
© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 1

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 2

Internet of Things, Home Networking, Smart Cities, and Emerging Services

Message Queuing Telemetry
Transport (MQTT) For IoT
Devices: Less is More
Sweety Bertilla

Sr. Android Engineer
Comcast Cable

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 3

Message Queuing Telemetry Transport (MQTT)

Introduction
• Well-designed, lightweight messaging protocol used for communication between IoT

devices.

• Low bandwidth, low latency alternative for IoT device transmissions

• Uses publish/subscribe operations to exchange data between client and server

• Unlike HTTP, this method saves a substantial amount of time previously spent on
polling, which makes updates occur more quickly and smoothly.

• Key elements – Connect, Disconnect, Subscribe, Un-subscribe, Publish, and Topic

• Quality of Service(QoS) feature supported by MQTT helps application client to opt the
level of service based on network reliability.

• Communicates through MQTT message broker

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 4

Message Queuing Telemetry Transport (MQTT)

History
• Created in 1999 by Andy Standford-Clark (IBM) and Alen Nipper (Arcom, now Eurotech) as

part of the IBM MQ series of products .

• MQTT is not a message queue, but can queue messages for clients

• As a lightweight messaging protocol, it has been widely adopted for MTM (machine to
machine) communications for industrial, messenger, and IoT applications

• Ability to keep bandwidth requirements to a minimum, deal with high latency, unreliable
networks, small footprint devices and low power consumption, has made it an excellent
choice for communication.

• Unlike other protocols like HTTP, MQTT continues to edge out other options due to its
nature as a lightweight, asynchronous, bi-directional, secure, efficient, reliable,
publish/subscribe, and data agnostic messaging protocol.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 5

Message Queuing Telemetry Transport (MQTT)

Advantages of MQTT
Asynchronous bi-directional communication
• Provides significant performance and responsiveness in client-server communications

• Inherently non-blocking, which means that an application does not need to wait for a
response in order to proceed.

• Messages can also be pushed directly to the client without an explicit request.

• Downstream microservices can choose to directly send updates to a client application

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 6

Message Queuing Telemetry Transport (MQTT)

MQTT Features
Pub/Sub
• Publisher / subscriber pattern which provides a framework for exchanging messages

between publishers (producers) and subscribers (consumers).

• A publisher can send a message and it will automatically be routed – via the MQTT
message broker – to any client subscribed to that topic.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 7

Message Queuing Telemetry Transport (MQTT)

MQTT Features
Topic structure
• MQTT uses a topic hierarchy in order to send and receive messages.

• MQTT topics can consist of wildcards and topic separators.
• + A plus represents a single topic level wildcard.
• # A hash is a multi-level wildcard that can only be at the end of a topic subscription.

• Example:
• platform / customerId4 / house1 / #
• platform / customerId4 / + / lights / #

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 8

Message Queuing Telemetry Transport (MQTT)

MQTT Features
Quality of Service (QoS)
• MQTT Client gets an option to select the level of service that works for their application

based on network reliability.

• MQTT manages the re-transmission of messages and guarantees delivery, even when
the underlying transport is not reliable

• QoS 0 is also known as Fire and Forget service. MQTT client sends the message to MQTT
broker and doesn’t wait for an acknowledgement.

• QoS 1 makes sure that the MQTT message is delivered at least once to the end client.
The publisher send the message to MQTT broker and waits for an acknowledgement.

• QoS 2 is also known as the safest and slowest message service. There is a four-way
handshake that happens between publisher and MQTT broker to make sure the end
client receives the message only once.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 9

Message Queuing Telemetry Transport (MQTT)

MQTT Features
Last Will and Testament
• Last Will and Testament (LWT) is a feature of MQTT that can notify other clients about

an ungracefully disconnected client.

• LWT contains several parameters:
• Last Will Topic (topic that the LWT message will be published to)
• Last Will QoS (QoS of the LWT message)
• Last Will Message (LWT message itself)
• Last Will Retained (boolean) (whether the last lost connection information will be

retained)

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 10

Message Queuing Telemetry Transport (MQTT)

MQTT for application client
• MQTT uses publish/subscribe operations to exchange data between clients. The MQTT

message broker acts as medium for communication between the clients.

• Key components include the MQTT broker, client(s) and topic(s).

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 11

Message Queuing Telemetry Transport (MQTT)

MQTT for application client
MQTT Connect
• Client can establish secure persistent connection with MQTT broker

• AWS IoT core is the MQTT broker used in Xfinity app.

• Different types of connection can be established using AWS IoT core
• Connect with keystore and port number
• Connect with AWS credentials provider
• Connect with proxy host and proxy port.
• Connect using custom authorizer. The IoT client of Xfinity Application uses custom

authorizer to connect with MQTT broker. This custom authorizer is used to validate
the customer against an internal identity provider.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 12

Message Queuing Telemetry Transport (MQTT)

MQTT for application client
Publish and Subscribe to Topic
• Client connected to MQTT broker can publish or subscribe to topics

• Receive async messages when subscribed to a topic

• Client can set different levels of Quality of Service either QoS0, QoS1 or QoS2(AWS IoT
broker doesn’t support QoS2)

• To stop receiving messages client can unsubscribe to topics

• The messages published can be a simple string or json string

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 13

Message Queuing Telemetry Transport (MQTT)

MQTT for application client
MQTT and AWS shadow state
• AWS Shadow State service, provided by AWS IoT Core, is a persistent cache that can be

used to store IoT device state Receive async messages when subscribed to a topic

• The two types of state in shadow state messages are desired state and reported state

• Desired state lets the client send a request through MQTT broker

• The reported state is returned via the device’s MQTT topic to which the client is
subscribed

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 14

Message Queuing Telemetry Transport (MQTT)

MQTT for application client
Message payload
• Since MQTT is a lightweight protocol, the message payloads cannot extend in size

• AWS IoT Core supports a maximum payload of 128kb

• MQTT messages also have no guaranteed ordering. Due to these limitations, we
included sequence number and total messages expected to our MQTT message
payloads to ensure all messages are received and ordered properly.

