

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Enabling Encryption and Algorithm Revocation for
Post-Quantum DOCSIS Certificates

Novel Results in Multi-Key Trust Environments Deployments

A Technical Paper prepared for SCTE by

Dr. Massimiliano Pala

PKI Architectures Team, Director

Cable Television Laboratories, Inc.

858 Coal Creek Cir, Louisville, CO

603.369.9332

m.pala@cablelabs.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. The Post-Quantum Cryptography Landscape .. 4

2.1. The Hidden Subgroup Problem (HSP) and Factoring Keys .. 4
2.1.1. Groups, Cosets, and H-Periodic functions ... 4
2.1.2. The Hidden Subgroup problem and classic cryptography 4
2.1.3. The Dihedral Hidden Subgroup problem and Lattices ... 5

2.2. Quantum-Resistant Cryptograpy.. 6
3. Multi-Keys Trust Environments ... 7

3.1. Current Limitations ... 7
4. Composite Crypto vs. Combined Crypto ... 9

4.1. Advanced Key Structures ... 10
4.2. A Deterministic Algorithm for Multi-Key Signature Validations .. 11

5. Algorithm Revocation Via CRLs and OCSP Responses .. 12
5.1. Policy Authorities as Sources of Trust ... 12
5.2. Algorithm Revocation vs. Certificate Revocation ... 13
5.3. Algorithm Revocation and Multi-Key Environments ... 13
5.4. Key Configuration Revocation .. 13
5.5. Deprecating the use of multi-key certificates ... 15

6. Solving the Multi-Key Encryption Conundrum .. 15
6.1. Encryption, Certificates, and Multiple Algorithm Support ... 15
6.2. More Efficient Encryption Process with Multi-Key Certificates .. 16

7. Conclusions and Future Work ... 17

Abbreviations .. 17

Bibliography & References.. 18

List of Figures
Title Page Number
Figure 1 - Example of new error paths introduced with the use of multiple keys ... 8

Figure 2 - Tree Representation of a Multi-Key Public Key Info structure ... 10

Figure 3 - Example Key Configurations for different types of primary algorithms. 14

List of Tables
Title Page Number
Table 1 - List of Hidden Subgroup Problem definition and their applications ... 6

Table 2 - Encryption Operations for Composite and Combined Crypto ... 17

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

List of Equations
Title Page Number
Equation 1 - Multi-Key Signature Validation Algorithm ... 11

1. Introduction
The cryptography world is going through a revolution. As new computation paradigms emerge and
rapidly advance, like quantum computing (QC), the broadband industry needs to start planning how it
will address the new security threats that are on the horizon.

Most of the public key cryptosystems like RSA [Rsa16] or ECDSA [Ec05] will not be considered secure
when (and if) a large quantum supercomputer is ever built. For the broadband industry this means that,
because of the dependency on X.509 [X509] certificates and the RSA algorithm, to provide devices with
secure and verifiable identities, the protocols that are used today, e.g. DOCSIS® protocols [Doc31;
Doc40], will need to support new algorithms and identities. In fact, network elements like cable modems
or Remote PHY (R-PHY) nodes [RPhy18] use, today, their RSA private key and associated certificates
chain to prove they are a legitimate and registered entity on the network. To continue to benefit from
the security and usability advantages of public-key cryptography (PKC), the broadband industry must
provide a mechanism for transitioning to quantum-resistant solutions in a cost-effective manner.
Although our previous results on Composite Crypto (or Hybrid certificates) provided a promising path
forward for the deployment of multiple keys associated with a single identity, our work still left some
important questions. For example, an area that was still left to be explored was how to handle complex
crypto policies for algorithm validation and deprecation. Because of these limitations, encryption was
also left out of scope.

This paper describes our new results in multi-key environments that address the open issues from our
previous work and update its technical details [Pala04]. Specifically, in this work we extend the initial
proposal and introduce the explicit separation of “AND” and “OR” logic operations across the multi-key
signature components. Additionally, our work enables encryption for multi-key certificates (e.g., for
S/MIME or document multi-signing purposes) that was, up to now, still an open problem. Together with
these important results, this paper also describes our proposal for algorithm revocation and how we
leverage the details of X.509 certificates’ public key structures together with extensions in CRLs and/or
OCSP responses to provide a dynamic, centrally managed, and easy to deploy algorithm revocation
mechanism.

The rest of the paper is organized as follows: Section 2 provides an overview of the current landscape of
Post-Quantum (PQ) cryptography and how it addresses the quantum threat. Section 3 describes the
composite crypto solution and highlights current limitations of multi-key certificates when it comes to
validations or encryption; Section 4 describes the new results that stem from the introduction of
Combined Crypto alongside Composite Crypto; Section 5 provides the details on our algorithm
revocation mechanism. Section 6 addresses the multi-key encryption conundrum and, finally, Section 7
provides our conclusions and envisioned future work.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

2. The Post-Quantum Cryptography Landscape
Although the standardization process that is currently undergoing at NIST has not yet completed, there
are interesting trends and practical long-term considerations for PQ algorithms deployment within the
broadband industry that we can already highlight.

In order to understand how the new algorithms address quantum resistance, it is important to look at
the principles behind solving the Hidden Subgroup Problem (or HSP) and how quantum computers can
leverage superposition, entanglement, and interference to efficiently solve HSP for relevant domains.

