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INTRODUCTION

Rationales

o Irregularity and more fluctuations

o Bigdata

o Similarity in traffic patterns across >
time series
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BACKGROUND: LEARNING MODELS

ARIMA

ARIMA models are designated by Autoregression, Integration and Moving average

ARIMA
M

I I
Auto Regression Moving Average

Integration

Integration
has to do with
data
transformation

ARIMA structure
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BACKGROUND: LEARNING MODELS

XGBoost

XGBoost models combines weak learners to form a strong model through iterations
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XGBoost structure (https://blog.quantinsti.com/xgboost-python/)
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BACKGROUND: LEARNING MODELS

LSTM

XGBoost models combines weak learners to form a strong model through iterations
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LSTM structure (https://adventuresinmachinelearning.com/keras-lstm-tutorial/)



https://adventuresinmachinelearning.com/keras-lstm-tutorial/

B SCTE.
CABLE-TEC EXPO.

= ATLANTA, GA > OCTOBER 11-14

BACKGROUND: RESEARCH GAPS

Two major gaps

1. Very few research papers have employed 2. Best selection from different models

a clustering approach into large scale performs better than averaging the results

network traffic forecasting workflow from different models, particularly for
network time series with more volatilities
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METHODOLOGY: DATA PREPROCESSING

Raw data with missing polls Imputed clean data

541 SDADW raw actual
= 541 SDADW clean actual
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Clean data with outliers Clean data with no outliers

541 SDAEI actual with/without outlier
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METHODOLOGY: FORECASTING MODEL SET-UP

Clustering nodes to 4 clusters

cluster_1: aggregated traffic loads

cluster_0: aggregated traffic loads
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METHODOLOGY: FORECASTING MODEL SET-UP

= @Grid search was used to automatically discover the optimal order of
non-seasonal and seasonable parameters at a cluster level.

= Dataset is split into 70%, 20%, 10% training, test and validation sets,
respectively.

= Stationarity of the series are checked.

" SARIMAX models are trained and obtained to make estimation on ~ SAR|MA
fresh test data. _

= MAPE values for both training dataset and testing data set are forecasting

calculated. Procedures
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= Grid search algorithm is used to optimize the parameters at a
cluster level.

= Dataset is split into 70%, 20%, 10% training, test and validation
sets, respectively.

= XBGoost models are trained and obtained to make estimation XGBoost
on fresh test data. _
= MAPE values for both training dataset and testing data set are forecasting

calculated. Procedures
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= Scale data using MinMaxScaler to speed up the learning process
and help model.

= Hyperparameter such as number of layers, layer depths, activation
functions, dropout coefficients are repeatedly tuned at a cluster.

= Dataset is split into 70%, 20%, 10% training, test and validation
sets, respectively.

= LSTM models are trained and obtained to make estimation on LSTM
fresh test data. forecasti ng

= MAPE values for both training dataset and testing data set are

calculated. Procedures
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RESULTS AND DISCUSSION

Table 1 Training MAPE by Models

Model Training MAPE Total
MAPE Range <=3% >=6% & <= 10% >=11% & <= 15% >=16%
SARIMA 1,360 2,828 2,059 ol 11,542 nodes
XGBoost 11,333 55 20 134 11,542 nodes
LSTM 3073 2078 2,909 2,081 11,542 nodes
Table 2 Test MAPE by Models
Model Test MAPE Total
MAPE Range <=5% >=6% & <= 10% >=11% & <= 15% >=16%
SARIMA 982 746 1,175 8,639 11,542 nodes
XGBoost 2,244 2,228 2,870 4,200 11,542 nodes
2,299 3,996 2,753 2,494 11,542 nodes

LSTM




RESULTS AND DISCUSSIONS
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Table 3 Node Counts with <=10% MAPE by Models

Model Node counts with good fit Node counts with
(Mape <= 10%) overfit (Mape <= 10%)

SARIMA 956 586
XGBoost 1,195 3,248

LSTM 2,129 2,278

7 Table 4 Node Counts MAPE by Models
Model Node counts with Mape <= Node counts with
10%) Mape >10%)
SARIMA 101 495
X CBoot 139 457
346 250

LSTM
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