CABLE-TEC EXPO® 2017

SCTE · ISBE

THE NEXT BIG...

DEAL CONNECTION INNOVATION TECHNOLOGY LEADER NETWORK

DESIGNING DEEP FIBER NETWORKS

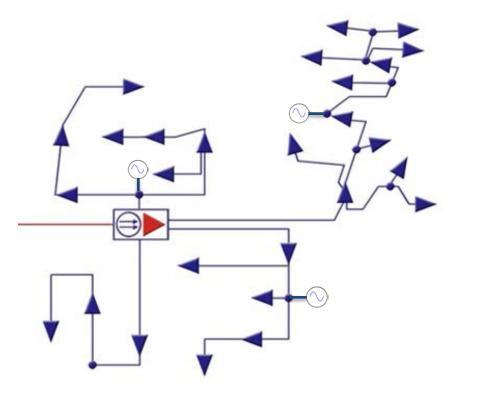
SCTE · ISBE

Fiber Deep Networks andToThe Lessons Learned from the FieldAl

Todd Loeffelholz VP Product Management Alpha Technologies Inc.

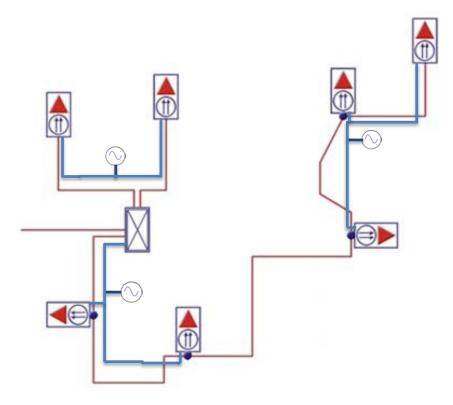
Fiber Deep Overview

What is it?


A calculated step to eliminate amplifiers from the network and focus on smaller serving groups

Benefits

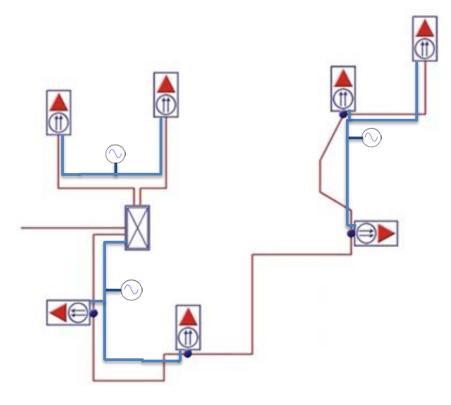
- Increase bandwidth
- Reduction of constant upgrades
- Plant readiness for future technologies
- Drives fiber closer to the customer



Traditional HFC Serving Area

- ➢ Node + 2 Amplifiers (N=2)
 → Node + 10 Amplifiers (N+10)
- Typical: Node + 4 Amplifiers (N+4)
- ➢ Homes Passed ranges from 500 − 2500
- Power Supplies are strategically located to power both the node and amplifiers

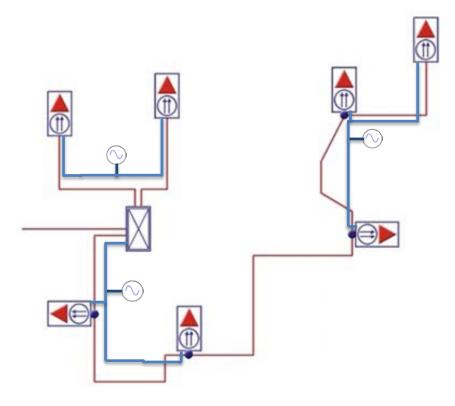
Fiber Deep Serving Area


- Node + 0 Amplifiers (N+0) / (N+1)
- Amplifiers are basically removed from network
- Nodes are pushed deeper into network
- ➢ Homes Passed per node: 50 − 130
- Powering Options:
 - Centralized

No change to powering locations

Distributed

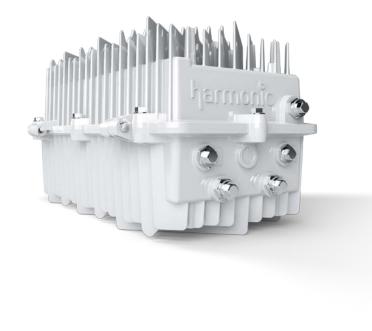
Powering pushes out w/ nodes



Fiber Deep Serving Area

Distributed Powering

- Co-locating Power Supplies close to Nodes
- > Advantages:
 - Higher Power Utilization
 - Future Upgrades
- Disadvantages
 - Fiber Deep Timeline