2.1. The Hidden Subgroup Problem (HSP) and Factoring Keys
When it comes to the link between “classic” cryptography, like RSA or ECDSA, and quantum-based
factorization algorithms, such as the one proposed by Schorr, it is not always easy to understand how
periodicity comes into play and how post-quantum algorithms address quantum-resistance.

In this section we provide a qualitative explanation of HSP for the classic and post-quantum use-cases by
introducing group theory concepts and their intersection with cryptography.

2.1.1. Groups, Cosets, and H-Periodic functions
With the use of modular arithmetic, a cornerstone in modern cryptography, we introduce, de facto,
periodicity in the form of cyclic groups. These mathematical constructs consist of a set (e.g., “integers
mod N”) and a binary operation that takes two inputs and generates outputs in the same set:

𝐺𝐺 × 𝐺𝐺

�⎯⎯⎯⎯� 𝐺𝐺

A group is characterized by three fundamental properties: (a) associativity, (b) a neutral element, and (c)
all elements in the group have an inverse. Commutativity is not a core characteristic of a group and this,
specifically, is a key differentiator when looking at quantum-resistance as explained in the rest of this
section. A commutative group is also called an Abelian group.

When it comes to group theory, there are two definitions that must be well understood: subgroups and
cosets. A subgroup H of a group G is defined as a group that still satisfies the group properties and is
generated by one or more elements of the group (e.g., “h”). A coset is a similar concept to a subgroup in
the sense that it can be seen as “translated” subgroups with respect to an element of the group G. For
example, given a subgroup H generated by two elements (h1 and h2) and a third element “x” in the
group G, the “coset of H with representative x (element of G)” is generated by applying all the
permutations starting from the element “x” instead of starting from the neutral element.

The definition of H-periodic functions is strictly connected to the definition of cosets. When a function
maps the values of a group to a set, it is said to be H-periodic (H is a subgroup) if, for all cosets xH, the
value of the function is the same on all the elements in xH and differs on all elements of the other
cosets.

2.1.2. The Hidden Subgroup problem and classic cryptography
The solution to HSP over specific groups can lead to breaking classic and post-quantum cryptography by
leveraging the ability of a quantum computer to efficiently find the period of the underlying H-periodic
function.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

An example of this approach is explained in the famous Schor’s paper from 1997 [Shor97]. In his work,
Shor teaches us how to use quantum computers to efficiently implement the period finding function
which is at the core of the factorization problem. In the case of “classic” algorithms, like the RSA or
ECDSA, the underlying groups are commutative and, therefore, easier to deal with. For example, the
group definition for the RSA case is GRSA= (ℤ𝑁𝑁, +), while GECDSA= (ℤ𝑁𝑁 x ℤ𝑁𝑁, +) provides the definition for
the ECDSA one. The commutative property of these groups allows us to use the Fourier analysis on
Abelian groups by using the Quantum Fourier Transform operation. In the RSA case, for example, given
access to the function 𝑓𝑓 that computes exponentiation modulo 𝑛𝑛, the factorization problem can be
reformulated as finding a generator of the subgroup 𝐻𝐻 = 𝜑𝜑(𝑛𝑛)ℤ ∈ ℤ , where 𝜑𝜑(𝑛𝑛) is the group order
and ℤ/𝑛𝑛ℤ is the set of integers modulo n. We can then use the function 𝑓𝑓 as the oracle function for the
subgroup H as:

𝑓𝑓: ℤ → ℤ/𝑛𝑛ℤ ∶ 𝑥𝑥 ↦ 𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

Once the generator 𝜑𝜑(𝑛𝑛) is found through repeated sampling, computing the factorization of 𝑛𝑛 can be
accomplished by using the greatest common divisor (GCD) technique to find the non-trivial factors from
the measurements.

2.1.3. The Dihedral Hidden Subgroup problem and Lattices
An interesting group that is relevant for post-quantum cryptography is the symmetry group. This group
is defined as the set of all the possible elements permutations 𝜋𝜋 (i.e., N-1 rotations, N reflections, and
the neutral element) together with the functional composition operation. The neutral element is, in this
case, the permutation that maps everything to itself, i.e., the identity element.

When looking at post-quantum algorithms and their relationship with HSP, we need to start from
Regev’s 2002 work on HSP. In his paper on Quantum Computation and Lattice Problems [Reg02], Regev
shows how a solution to the Unique Shortest Vector Problem (SVP) can be obtained under the
assumption that an algorithm that solves the hidden subgroup problem on the dihedral group by coset
sampling exists. Regev’s work demonstrates the equivalence between solving SVP on lattices and solving
HSP on the dihedral group. The main difference with the classic use case is the fact that the group (i.e.,
domain and operation) for which a solution of the HSP is needed are non-commutative. As a reminder,
the dihedral subgroup is a subset of all the permutations that are automorphisms (or symmetries) of the
N-cycle (i.e., all the permutations that preserve the structure of the N-sided regular polygon) which
include rotations and reflections. The Hidden Subgroup Problem for the dihedral subgroup can be
defined as “given an H-periodic function, find H (or find the generators of H)”.

