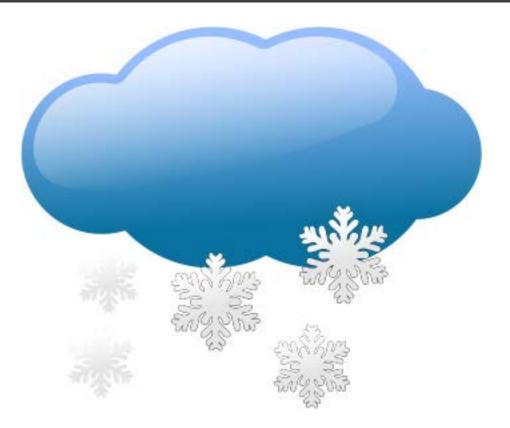
CABLE-TEC EXPO® 2017

SCTE · ISBE

THE NEXT BIG...

CONNECTION INNOVATION TECHNOLOGY LEADER NETWORK

SCTE · ISBE


Cloud Overlay (CLOVER)

John Jason Brzozowski
Fellow
Comcast

Traditional Cloud Background

Overview

- "The Cloud"
 - So many things, to so many people and companies
 - So many choices...
- Adoption and use of the cloud seeing hockey stick rates of growth
- "The Cloud" is no longer you just using someone else's servers
 - Fueling diverse, aggressive levels of innovation
 - Adopter demand is driving cloud innovation
- Cloud platforms (public, private, or hybrid) are unique
 - Different features, functionality, properties, performance, and costs
- Ballooning of cloud adoption is stretching the limits of traditional networking infrastructure, technologies, and business models

Traditional Cloud Background

Current State of the Art

- No two approaches for leveraging cloud platforms are identical today
- Most approaches loosely fall into one of a couple categories or styles
- Full Service
 - Generally implies migration of adopter application, services, or data (in part or entirely) to a cloud platform or provider
- Dedicated
 - Adopter leverages cloud platforms but infrastructure is treated (and may look) like their own
- Network connectivity is critical in both scenarios, the absence of any or all result in customer impact
 - Lack of network capacity yields poor performance
 - Lack of diversity decreases redundancy and localization

Traditional Challenges and Opportunities

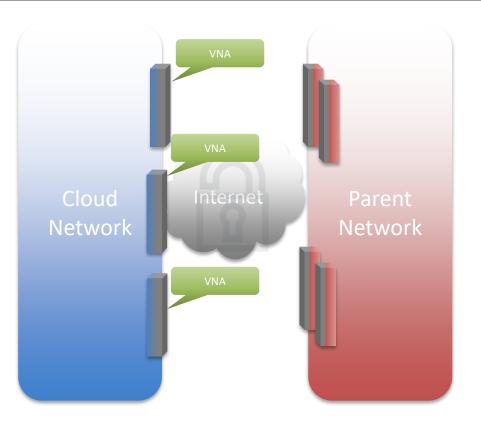
Motivations and Drivers

- Performance
 - Continue to leverage techniques and technologies to improve performance and localization
- Costs
 - Explore opportunities to reduce overall cloud costs
- Interoperability
 - Encourage greater interoperability amongst diverse cloud platforms
- Flexibility
 - Increase deployment options to improve flexibility and elasticity

Next Generation Cloud

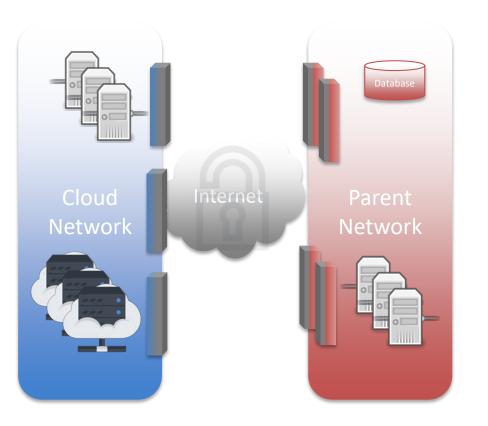
Introducing CLOVER – Cloud Overlay

- Next generation approach to connecting to and leveraging cloud platforms
 - Applies to public, private, and hybrid clouds
 - Leverages existing protocols, no new protocol development required
- Virtually and securely connecting to cloud segments and platforms
 - Using a network "extension cord"
- Support across multiple cloud platforms
- Automated
 - Distributed control where desirable or required



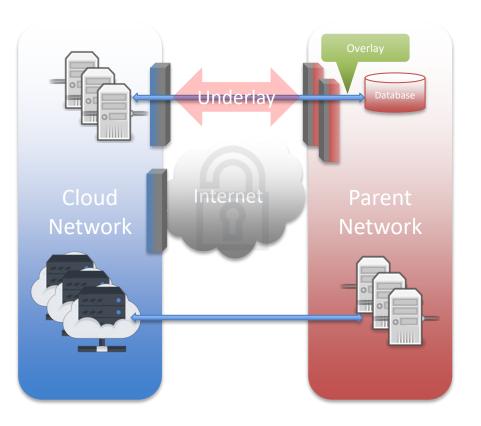
Aggregator

- Aggregation or concentrator network element that terminates secure CLOVER underlay connectivity
- Typically hardware based, but not strictly required
 - Candidate for commodity, high performance computing
- Must be redundant and secure
- Placement in the parent network determines scope of reachability via CLOVER
- Typically reachable over the Internet to maximize usability with third party cloud platforms