• Shadow State Reported state message payloads contain a property named version,
which gets incremented with each change in shadow state

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 15

Message Queuing Telemetry Transport (MQTT)

Security
Mobile Client
• Authentication and authorization via a Java Web Token (JWT) based Identity Token

• Connect – allow the MQTT connection with a unique MQTT Client ID (CID) generated
from the principle information within the JWT

• Publish – allows the MQTT client to publish messages to MQTT topics which are name
spaced based on the PID, AID and JTI

• Subscribe/receive – allows the MQTT client to subscribe/receive messages to/from
MQTT topic(s) which are name spaced based on the PID, AID and JTI.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 16

Message Queuing Telemetry Transport (MQTT)

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 17

Message Queuing Telemetry Transport (MQTT)

Security
Residential Gateway
• The Xfinity Residential Gateway enables advanced IoT Bridge capabilities for Zigbee,

Thread, and WIFI based devices.

• To provide a secure MQTT connection to the IoT Platform, the Residential Gateway
performs a CSR (Certificate Signing Request) and is issued a device certificate by
Xfinity Public Key Infrastructure (xPKI).

• Within the Certificate there are critical principle attributes that provide for a fine-
grained security model. These attributes are:
• Partner Identifier - syndicated partner identifier for the Multi System Operator (MSO)
• Account Identifier (AID) - identifies the subscriber’s opaque account id
• Installation Identifier – the device identifier as a UUID (Universal Unique Identifier)
• Mac Address – Device CMAC address

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 18

Message Queuing Telemetry Transport (MQTT)

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 19

Message Queuing Telemetry Transport (MQTT)

MQTT for client-platform communication
Evaluation Criteria
• Asynchronous Bi-directional Messaging Support

• Data Model Support - support for exchanging messages based on a JSON Schema data
model

• Platform Support - Android, IOS, and Web Clients must be supported

• Secure - provide a secure communication channel between the mobile/web application
clients, gateways, and the IoT Platform

• Efficient - provide a lightweight implementation

• Reliable - offers a way to mitigate errors that may arise from unreliable mobile/home
networks

• Performant - minimizes latency due to network protocol negotiation and message
broker and router traversal

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 20

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - HTTP
• Pros

• Supports primary request/response
• reasonably small - HPACK for header

compression required
• IETF standard - Preferred by some

vendors
• Gateway supports millions of

connected clients
• Used in mobile applications and most

web applications not requiring
pub/sub

• Cons
• No guaranteed deliver (retry required)
• No last will & testament
• Slightly larger message size due to

headers
• Does not have a wide adoption
• Short polling is not real-time (request

timer driven)
• Long polling is immediate but is more

complex

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 21

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - Websockets
• Pros

• Works over port 443
• Supported by numerous mobile clients

and web browsers (modern browsers
implementation less of a concern)

• Supported by many web servers such
as NGINX and Apache

• Cons
• Scaling of web servers to meet needs

of mobile client persistent connections
• Client reconnection implementation on

top of WebSockets required
• bit too raw; while it supports two-way

client/server communication
• Support for request/response and

pub/sub message exchange patterns
• Requires additional work

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 22

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - AMQP
• Pros

• Richest set of message scenarios
(patterns)

• Asynchronous
• Supports queuing
• Mobile client support; web browser

support via web sockets

• Cons
• Uses port 5672 not 443 (potential

router and firewall issues)
• Requires RabbitMQ on EC2 instances
• Not a managed AWS service
• Larger protocol
• Used in IoT space by very few vendors

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 23

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - XMPP-IoT
• Pros

• Support for message read, write, and
consume

• Extended messaging and presence
protocols

• Used for two way chat and push
notifications

• Cons
• Uses port 5222 not 443 (potential

router and firewall issues)
• Requires an XMPP/Jabber server on

EC2 instances
• Not a managed AWS service
• It's XML based

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 24

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - MQTT
• Pros

• JWT and X.509 certificate-based
authorization support

• Support for port 443
• Supports asynchronous message

patterns (i.e. pub/sub)
• Assured delivery (3 QoS levels) and

retained messages which provide
flexible options for Client/Server

• Last will & testament - notifies other
clients of an ungraceful disconnected
of gateway-based devices

• Cons
• OASIS standard - not preferred by

some vendors
• Fixed headers and options if

extensibility is required

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 25

Message Queuing Telemetry Transport (MQTT)

MQTT vs other messaging protocols - MQTT
• Pros[Cont inued]

• Multiple subscriptions ‘multiplexed’ over one connection
• Smaller size on the wire - minimum compressed header
• Desired for a resource-constrained device, low bandwidth, and high latency networks
• Brokers support millions of connected devices
• Easy to route messages to topic subscriber(s)
• Lightweight implementation for embedded clients
• Power-efficient due to no-polling, shorter messages
• Less resources consumed compared to long polling situation on Server.
• Support for many programming languages
• MQTT is mature and stable.

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org 26

Thank You!
Sweety Bertilla

Sr. Android Engineer
Comcast Cable
Sweetybertilla_francisxavier@ca
ble.comcast.com

Robert Farnum

Principal II Engineer
Comcast Cable
robert_farnum@comcast.com

Kristopher Linquist

Principal II Engineer
Comcast Cable
kris_linquist@comcast.com

	Slide Number 1
	Internet of Things, Home Networking, Smart Cities, and Emerging Services
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Message Queuing Telemetry Transport (MQTT)
	Thank You!

