

ATLANTA, GA OCTOBER 11-14

UNLEASHTHE POWER OF IMITLESS CONNECTIVITY

Cloud & Virtualization

Cluster-Based Network Traffic Prediction Pipeline For Big Data Time Series

WEI CAI

Network Planning Engineer Cox Communication

INTRODUCTION

Rationales

Proposed clustering-based best-selection forecast pipeline

- Irregularity and more fluctuations
- Big data
- Similarity in traffic patterns across time series

ARIMA

ARIMA models are designated by Autoregression, Integration and Moving average

ARIMA structure

BACKGROUND: LEARNING MODELS

XGBoost

XGBoost models combines weak learners to form a strong model through iterations

XGBoost structure (<u>https://blog.quantinsti.com/xgboost-python/</u>)

LSTM

XGBoost models combines weak learners to form a strong model through iterations

LSTM structure (https://adventuresinmachinelearning.com/keras-lstm-tutorial/)

Two major gaps

1. Very few research papers have employed a clustering approach into large scale network traffic forecasting workflow 2. Best selection from different models performs better than averaging the results from different models, particularly for network time series with more volatilities

Raw data with missing polls Imputed clean data

Clean data with outliers

Clean data with no outliers

Clustering nodes to 4 clusters

Cluster Label	Node Counts	
Cluster 0	10,082	
Cluster 1	3,92	
Cluster 2	71	
Cluster 3	1,193	

2020.02 2020.05

weekly timestamp

2020.09 2022.02 2022.05

^{507802</sub> ⁵⁰⁷⁸⁰³ ⁵⁰⁷³⁰⁷ ⁵⁰⁷³⁰² ⁵⁰⁷³⁰³}

5620

5615

5610

2018-01

- Grid search was used to automatically discover the optimal order of non-seasonal and seasonable parameters at a cluster level.
- Dataset is split into 70%, 20%, 10% training, test and validation sets, respectively.
- Stationarity of the series are checked.
- SARIMAX models are trained and obtained to make estimation on fresh test data.
- MAPE values for both training dataset and testing data set are calculated.

n sarima

forecasting

Procedures

- Grid search algorithm is used to optimize the parameters at a cluster level.
- Dataset is split into 70%, 20%, 10% training, test and validation sets, respectively.
- XBGoost models are trained and obtained to make estimation on fresh test data.
- MAPE values for both training dataset and testing data set are calculated.

XGBoost forecasting Procedures

- Scale data using MinMaxScaler to speed up the learning process and help model.
- Hyperparameter such as number of layers, layer depths, activation functions, dropout coefficients are repeatedly tuned at a cluster.
- Dataset is split into 70%, 20%, 10% training, test and validation sets, respectively.
- LSTM models are trained and obtained to make estimation on fresh test data.
- MAPE values for both training dataset and testing data set are calculated.

LSTM forecasting Procedures

Table 1 Training MAPE by Models					
Model		Training MAPE		Total	
MAPE Range	<= 5%	>=6% & <= 10%	>=11% & <= 15%	>=16%	
SARIMA	1,360	2,828	2,059	5,295	11,542 nodes
XGBoost	11,333	55	20	134	11,542 nodes
LSTM	3,573	2,979	2,909	2,081	11,542 nodes

Table 2 Test MAPE by Models					
Model		Test MAPE		Total	
MAPE Range	<= 5%	>=6% & <= 10%	>=11% & <= 15%	>=16%	
SARIMA	982	746	1,175	8,639	11,542 nodes
XGBoost	2,244	2,228	2,870	4,200	11,542 nodes
LSTM	2,299	3,996	2,753	2,494	11,542 nodes

Table 3 Node Counts <u>with <= 10% MAPE by Models</u>		
Model	Node counts with good fit (Mape <= 10%)	Node counts with overfit (Mape <= 10%)
SARIMA	956	586
XGBoost	1,195	3,248
LSTM	2,129	2,278

Table 4 Node Counts MAPE by Models		
Model	Node counts with Mape <= 10%)	Node counts with Mape >10%)
SARIMA	101	495
XGBoost	139	457
LSTM	346	250

ATLANTA, GA OCTOBER 11-14

SCTE.

a subsidiary of CableLabs*

WEI CAI

Network Planning Engineer Cox Communication