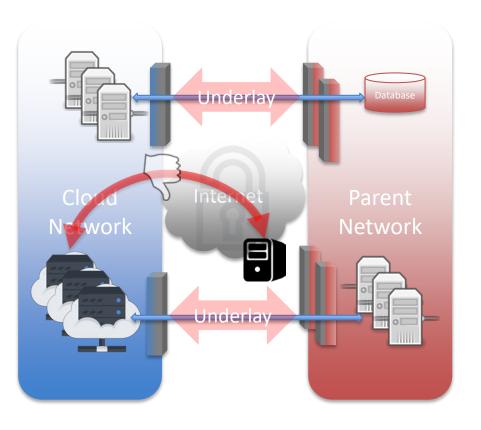
Virtual Network Appliance (VNA)

- Designed to be fully virtualized
 - For flexibility, ease of deployment, and maintainability
- High performance
 - Maximizes the performance of the underlying cloud platform computer and network
- Support for secure underlay communications
 - IPSec over IPv6 or IPv4
- Commercial or open source
 - Third party images available natively in many third party clouds
 - High performance open source platforms including VPP via fd.io



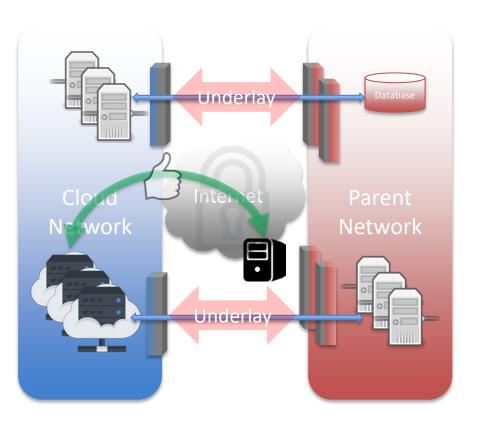
Hosts

- Bare metal or virtual machines
 - Resident on the cloud and parent network
 - Must be able to communicate, securely to one another
- End user specific applications, services, and data may be on hosts in a CLOVER deployment
- Hosts with CLOVER are just like any other hosts



Connectivity Models

- CLOVER connectivity defines, determines, and dictates host reachability
 - Applies equally to hosts on the cloud and parent networks
- Connectivity models and properties impact behavior of a CLOVER deployment
 - Performance
 - Localization
 - Capacity requirements for the underlay and overlay
- Underlay are most similar to virtual private networks (VPNs)
 - Except on a much larger scale
 - Underlay for CLOVER is a secure, virtual network connection
- Overlay communications are the actual application or service traffic



Converged Connectivity

- All communications to and from hosts in the cloud to hosts on the parent network traverse a CLOVER underlay
- Internet facing reachability for hosts in the cloud is restricted/unsupported
- Increase capacity and performance requirements for the CLOVER VNA and Aggregators

Split Connectivity

- A subset of host to host communications traverses the secure CLOVER underlay
- Communications to and from hosts in the cloud are permitted directly from the Internet
- Bifurcating communications to and from hosts in the cloud decreases capacity and performance requirements on the CLOVER VNAs
 - Potentially improves overall performance of a deployment that leverages CLOVER

Deploying CLOVER

- Virtualization and automation are cornerstone concepts for CLOVER
- Leverage programmatic interfaces or APIs for CLOVER Aggregators
 - Automated CLOVER underlay provisioning and decommissioning
 - Ease of migration
- Leverage rich, existing interfaces to public, private, and hybrid cloud platforms
 - Automate the creation, deployment, and provisioning of CLOVER VNAs (virtual machines)
 - Secure underlay can be established from the CLOVER VNA to the CLOVER Aggregator over the Internet, no dedicated connections required
 - Tunable levels of security based on deployment requirements
- Utilize private, public, and hybrid cloud interfaces to build and deploy hosts
 - Automate the provisioning and association of host to CLOVER VNAs
- Deployments can leverage customized network properties
 - IP address families for underlay and overlay communications
 - Use of "bring your own" IP address space (IPv6 and/or IPv4)

Cloud Futures

CLOVER Enhancements

- Enhancements to VNA technology to increase performance and reduce costs and capacity requirements
 - Includes the evolution of open source implementation coupled with advancements in commodity hardware performance
- Explore opportunities that are only possible using IPv6
 - Implement support for IPv6 Segment Routing to optimize VNA to Aggregator communications
- VNA bypass
 - Allow hosts that are CLOVER capable to communicate directly to CLOVER Aggregators, or other CLOVER capable hosts (mesh)
 - The use of IPv6 Segment Routing by CLOVER capable hosts for host-to-host communications

Conclusion

Summary

- Cloud adoption and use will only continue to grow
 - As will the challenges and opportunities
- Cloud providers and platforms will continue to innovate and develop new technologies
 - That end user want and need, or
 - To simply attract new customers
- Cloud adopter realizations include:
 - The need for tools and technology that enable flexibility and increase performance
 - Mechanisms to manage costs
 - Leverage the benefits of diverse cloud platforms, securely
- CLOVER-oriented solutions represent an opportunity and the means to shift the cloud adoption paradigm

SCTE · ISBE

THANK YOU!

John Jason Brzozowski john_brzozowski@comcast.com 484.962.0060