Although also in the noncommutative subgroup problem the use of the Fourier analysis is at the center
of efficient quantum-based solution, the difficulties of performing it on noncommutative groups makes
the noncommutative version of the problem very challenging. Ettinger and Høyer [HeHø04] showed that
efficiently solving the HSP for noncommutative groups is possible. More precisely, they show that it is
possible to obtain sufficient statistical information about the hidden subgroup with a polynomial
number of queries (similarly to the “classic” use case) … However, no known efficient algorithm exists
that can leverage this information to find the generator for the subgroup. In their paper, Ettinger and
Høyer state:

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

“Our main result is that there exists a quantum algorithm that solves the dihedral
subgroup problem using only a linear number of evaluations of the function which is

given as input [...] However, we hasten to add that our algorithm does not run in
polynomial time. […] the algorithm applies a certain quantum subroutine a linear

number of times […]. We know how to find the subgroup from the data in exponential
time, but we do not know if this task can be done efficiently.”

The original algorithm from Kuperberg from 2003 to solve HSP on the dihedral group runs in sub-

exponential time 𝑂𝑂�(3�2log3 𝑁𝑁). Known improvements on these constructions are due to Regev [Reg04]

and again Kuperberg [Kup13] where the total computation time is estimated to be 𝑂𝑂�(2�2log2 𝑁𝑁). Table 1
provides the group details (i.e., domain and operation) and specific application of HSP for different
groups and well-known applications. For example, solving the HSP for the group of the integer numbers
domain (ℤ𝑁𝑁) with the addition (+) operation and (0) as the neutral element can be used in RSA
factorization, while ECDSA and El-Algamal algorithms can be broken by solving the HSP for the group
identified by the ℤ𝑁𝑁 × ℤ𝑁𝑁 domain with the addition (+) operation. In this case, the operation is the
component-wise addition, and the neutral element is the pair (0,0).

Table 1 - List of Hidden Subgroup Problem definition and their applications

HSP Group Operation Application

{0,1}n XOR Simon’s Algorithm

ℤ N + 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 Period Finding Function

ℤN + Shor’s Factoring Algorithm (RSA)

ℤ𝑁𝑁 x ℤ𝑁𝑁 + Shor’s Discrete Logs (ECDSA, El Algamal)

“Dihedral Group” Composition of Symmetries
(rotations, reflections) Approximate SVP (and CVP)

2.2. Quantum-Resistant Cryptograpy
As we have seen, lattice-based cryptography does not come, so far, with efficient algorithms, quantum
or classic, that can solve the underlying problem efficiently. That is why some of the most promising
algorithms that are still present in the final round of the NIST competition are lattice-based. These
mathematical objects are, in practice, regular collection of equally spaced vectors or points. In other
words, lattices are regular arrays (or grids) of points that are generated by a combination of basis
vectors. Lattice-based cryptography properties are rooted in the hardness of solving certain topological
problems for which we do not have an efficient algorithm for, like finding the Shortest Vector Problem
(SVP) or the Closest Vector Problem (CVP) given a specific basis for the lattice. Algorithms like Falcon
[Fa17] or Dilithium-Crystals [Di17] fall in this category and produce the smallest authentication traces
overall (i.e., signatures range from 700 bytes to 3300 bytes).

Another class of algorithms to keep an eye on is the Isogenies-based ones. These algorithms use a
different structure than lattices and have been proposed for key-exchange algorithms, namely Key

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

Encapsulation Mechanisms or KEMs. Specifically, isogeny-based cryptography combines morphisms (or
isogenies) among elliptic curves to provide Perfect Forward Secrecy (PFS) properties. Although Isogeny-
based cryptography is computationally very heavy, it uses the shortest keys in the post-quantum
algorithm landscape. SIKE is an example of such a class of algorithms.

Together with these two classes of algorithms, there is another type of algorithm that should be kept in
our minds as a possible alternative: hash-based signature schemes. These algorithms rely on very
different security property and data structures that are not tractable via HSP. The main issue with
stateless hash-based schemes is the size of signatures: the lack of structure in the data comes at the
expense of very large cryptographic signatures (although public keys are extremely small). Although the
size of signatures hinders, today, their adoption, the security of this class of algorithms is not affected by
advancements in HSP solving for non-commutative groups. A well-known hash-based algorithm that will
probably be re-included in the NIST standardization process because of its security properties is
SPHINCS+ [Sp15].

3. Multi-Keys Trust Environments
X.509 certificates have, so far, been used to link one public key to a single identity. This is true for Trust
Anchors (or TAs), Intermediate CAs (or ICAs), and End-Entities (or EE). However, because the encoding of
public key data structures inside certificates depends solely on the specific OID used to identify them,
the inner BIT STRING that encodes the key value can be re-engineered to accommodate for any data
structure. In our original work that was presented at SCTE Tech Expo 2020, we used the algorithm agility
feature built in into X.509 certificates and defined a new OID to identify a key structure which
implements a SEQUENCE of SubjectPublicKeyInfo structures. Each of the structures in the Composite Key
encodes a specific public key which encompass the algorithm identifier together with parameters and
the key value.

Practically, when a compositeSignatures schema is used to encode multiple signatures at once, the
value for the algorithm identifier associated with the signature is defined as follows:

compositeSignatures OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)
 dod(6) internet(1) private(4) enterprise(1) OpenCA(18227) 11 }

The compositeSignatures identifier is used to identify the type of signature, and the corresponding
value, encoded in the signatureValue field, contains multiple signatures and associated parameters.
Each of these individual SignatureInfo entries carry the information about one of the signatures
applied to the certificate in the same order the corresponding public keys appear in the multi-key
issuer’s certificate.

