

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF LIMITLESS CONNECTIVITY

Energy Management and Sustainability on the Road to 10G Ensuring HFC Network Resiliency During Extended Utility Outages

Sr. Director of Broadband Product Management

EnerSys

Background

HFC is the primary source of vital **High-Speed Data** for millions of users

TA. All rights reserved. | expo.

Background

Urs :00 pm :00 pm

0:00 pm 0:00 pm 0:30 pm

9:30 pm 9:00 pm DUE

10 NC

WER

HFC is the primary source of vital **High-Speed Data** for millions of users

Increase in **Significant Outages**

© 2021 SCTE[®], CableLabs & NCTA. All rights reserved

4

Background

HFC is the primary source of vital **High-Speed Data** for millions of users

Increase in Significant Outages

HFC can meet future bandwidth needs with the 10G initiative, but **how can we ensure power availability for this critical HFC service?**

Extended Outages: Key Challenges

Definition of Extended Outage:

"An outage that goes beyond the typical site backup time (4 hrs.) plus typical portable generator run time (8 hrs.) = 12 hrs."

Typical HFC powering site:

- Designed for 3-4 hrs of backup
- 3 or 6 batteries
- Space for additional cabinets limited
- High cost of permits for additions or service changes

Extended Backup Options: Generators

PORTABLE GENERATOR

- Flexible option for backup
- Operational strategy
- Size \uparrow , runtime \uparrow , ease of deployment \downarrow

STATIONARY GENERATOR

- Ideal for centralized power
- Large footprint, higher TCO
- LNG provides extreme runtime

Extended Backup Options: VRLA Batteries

- Valve-Regulated Lead-Acid
- Longer life than flooded
- Non-liquid electrolyte (Gel vs. AGM)
- Standard Case size 27 or 31 for HFC
- AGM most resistant to extreme temps
- AGM is rated non-spillable

Extended Backup Options: TPPL Batteries

High-Capacity Lead-Acid Batteries

Thin Plate Pure Lead

- Thinner plates =
 - Higher energy density
 - Higher current capacity
 - Faster charging
- Pure lead
 - Reduces positive grid corrosion
 - Longer service life
- Maximum runtime:
 - Case size 31 \rightarrow 114 Ah
 - High capacity TPPL 210 Ah

Extended Backup Options: Lithium Ion Batteries

- Accelerating R&D driven by EV market
- Store and release energy by shuttling Lithium Ions between electrodes
- Variance in electrode chemistry defines cell voltage and energy density
- Nickel-Manganese-Cobalt (NMC) and Iron Phosphate (LFP) most common
- Significant increase in energy density over Lead-Acid

Figure 3- Spider chart showing key attributes of LFP & NMC Lithium Ion batteries

Layered Safety Design for Lithium Ion Batteries

Mechanical Safety System

Application-Level Software

Functional Safety Layer

Western Automotive-Grade Lithium-Ion NMC Cell

Layer 1: The tray is designed to physically protect the battery from mechanical abuse

Layer 2: Monitoring of the whole system behavior and controls charge / discharge

Layer 3: Monitoring of each individual cell in the module to check for events that could cause harm

Layer 4: Would rely on this only in an "everything goes wrong" situation cell construction is designed and built with a high level of safety

TPPL vs. Lithium Ion Attributes

Physical Attributes:

Chemistry	Energy Density	Form Factors	Weight	Physical Orientations	Include BMS Electronics
TPPL	High	Many	Heavier	Most	Not required
Lithium Ion	Higher	Limited	Lighter	All	Yes, required

Operational Attributes:

Chemistry	Ventilation	Cut Off Voltage	Cycling Capable	Partial SoC Operation	Recycling
TPPL	Limited	Variable	Limited	Limited	98%
Lithium Ion	None	Fixed	Significant	Excellent	Limited

Scenario 1

Scenario 2

Scenario 3

Thank You!

Toby Peck

Sr. Director of Broadband Product Management EnerSys Toby.Peck@enersys.com

