific OID used (Composite or Combined). Also in the 
encryption case, we leverage the separation of “OR” and “AND” logic operations to provide crypto 
libraries with deterministic encryption and decryption behavior. Table 2 provides a summary of the 
differences between Composite and Combined crypto when it comes to encryption options. Specifically, 
a Composite Key is enabled for encryption if at least one of the components algorithms supports 
encryption while a Combined Key is enabled for encryption if all the components' algorithms support 
encryption. 

Back to our example, by providing algorithm deprecation information together with certificate 
revocation information, the encryption process can be performed even more securely than we do today 
and increase flexibility by supporting forward-looking or backward-compatible key structures. Even 
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outside the multi-certificate use-case, the availability and use of key configuration deprecation enhances 
the security of the whole ecosystem and help to prevent possible data breaches.  

 

Table 2 - Encryption Operations for Composite and Combined Crypto 

Composite Crypto Combined Crypto 

When Encrypting for a Composite Key, the 
encryption is performed with all the public keys 
SEPARATELY 

When Encrypting for a Combined Key, the 
encryption is performed with all the keys in a 
COMBINED way 

When Decrypting with a Composite Key, the 
decryption can be performed with ANY of the 
private keys related to the single public key 
components (OR) 

When Decrypting with a Combined Key, the 
decryption must be performed with ALL the 
private keys related to the single Public Key 
components (AND) 

7. Conclusions and Future Work 
In this work we provide a description of the latest results when it comes to Composite Crypto and 
deployment of post-quantum algorithms. Specifically, we extend our original proposal to address the 
origin of the processing uncertainty that affected our original proposal: an incomplete design. 

By adding a new set of OIDs, we can now express what the relationship across signatures (or keys) 
should be, thus providing a deterministic validation and encryption process. This simple enhancement 
unlocks deterministic behavior for crypto libraries without the need for deploying complex validation 
policies as it was initially envisioned. In other words, with the discussed new additions to our 
framework, the key structure of multi-key certificates itself provides clear validation, encryption, and 
decryption processing rules for crypto libraries. 

On top of these important results, we identified CRLs and OCSP responses as the preferred mechanism 
to carry sequences of OIDs (and validity periods) to deprecate individual key configurations. This 
mechanism for algorithm revocation can be used in conjunction with both single key and multi key 
certificate environments. 

Ultimately, the considerations contained throughout the paper show that the use of multi-key 
certificates can lower the cost of multiple algorithm deployment and provide the possibility to better 
manage, at the ecosystem level, the risks related to cryptographic failures. As we continue to evolve 
tools and specifications for multi-key environments, we envision that their deployment might become a 
common mechanism for delivering dynamic crypto-agile ecosystems in the future and, at the same time, 
simplifying new algorithm deployments and support algorithm migrations processes.  

Abbreviations 
 

CA certification authority 
CBRS-A citizens broadband radio service alliance 
CRL certificate revocation list 
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CSP certificate service provider 
CVP closest vector problem 
DER Distinguished Encoding Rules 
DOCSIS Data Over Cable Service Interface Specifications 
DH Diffie-Hellman 
EC Elliptic-Curves 
ECDSA Elliptic-Curves Digital Signing Algorithm 
EE end entity 
FIPS Federal information processing standard 
HSP hidden subgroup problem 
ICA intermediate certification authority 
I-D internet draft 
IETF Internet Engineering Task Force Standards Organization 
KEM key encapsulation mechanism 
KEX key exchange (algorithm) 
NIST National Institute of Standards and Technologies 
PA Policy Authority 
PKC public-key cryptography 
PKI public-key infrastructure 
OCSP online certificate status protocol 
OID object identifier 
PFS perfect forward secrecy 
PQ Post quantum 
PQA post-quantum algorithm 
QC quantum computing 
R-PHY  Remote RF Layer (PHY) 
RSA Rivest-Shamir-Adleman (cryptosystem) 
SHA-1 Secure Hash Algorithm (160 bits) 
SCTE Society of Cable Telecommunications Engineers 
SVP Shortest vector problem 
TA trust anchor 
TLS Transport Layer Security 
SCTE Society of Cable Telecommunications Engineers 
S/MIME secure e-mail message format 
Wi-Fi wireless 
X.509 standard format for digital certificates 
XOR exclusive OR operator 
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