3.1. Current Limitations
When we first drafted the public release of Composite Crypto, there were still few unresolved issues
that were associated with the use of multiple keys in a single certificate. The main issues were related to
(a) handling error conditions when only some of the signatures are reported to be bad, (b) the
complexity of enabling encryption in multi-key environments, and (c) how to handle ecosystem-wide
algorithm revocation.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

At the time of publication, specifically, some argued that, although using multiple keys of different type
is a valuable feature (not only when it comes to backward compatibility or future-looking deployments),
the complications introduced from the use of multiple keys to validate a single object required the
deployment of some complex validation policy and additional infrastructure elements. At the same time,
a second argument against the standardization of multi-key certificates was related to the impracticality
of modifying current crypto libraries to accommodate for new types of error conditions and API
changes. A final argument against our idea was based on the difficulty of guaranteeing the correct
distribution of validation policies across entire ecosystems, like the broadband one, without the need for
deploying additional infrastructure elements.

Figure 1 - Example of new error paths introduced with the use of multiple keys

Figure 1 sketches an explanatory error scenario where a composite signature, in this case on a
certificate, has only one valid signature component. In our original work, the decision about the overall
validity of the signature was left to the crypto library. This ambiguity posed a serious issue for
consistency in how applications deal with these new mixed error states. In some scenarios, you want the
possibility for the components of a composite signature to be “alternatives” so that a relying party can
use the keys they prefer and/or understand (any of the signatures are equivalent). In other situations,
instead, you want the possibility to report the signature to be valid only if all the components of
signatures verify correctly. In other words, by providing an underspecified behavior, we inadvertently
introduced, from an ecosystem perspective, the possibility for unpredictable results.

A problem that did not have a solution until now.

Another aspect that must be considered for signature validation is the level of trust in the algorithm
throughout time. In the above example, let’s imagine that two out of three components of the signature
are reported to be erroneous. Let’s also imaging that at time t0, the use of ECDSA alone provides enough
security for the identified application and ecosystem. Let’s now move the clock 3 years forward at a time

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

t1 = t0 + 3 years. Is the signature still to be considered valid? Without additional indications from a
trusted source, applications and users are faced with an impossible task that cannot be easily resolved.

The next section explains how we solved the identified problems by introducing a second data structure
that explicitly defines the relationship across the different key and signature components.

4. Composite Crypto vs. Combined Crypto
As described in the previous section, the fact that there were no clear semantics associated with the
Composite Crypto was the source of the issues we were facing. This was reflected by the need of
requiring crypto libraries to change their current APIs to support different validation policies. Because
this might not be practical and might hinder adoption, we defined an alternative mechanism to drive the
deterministic behavior when validating multi-key signatures. The core of our solution turned out to be
extremely simple: defining, on top of the current ones, a new set of algorithm identifiers for keys and
signatures that we call Combined Crypto.

With the introduction of these new OIDs (one for subjectPublicKeyInfo identifiers and one for
Signature identifiers), we now have the possibility to explicitly define, via OIDs, the logic operations
that crypto libraries must apply when validating the multi-key signatures.

When the Composite Crypto identifiers (also referred to as compositeOr) are used, the relationship
across the different signatures is a logical “OR”. This means that the crypto library can use ANY of the
signature components to determine the validity of the entire signature. A simple deterministic algorithm
can be defined that goes through the list of signatures and stops at the first correctly validated one. If no
signatures are correctly validated (i.e., because the values are corrupted or because the entity does not
support the specific algorithm), the overall signature is not valid.

When the Combined Crypto identifiers are used instead, the relationship across the different signatures
is a logical “AND”. This means that the crypto library must, in this case, positively verify ALL the
signature components before being able to declare the whole signature valid. Also in this case, a simple
deterministic algorithm can go through the list of signatures and stop at the first incorrectly validated
one. If even one signature is not correctly validated (e.g., because of erroneous calculations or
unsupported algorithm), the overall signature is not valid.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

4.1. Advanced Key Structures

Figure 2 provides a tree representation of a key structure where the use of the “AND” and “OR” logical
functions are leveraged. In the provided example, the represented key structure mandates for the use of
an RSA component in the Combined Key container together with one of the two components from the
Composite Key one. In fact, as previously discussed, when validating the components of a Combined key
(as in this example), all of them must be validated correctly and that requires both the RSA and the
Composite Key signatures to be valid. Back to the specific example, this translated to the need for the
RSA signature to be valid together with, at least, one of the components in the Composite Key, i.e., the
Dilithium or the Falcon signatures.

By following the described approach, CAs and PAs can design their certificate profiles with specific key
structures for their certificates with deterministic behavior. For example, PKI architects can now decide
to use a classic algorithm as the first element in a Composite Key to maximize backward compatibility.
Another optimization strategy could be to maximize efficiency by using the fastest algorithm, from a
validation standpoint, as the first element in composite keys, while using other FIPS and/or non-FIPS
algorithms in combined keys to enforce the use of both types of cryptography together (i.e., classic and
post-quantum).

Composite Key OID

Dilithium OID

Dilithium Public Key

Combined Key OID

rsaEncrypt OID

RSA Public Key

Falcon OID

Falcon Public Key

Combined OID

rsaEncrypt OID

Composite OID

Dilithium OID

Falcon OID

Figure 2 - Tree Representation of a Multi-Key Public Key Info structure

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

4.2. A Deterministic Algorithm for Multi-Key Signature Validations
When using multi-key certificates, the subjectPublicKeyInfo structure of the certificate can have
two different types of OIDs. The first type of OIDs is a container OID (i.e., the Composite or Combined
ones) while the second type is a “real” algorithm OID such as, for example, rsaEncryption. Equation 1
provides a deterministic algorithm for validating multi-key signatures in pseudo programming language.

