

CABLE-TEC EXPO[®] 2017

SCTE · ISBE

THE NEXT BIG...

DEAL CONNECTION INNOVATION TECHNOLOGY LEADER NETWORK

\mathcal{O}

Service Assurance: Are You up to the Test?

SCTE · ISBE

SLA Testing with DOCSIS 3.1

Robert J. Flask Sr. Product Line Manager Viavi Solutions

SLA Testing with DOCSIS 3.1

DOCSIS provides access to last mile in Access Network

DOCSIS and Ethernet Testing

DOCSIS is a shared medium.

Servic

Service EV

Service EVC

Service EV

Multiple Ethernet Virtual Circuits (EVC's) can share the DOCSIS network

Physical Link

(DOCSIS

Network)

Business class Ethernet services require tight timing requirements

Legacy DOCSIS asymmetry and jitter introduce error into any timing protocol that traverse the DOCSIS network

Service EVC

Service EVO

Service EVC

Service EVO

Ethernet Services over Legacy DOCSIS is possible the type of Ethernet services have been limited

Typical Metro Ethernet SLA vs. a Legacy DOCSIS SLA

KPI	Ethernet Services	Mobile Backhaul services	KPI		DOCSIS Ethernet Services	
Frame Delay	typical 5 ms - best effort up to 30 ms	8 ms typical 5 ms	Frame Delay		<60ms	
Frame Delay Variation	< 2 ms	/	Frame Delay Var	ation	< 12 ms	
Frame Loss	6.25 x 10 ⁻⁶		Frame Loss		< 0.1%	
Throughput	90.00%		Throughput		95%	
Availability	99.995%		Availability	(99.9%	
Mean-time to repair	2 hours (max 4 hours)		Mean-time to repa	ir	4 nours	

For Ethernet Services in past 2-3 years:

Regularly deployed over DOCSIS

Avoided DOCSIS – used Fiber

Didn't deploy Ethernet Services

Service Activation Test	Description			
Connectivity, Throughput and Auto-Negotiation	Verify basic connectivity Verify best effort throughput Validate auto negotiation settings to identify half/full duplex limitations			
RFC-2544 – Single Stream Pipe test	Industry-standard service activation test for single-service Ethernet and IP (i.e. "pipe" test) Measures key performance indicators and bandwidth profile such as: CIR, EIR, FD, FDV, FLR, CBS (throughput, delay, jitter, packet loss)			
Y.1564	The industry standard service activation test for multi-service Ethernet and IP ("Triple Play") Measures KPIs and bandwidth profile such as: • CIR, EIR, FD, FDV, FLR, CBS			
Layer 2 Control Plane	Confirm transparent forwarding of Ethernet traffic through the providers network			
RFC-6349	Automated and repeatable TCP-throughput test per IETF RFC 6349 standards, including key performance metrics of TCP efficiency and Buffer delay			
Y.1731	Performance monitoring and PM protocol. Can be used for service testing including loopback, frame delay, frame delay variation, frame loss			

What does DOCSIS 3.1 do differently

DOCSIS 3.1 added ability for the DOCSIS Timing Protocol (DTP)

DOCSIS 3.1 adds overall Downstream and Upstream Capacity 2.5 Gbps on downstream (32 SC QAM's + 2x192 MHz OFDM) 1 Gbps on Upstream (204 MHz return with 2x96 MHz OFDM)

DOCSIS 3.1 provides better timing offset calculation (TRO) True Ranging Offset

DTP – provides stable clock from input of CMTS to output of CM

Target accuracy is better than a few microseconds

Accuracy is dependent on the modeling of the CMTS, CM and HFC network

The DOCSIS network looks like a boundary clock

- A Boundary clock communicates with other clocks
- Boundary clocks can be used to bridge between different network transport technologies
 Source: cable labs specification CM-SP-MULPIV3.1-I11-170510

© 2017 SCTE•ISBE and NCTA. All rights reserved. | scte.org • isbe.org

CableLabs Spec defines error budget for different services

Parameter	Level I System (GPS location requirements)	Level II System (Relaxed positioning)	Level III System (LTE Advanced Macro Cell + additional delay for CPE)	Level IV System (LTE Advanced macro cells and small cells)	Level V System – Current DOCSIS implementation
T-cmts-error	+/- 20 ns	+/- 40 ns	+/- 150 ns	+/- 200 ns	+/- 500 ns
T-cm-error	+/- 20 ns	+/- 40 ns	+/- 200 ns	+/- 300 ns	+/- 500 ns
T-docsis-error	+/- 40 ns	+/- 80 ns	+/- 350 ns	+/- 500 ns	+/- 1000 ns
T-source-skew	5 ns	10 ns	100 ns	200 ns	500 ns
T-hfc-error	+/- 7.5 ns	+/- 15 ns	+/- 50 ns	+/- 150 ns	+/- 250 ns
T-cm-cm-skew	100 ns	200 ns	900 ns	1500 ns	3000 ns

© 2017 SCTE•ISBE and NCTA. All rights reserved. | scte.org • isbe.org

Source: cable labs specification CM-SP-MULPIV3.1-I11-170510

We will be deploying DOCSIS 3.1:

SLA Testing with DOCSIS 3.1

Testing PTP performance for SLA

Accurate testing of DTP/PTP timing performance can be enhanced by using external input from GPS and/or CDMA receiver

This provides 10 time better accuracy

One Way Delay (OWD) and asymmetric delay can cause performance problems

SLA testing with DOCSIS 3.1

PTP/DTP One Way Delay testing

SLA Testing with DOCSIS 3.1

Value

.

- Keeps Techs moving and working Sites turned up faster
- Allows for full testing of EVC configuration (QOS, CIR, CBS, EIR, EBS, PIR, Frame Delay, Frame Delay Variation, and Frame Loss)

Example Slide

I have a better understanding of how DOCSIS 3.1 supports SLA based Ethernet Services

SCTE · ISBE

THANK YOU!

Robert J. Flask robert.flask@viavisolution.com 317-614-8125