Fiber Deep Serving Area

Centralized Powering

- Power Supplies do not move
- > Advantages:
 - No need to permit
 - No additional attachment fees
 - No additional meters
- Disadvantages
 - Power inefficiency due to long runs
 - Potentially underutilized power supplies

Remote PHY


Basic Concept

- Split the CMTS Moves the PHY layer into the OSP
- > Benefits
 - Reduces Equipment in the Headend
 - Compatibility with existing CMTS
 - Relatively Simple
- Power Consumption
 - Negligible change
 - From Headend to OSP

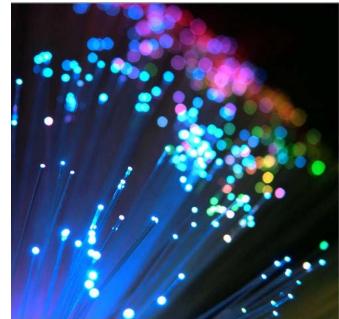
Deployment of Remote PHY Nodes

Key Lesson Learned

- Thermal Impact of Remote PHY Node
 - Testing has shown temperatures greater than 170 F inside of the node
- Power Impact
 - Significant increase to OSP power
 - Understand the load impact and R²I losses

Lessons From The Field

- Always consider future upgrades.
 - Nodes may still need to be split
 - Design for 140W Nodes
 - Re-run power calculation for 180W Nodes
- Overall Power Consumption
 - > Typically no major change
 - Plan for the future


- Build for 180W Nodes Do not re-power
 - Implement additional cabling
 - Implement new routings
 - Review topology changes
 - Do not add additional power
- Minimum 50 VAC at the FD Nodes to maintain a healthy plant
- Utilize Power Inserters to bridge distribution legs

Network Design Considerations – To Fiber or Not to Fiber??

Is it time to go all the way?

- Has the cost of fiber deployments decreased enough?
- Brownfield versus Greenfield
- Is the workforce ready?

Fiber to the Home

Benefits

- Elimination of actives in the OSP
- Future Upgrade Capabilities
- Virtually unlimited bandwidth
 (As technologies progress)

Detractors

- Cost of Construction
- Labor Force Training

Architecture Cost Comparison

Fiber to the Home

Centralized FDH / MST Aerial Architecture

Estimated cost per home passed: 1\$163

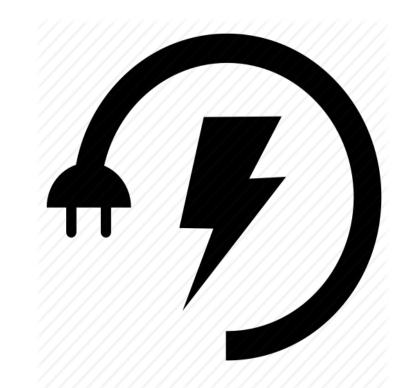
Estimated cost per home connected: 1\$242

5000 Homes @ 40% Connection: \$1,299,000

Note 1: Excludes OLT & ONT Cost

Fiber Deep (N+3) \rightarrow (N+0)

Maintain Powering Locations / Aerial Architecture


Estimated cost per home passed: \$130.5

5000 Homes: \$652,500

Key Take Away:

Significantly lower cost to implement a Fiber Deep architecture!

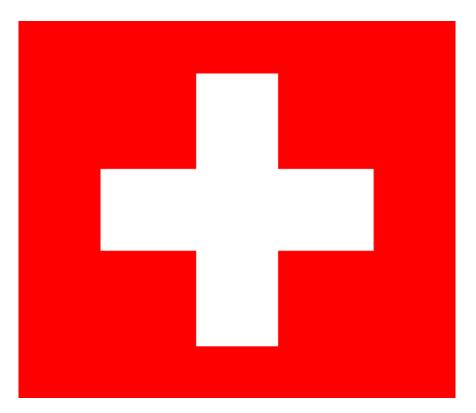
Power Availability

Key Differentiator & Future Revenue

- HFC Network is the most reliable power network in the US
- Typical 2 Hours of Backup (and growing)
- Strong interest in Business to Business
 Services

Power Availability – Key to Differentiation

Business to Business Services


Small Cell

≻ WiFi

≻ IoT

Security &

Surveillance

Conclusions

- Fiber Deep is the next phase of the network evolution
 - Maintain power supply locations
 - Design for Remote PHY Nodes
 - Consider future Business to Business Opportunities
- Remote PHY is coming quickly
 - Confirm the enclosure is designed for the required heat dissipation
 - Maintain appropriate amounts of power headroom

SCTE · ISBE

THANK YOU!

Todd Loeffelholz tloeffelholz@alpha.com 360.392.2172