For each of the nested components in combined signatures we evaluate it. We stop the validation
process as soon as one component does not verify correctly. In this case the full combined key is invalid.
On the other hand, if all components of the combined signature verify correctly, the combined key is
considered valid.

For each of the nested components in composite signatures, we also evaluate it. However, differently
from the combined key container, in this case we consider the composite key valid if at least one of the
components is valid. The algorithm goes through the list of components and considers the composite
key valid as soon as one component validates correctly. Conversely, the composite key is invalid if all the
components (and not just one as in the combined key case) do not validate correctly.

FUNCTION: Validate Signature Component

If Signature OID is Combined:

 For Each Component in Combined:
 If Signature Component is Combined:
 ERROR: Recursion
 End If

 If Validate Signature Component is NOT Valid
 Return False
 End If

 End For
 Return True

Else

 If Signature OID is Composite:

 For Each Component in Composite:
 If Signature OID is Composite:
 ERROR: Recursion
 End If

 If Validate Signature Component is Valid
 Return True
 End If

 End For
 Return False

 Else

 If Validate Signature Component is Valid
 Return True
 Else
 Return False
 End If

 End If

Equation 1 - Multi-Key Signature Validation Algorithm

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

5. Algorithm Revocation Via CRLs and OCSP Responses
With the possibility of algorithms being completely compromised overnight by quantum computers, PKIs
are faced with a new problem: distrusting certificates that use a specific public key algorithm.
Independently from the use of multi-key or single-key certificates, the inability, today, to provide such a
mass-revocation tool can hinder our ability to effectively revoke the use of an algorithm.

We are missing, today, an important tool in PKIs that is relevant for Post-Quantum algorithms
deployment efforts, and that is Algorithm Revocation.

We can easily see the impact of the lack of such tool with the latest example of algorithm deprecation
that required a long time to complete (SHA-1). Specifically, when looking at the evolution of the
deprecation process, we notice how it has happened very slowly and its resolution used ad-hoc criteria
and deployment strategies instead of delivering formal ways to revoke its use across entire ecosystems.
As a result, Certification Authorities, although they are there to guide the ecosystem and have the
authority to revoke identities as needed, they still lack practical tools and options to enforce algorithm
deprecation.

5.1. Policy Authorities as Sources of Trust
Since we introduced the concept of algorithm revocation in conjunction with multi-key environments,
some critiques have been directed at the chosen trust model arguing that an external authority should
be the one to provide algorithm deprecation information. Because this is an important governance
principle, we want to provide additional considerations that can help understanding the principles we
rely on when extending existing revocation mechanisms.

The trust model that is usually assumed in PKIs mandates for CAs to keep all participants in the
ecosystem behaving according to a common policy. Therefore, CAs are already entities with a clear
mandate to protect the integrity of the ecosystem by following verifiable procedures - this includes the
possibility to revoke certificates. CAs are, therefore, the entities that, in accordance to defined policies,
should provide indications about which type of keys should not be trusted throughout the PKI lifecycle.

In a trust infrastructure, besides the set of CAs that provide their services to the community, it is
common practice to deploy a Policy Authority that is responsible for the ecosystem Certificate Policy
(CP). When available, the content of the policy document is used to align CAs requirements across the
whole ecosystem. In the DOCSIS PKI, the Policy Authority is operated by CableLabs on behalf of the
entire ecosystem and is appointed with the task of making sure that the whole PKI is secure. As this
governance model has been successfully exported to other ecosystems of interest for the broadband
industry, our work can be extended and adopted in other device-centric ecosystems where a common
trust infrastructure enables interesting and effective crypto-migration strategies (e.g., Wi-Fi
Alliance/Passport 2.0, CBRS-A, etc.)

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

5.2. Algorithm Revocation vs. Certificate Revocation
When considering revocation and its practical impact over the ecosystem, an important consideration to
make is related to the scalability of algorithm revocation vs. certificate revocation. Today, when a crypto
algorithm needs to be replaced because of possible security risks or compromises, CAs must revoke
every single affected certificate to make sure that the faulty algorithm is not used anymore.

Even when the higher levels of the PKI are protected with quantum safe algorithms (i.e., Root and
Intermediate CAs), the option of using traditional revocation mechanism, i.e., via serial numbers, comes
with very high costs related to adding many certificates to the revoked lists – both CRLs and OCSP
servers are negatively impacted by these massive revocation events and can easily collapse under this
added load (e.g., in the DOCSIS PKI the number of active certificates to revoke can be in the hundreds of
millions). Conversely, the revocation mechanism described in this invention provides a very efficient way
to mass-revoke certificates when and if needed. The mechanism is lightweight both on the Certificate
Service Providers (or CSPs) when creating and distributing this information, and on the client when
validating certificate chains and signatures. The rest of this Section provides a detailed description of the
data structures, procedures, and extensions we defined to enable algorithm revocation.

5.3. Algorithm Revocation and Multi-Key Environments
The lack of standardized secure mechanisms to provide algorithm revocation is not a new problem.
However, with the introduction of multiple keys within a single certificate, the problem of algorithm
revocation becomes more evident.

In our work we focus on revocation of key structures, rather than a simply focusing on algorithms, to
provide the possibility to better manage algorithm trust. For example, there might be the need to
revoke a specific key configuration across the whole set of issued certificates (i.e., a specific algorithm or
a specific algorithm hierarchy) without having to completely revoke its use in other cases. To address all
these use cases, our work allows the ecosystem administrators to revoke, for example, the use of RSA as
a primary key type in certificates or within Composite Key containers, but still allow the use of the RSA
algorithm when used as a component of a Combined Keys (e.g., RSA + Post-Quantum Algorithm).

An example of the complexity that raises with the introduction of multi-key certificates can be easily
shown by looking at the evolution of algorithm deprecation over an extended period. Let’s imagine the
case where a relying party correctly verifies the signatures on a specific document or certificate and let’s
also imagine that this process is repeated over and over – while the validation results do not change, the
trust in the algorithm itself can change. For example, one of the algorithms used in the PKI might be
compromised or there might be a new requirement, during uncertainty, to prevent the use of classic
and/or post-quantum algorithms by themselves (e.g., you must use a combined RSA and Falcon
signature).

The mechanism described in this work addresses all these cases.

5.4. Key Configuration Revocation
The key configuration revocation mechanism we introduce in this paper focuses on revoking specific key
configurations via the use of key configuration revocation lists. To this purpose, we needed to provide a
way to identify key configurations that must be distrusted. As discussed in Section 4.1, we can represent

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

key configurations as binary trees where the Composite and Combined nodes provide the bifurcations in
the tree structure, while the individual components represent the end nodes (or leaves) of the tree. Few
example configurations are provided in Figure 4.

Figure 3 - Example Key Configurations for different types of primary algorithms.

For each of the key configurations that the CA wants to deprecate or revoke (or is instructed to do so by
the PA), the CA generates a sequence of OIDs that we refer to as the KeyConfigRevocationData.
This list of algorithm OIDs is then embedded as the value of an extension in OCSP responses and CRLs
that are issued from the CA (or the delegated signer). The value of the KeyConfigRevocationList
extension is implemented as a SEQUENCE OF KeyConfigRevocationData.

More specifically, each of these entries provides information about how to uniquely identify the specific
key configuration (e.g., “(Start) RSA” or “(Start) CompositeCrypto RSA”). Additionally, it is
possible to specify an optional trust period for the algorithm in the form of doNotUseBeforeDate and
doNotTrustAferDate fields.

The KeyConfigRevocationList data structure and associated identifier(s) are defined as follows:

keyConfigRevocationList-id OBJECT IDENTIFIER ::=
 {iso(1) identified-organization(3) dod(6) internet(1)
 private(4) enterprise(1) OpenCA(18227) 13 }

KeyConfigId ::= 1..MAX OF OBJECT_IDENTIFIER

KeyConfigRevocationData ::= SEQUENCE {
 keyConfig KeyConfigId,
 --- Identifier of the specific Key Configuration
 --- identified by this data structure
 doNotUseBeforeDate [0] GENERALIZED_TIME OPTIONAL,
 --- Time before which the key configuration
 --- should not be used
 doNotTrustAferDate [1] GENERALIZED_TIME OPTIONAL,
 --- Timestamp after which the key configuration
 --- identified by keyConfig should not be trusted
 --- by the ecosystem clients anymore }

KeyConfigRevocationList ::= SEQUENCE (1..MAX) OF KeyConfigRevocationData

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

To deprecate a specific algorithm when validating certificates (e.g., RSA), the data structure of the key
revocation extension (i.e., the keyConfigRevocationList) carries the specific algorithm identifier as
the only value in the keyConfig field. This configuration would not prevent, however, the use of the
identified algorithm inside Composite or Combined keys because the algorithm identifier’s list would be
different. To deprecate both the use of an algorithm as a primary key in the certificate and as a
component of Composite Keys (but leaving the possibility to leverage it in a Combined Key), the CA
would generate two entries. The first one carries a sequence that comprises only a single identifier, e.g.,
the RSA algorithm identifier. This sequence deprecates the use of the algorithm as a primary key. The
second one carries the sequence “Composite Crypto OID RSA algorithm OID”. This sequence
deprecates the use of the algorithm as a component of Composite Keys (i.e., using RSA inside Composite
Crypto keys).

5.5. Deprecating the use of multi-key certificates
CAs might also need a mechanism to deprecate the use of Composite Crypto or Combined Crypto within
the ecosystem for when, for example, a transitioning period is over, and infrastructures and devices
have fully transitioned to the new algorithms.

In this case, no additional mechanisms are required because the very same approach described in this
paper can also be used to deprecate multi-key certificates: the CA generates a
KeyConfigRevocationData entry where the keyConfigId carries only the Composite Crypto or the
Combined Crypto object identifier(s) as needed.

6. Solving the Multi-Key Encryption Conundrum
Multi-key environments can provide interesting options to address encryption under today’s
cryptographic uncertainties. For this discussion, we choose the use case that deals with encrypting a
document for a specific recipient as the explanatory relevant use-case. Specifically, the open problem
we are focusing on is how to determine which key or set of keys should be used to encrypt a document
for a recipient in the presence of multiple certificates and algorithms.

Similarly to the algorithm revocation case, linking multiple keys to the same identity is not a new
problem and still we have no standardized solutions for it. In fact, there is no accepted procedure,
today, to securely link together identities contained in different certificates that might even be issued
from different CAs or different PKIs.

6.1. Encryption, Certificates, and Multiple Algorithm Support
To better explain the issues that crypto libraries and applications need to address when supporting
multiple algorithms to encrypt data, let’s go back to our example and describe the process of encrypting
a document that is to be shared with a single recipient. In our example, let’s assume that multiple
algorithm support (e.g., RSA and Dilithium-Crystals) is required but only single-key certificates are
deployed. This can happen, for example, when encrypting an e-mail for a recipient that might have
multiple certificates, i.e., one with an RSA key and another with a Dilithium-Crystals one. For brevity and
clarity, in the rest of the discussion we omit the description of the procedures for encrypting the data via
a symmetric algorithm (not relevant for our discussion) and focus on the differences, when considering
the encryption process, between single-key and multi-key certificates.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

Before encrypting, applications must validate the revocation status of the recipient’s certificate by
accessing the certificates’ revocation information (i.e., CRLs or OCSP responses) from the appropriate
URL for all the certificates in the validation chain of the recipient. This is an essential step that prevents
the leakage of the encrypted information for compromised certificates or keys. Without any indication
of what the status of the algorithm (or key configuration) is or might be in the future, applications will
happily encrypt the data for each of the certificates and possibly leak the encrypted content if one of the
algorithms is broken.

This simple example shows the two main issues that the industry faces under the current crypto
uncertainty when single-key certificates are used: dealing with the inefficiency of using multiple
certificates connected to a single identity (i.e., need to interact with multiple infrastructures/services for
a single encryption/validation operation) and the inability of efficiently communicating how to leverage
the security of multiple algorithms together (i.e., “AND” or “OR” operations).

When looking at the first issue, multi-key certificates provide a distinct advantage: the need for less
queries to the infrastructure. Specifically, because applications have to validate only one certificate
chain per recipient, the number of requests to OCSP and CRL servers is greatly reduced. For example, in
a three-tier infrastructure (i.e., Root CA, Intermediate CA, End-Entities) with three different algorithms
deployed via single-key certificates, applications might need to perform up to six different OCSP or CRL
queries and securely store 3 different Root CAs, while when multi-certificates are used, applications
might need up to only 2 different queries and securely store a single Root CA. When looking at the
second issue, the application that is performing the encryption is faced with the same uncertainty we
noticed in the first formulation of our composite cryptography proposal (i.e., lack of deterministic
behavior) because there is no possibility to dictate if the keys in the different certificates are equivalent
or if they must be used together.

Ultimately, this one-to-one paradigm (i.e., one key for one identity) is also reflected everywhere in X.509
trust infrastructures where the assumption is that different certificates are associated with possibly
different identities. Multi-key certificates solve the underlying conundrum by using a single identity, thus
enabling the use of multiple algorithms across the board: from network functions to document signing.

6.2. More Efficient Encryption Process with Multi-Key Certificates
As described earlier, the ambiguity that was introduced with the initial proposal for multi-key
certificates is completely resolved in this work by using explicit logic operations across keys and
signatures that are completely defined by the specific OID used (Composite or Combined). Also in the
encryption case, we leverage the separation of “OR” and “AND” logic operations to provide crypto
libraries with deterministic encryption and decryption behavior. Table 2 provides a summary of the
differences between Composite and Combined crypto when it comes to encryption options. Specifically,
a Composite Key is enabled for encryption if at least one of the components algorithms supports
encryption while a Combined Key is enabled for encryption if all the components' algorithms support
encryption.

Back to our example, by providing algorithm deprecation information together with certificate
revocation information, the encryption process can be performed even more securely than we do today
and increase flexibility by supporting forward-looking or backward-compatible key structures. Even

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

outside the multi-certificate use-case, the availability and use of key configuration deprecation enhances
the security of the whole ecosystem and help to prevent possible data breaches.

Table 2 - Encryption Operations for Composite and Combined Crypto

Composite Crypto Combined Crypto

When Encrypting for a Composite Key, the
encryption is performed with all the public keys
SEPARATELY

When Encrypting for a Combined Key, the
encryption is performed with all the keys in a
COMBINED way

When Decrypting with a Composite Key, the
decryption can be performed with ANY of the
private keys related to the single public key
components (OR)

When Decrypting with a Combined Key, the
decryption must be performed with ALL the
private keys related to the single Public Key
components (AND)

7. Conclusions and Future Work
In this work we provide a description of the latest results when it comes to Composite Crypto and
deployment of post-quantum algorithms. Specifically, we extend our original proposal to address the
origin of the processing uncertainty that affected our original proposal: an incomplete design.

By adding a new set of OIDs, we can now express what the relationship across signatures (or keys)
should be, thus providing a deterministic validation and encryption process. This simple enhancement
unlocks deterministic behavior for crypto libraries without the need for deploying complex validation
policies as it was initially envisioned. In other words, with the discussed new additions to our
framework, the key structure of multi-key certificates itself provides clear validation, encryption, and
decryption processing rules for crypto libraries.

On top of these important results, we identified CRLs and OCSP responses as the preferred mechanism
to carry sequences of OIDs (and validity periods) to deprecate individual key configurations. This
mechanism for algorithm revocation can be used in conjunction with both single key and multi key
certificate environments.

Ultimately, the considerations contained throughout the paper show that the use of multi-key
certificates can lower the cost of multiple algorithm deployment and provide the possibility to better
manage, at the ecosystem level, the risks related to cryptographic failures. As we continue to evolve
tools and specifications for multi-key environments, we envision that their deployment might become a
common mechanism for delivering dynamic crypto-agile ecosystems in the future and, at the same time,
simplifying new algorithm deployments and support algorithm migrations processes.

Abbreviations

CA certification authority
CBRS-A citizens broadband radio service alliance
CRL certificate revocation list

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

CSP certificate service provider
CVP closest vector problem
DER Distinguished Encoding Rules
DOCSIS Data Over Cable Service Interface Specifications
DH Diffie-Hellman
EC Elliptic-Curves
ECDSA Elliptic-Curves Digital Signing Algorithm
EE end entity
FIPS Federal information processing standard
HSP hidden subgroup problem
ICA intermediate certification authority
I-D internet draft
IETF Internet Engineering Task Force Standards Organization
KEM key encapsulation mechanism
KEX key exchange (algorithm)
NIST National Institute of Standards and Technologies
PA Policy Authority
PKC public-key cryptography
PKI public-key infrastructure
OCSP online certificate status protocol
OID object identifier
PFS perfect forward secrecy
PQ Post quantum
PQA post-quantum algorithm
QC quantum computing
R-PHY Remote RF Layer (PHY)
RSA Rivest-Shamir-Adleman (cryptosystem)
SHA-1 Secure Hash Algorithm (160 bits)
SCTE Society of Cable Telecommunications Engineers
SVP Shortest vector problem
TA trust anchor
TLS Transport Layer Security
SCTE Society of Cable Telecommunications Engineers
S/MIME secure e-mail message format
Wi-Fi wireless
X.509 standard format for digital certificates
XOR exclusive OR operator

Bibliography & References
[Ec05] American National Standards Institute, Public Key Cryptography for the Financial Services
Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62, November 2005.

[Rsa16] The Internet Engineering Task Force (IETF) – IETF RFC 8017. PKCS #1: RSA Cryptography
Specifications Version 2.2, edited by K. Moriarty et al., November 2016. Also available at
https://datatracker.ietf.org/doc/rfc8017/

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

[Doc40] Data-Over-Cable Service Interface Specifications, DOCSIS 4.0, Security Specifications. CableLabs
Publication, 2019. Available as CM-SP-SECv4.0-IO1-190815.

[Doc31] Data-Over-Cable Service Interface Specifications, DOCSIS 3.1, Security Specifications. CableLabs
Publication, 2020. Available as CM-SP-SECv3.1-IO9-200407.

[X509] ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005, Information Technology - Open
Systems Interconnection – The Directory: Public-key and attribute certificate frameworks.

[RPhy18] Data-Over-Cable Service Interface Specifications, DCA – MHAv2. Remote PHY Specification.
Available as CM-SP-R-PHY-I10-180509.

[Pala04] The Internet Engineering Task Force (IETF) – I-D draft-ounsworth-pq-composite-sigs-04 -
Composite Keys and Signatures For Use In Internet PKI, edited by M. Ounsworth and M.Pala, Jan 2021.
Also available at https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/

[Shor97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (Okt. 1997), S. 1484–1509. ISSN: 0097-
5397, 1095-7111. DOI: 10.1137 / S0097539795293172. arXiv: quant-ph/9508027.

[Reg02] Regev, O. “Quantum computation and lattice problems.” The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings. (2002): 520-529.

[HeHø04] Mark Ettinger, Peter Høyer, Emanuel Knill, The quantum query complexity of the hidden
subgroup problem is polynomial, Information Processing Letters 91 (1) (2004) 43–48.

[Reg04] Regev, O.. “A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with
Polynomial Space.” arXiv: Quantum Physics (2004).

[Kup13] Kuperberg, G.. “Another Subexponential-time Quantum Algorithm for the Dihedral Hidden
Subgroup Problem.” TQC (2013).

[Fa17] Falcon - Fast Fourier Lattice-based Compact Signatures over NTRU. https://falcon-sign.info.

[Di17] Dilithium-Crystals - Dilithium digital signature scheme. https://pq-crystals.org/dilithium/.

[Sp15] SPHINCS+ Stateless hash-based signature algorithm website. https://sphincs.org.

https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
https://falcon-sign.info/
https://pq-crystals.org/dilithium/
https://sphincs.org/

	1. Introduction
	2. The Post-Quantum Cryptography Landscape
	2.1. The Hidden Subgroup Problem (HSP) and Factoring Keys
	2.1.1. Groups, Cosets, and H-Periodic functions
	2.1.2. The Hidden Subgroup problem and classic cryptography
	2.1.3. The Dihedral Hidden Subgroup problem and Lattices

	2.2. Quantum-Resistant Cryptograpy

	3. Multi-Keys Trust Environments
	3.1. Current Limitations

	4. Composite Crypto vs. Combined Crypto
	4.1. Advanced Key Structures
	4.2. A Deterministic Algorithm for Multi-Key Signature Validations

	5. Algorithm Revocation Via CRLs and OCSP Responses
	5.1. Policy Authorities as Sources of Trust
	5.2. Algorithm Revocation vs. Certificate Revocation
	5.3. Algorithm Revocation and Multi-Key Environments
	5.4. Key Configuration Revocation
	5.5. Deprecating the use of multi-key certificates

	6. Solving the Multi-Key Encryption Conundrum
	6.1. Encryption, Certificates, and Multiple Algorithm Support
	6.2. More Efficient Encryption Process with Multi-Key Certificates

	7. Conclusions and Future Work
	Abbreviations
	Bibliography & References

