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Summary 
Industry focus on stack providers such as VMware and the various OpenStack implementations has 
prevented operators from focusing on the core problem: optimization of the underlying resources. 
Leveraging an integrated Policy-Driven Model-Based Service-Orchestration and Resource-Automation 
framework, we developed a solution where we can optimize the underlying resources, and where the span 
of control for any given virtualization stack is what is dynamically managed. This helps us address 
several of our critical use cases in addition to optimizing raw underlying resources including: (a) power 
management - turning off un-utilized resources, (b) services of bare-metal requirements for CDN, some 
real-time processing applications, etc., and (c) managing the needs of specific virtualization stacks 
(including isolation into secure network zones) required for specific VNF and/or IT domains. 

Introduction 
The systems we are designing now, and will be implementing over the next few years, need to support 
innovation over the next decade.  It is useful to consider potential future scenarios when positing the span 
of control of each system. Consider two system environments: the consumer (home or business) and the 
data center.  

 

 

Figure 1 - Universal CPE 

There are competing formulations of what makes CPE “universal”, with many aspects depending on 
viewpoint. Consumers may want it to be a retail-available next-generation version of the cable modem, 
bringing WAN and LAN connectivity, and to allow for any number of additional features such as 
connected storage, compute, and/or to be converged with their home automation hub.  The operator wants 
to minimize the number of devices deployed at a given customer location to support all of the operator’s 
products at that location – even to the point of deploying a single device - so that the operator neither 
maintains multiple versions of CPE to support any given customer, nor maintains multiple profiles of 
CPE across broad customer segments. When determining the functions to be performed on the CPE vs. 
elsewhere in the operator’s span of control, issues related to latency and the importance of continuity of 
service during loss of WAN connectivity may be important.   
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Figure 2 - Time-of-Day Network Reconfiguration 

For the data-center environment, the ability to get the most benefit at the lowest cost is highly desirable. 
This may mean rebalancing optical links between data centers using Reconfigurable Optical Add-Drop 
Multiplexers (ROADM) to minimize the quantity of the most expensive optics required. To the extent 
that demand drives electricity and cooling costs, managing demand at operator locations throughout the 
day may become an important factor in reducing overall operating costs. Demand-shifting strategies may 
become important, such as making processing payloads “follow-the-sun” (to make use of 
solar/photovoltaic energy while addressing peak demands). Another use case is reduction of number of 
compute centers, for example, using excess capacity in the West or East to serve Central needs based on 
differences in consumption during different times of day, as shown in Figure 2.  

With these scenarios in-mind, we need to identify the most important design principles, the universe of 
resources involved, and the optimal way to manage those resources over the long-term. 

1. First Principles 
1.1. Service Exposure Pattern and Approach 

It is recommended to adopt a top-down, service-centric approach. Specifically, do not define offerings by 
the way they are technologically constructed and deployed (ex.: resources, stacks or physical location), 
but by service functionality, characteristics, interfaces, and consumption model. The service exposure 
pattern has usually been the domain of “cloud” orchestrators and software-only services. It is not identical 
to SOA, but shares many related concepts applied in a more generalized way, including constituent 
hiding, functional service interfaces, well defined attributes, and interfaces to control and automate 
services. It is applicable not only to software-based services, but should include hardware, network, and 
software. The key result: all services exposed through the pattern having the same functional interfaces 
and essential service attribute values are equivalent regardless of composition. 

1.2. Composites and Composability Across Domains 
A Composite is defined as an entity that contains a number of parts, called constituents, that are used by 
the entity as a whole. At any particular time, a constituent may be integral and dedicated for use by the 
whole or, in some cases, may be shared between composites. For this paper, composites and constituents 
are technological resources or services within, or across, one or more domains. 
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Composites can be assembled with one of two high-level approaches: static assembly or dynamic 
assembly. Static assembly implies a tight integration and association between the composite and 
constituents in a manner that is not intended to be changed over time, except as a result of undesirable 
events (ex. breakage) or design changes. Dynamic assembly may, indeed, have tight integration and 
association to the composite, but that association is more changeable in nature and occurs at any time in 
the normal course of composite operation (not only, for example, in response to constituent breakage). 

Virtualized and software-controlled environments make dynamic assembly a more viable strategy as 
compared to a hardware-centric environment.  Moreover, dynamic assembly of composites is essential to 
flexible, responsive, and agile service delivery. This gives rise to the Principle of Dynamic 
Composability: The aggregation relationship between a composite and its constituents should be 
changeable at any time in the composite’s life cycle. 

 

Figure 3 - Domain Diagram 

Each domain and the services it provides should be dynamically composed of resources (and, possibly, 
other services), with such composition being created and changed over time under the control of a higher-
level (sovereign) system, such as the Inter-Domain Resource Orchestrator (IDRO) proposed by BT:  

“The development of rich NFV business cases depends on agreeing [on] each layer's responsibilities and 
the application programming interfaces (APIs) and service-level agreements (SLAs) through which each 
exposes its functionality to others. Otherwise, BT points out, nonsensical scenarios will arise, such as an 
NFV IaaS provider ceding resource allocation control in its own infrastructure to its customer's NFV 
Orchestrator (NFV-O). […] Global resource management is parked in the NFV-O alongside service 
orchestration, but BT and others argue that it should be separated out into a fourth layer: the inter-domain 
resource orchestration layer.” (Chappel, 2015, p.3) 

This arrangement enables global, end-to-end, policy-controlled decisions to be centrally determined and 
to take effect uniformly across and between the domains. Indeed, resources could be provided to one 
domain for a time and then reassigned to another domain, driven by global decisions and policies arising 
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from, for example, business needs or operational considerations that exceed the scope of any one of the 
domains. 

1.3. Resource Abstraction 
Expect resources to change over time as services, technologies and costs change. Focus on a stable, 
extensible approach to achieve thorough implementation and consistent reuse of policy and business 
logic. Resources will converge. Policy and business logic will be used to create business differentiation. 

Incorporate abstraction and software infrastructure convergence so resource changes are seamless and 
straightforward. Make certain that any service can call upon, consume and control resources from any-
and-all underlying infrastructure or cloud systems (i.e., compute, storage, networking, and future systems) 
so evolution is modular and straightforward. 

Virtualization Stacks should be Composites supporting the Dynamic Composability Principle and Service 
Exposure Pattern, and should be managed with a layered operations automation approach that composes 
the resources and services and exposes the desired interfaces and functionality without revealing their 
composition. 

1.4. Optimize for the Business First 
Optimize for the business first and the infrastructure second. Expressly enable optimized recurring 
configurations, even if they are different in different organizations. Optimize infrastructure at the raw 
resource level (i.e., compute, storage, network links, PNFs/VNFs, stack licenses, etc.), not at the finished 
configuration level. Enable the business first. Execute, control and assure the full operational lifecycle of 
services for maximum efficiency, reliability and value. Do not stop at fulfillment. 

 

 

Figure 4 - The Relationship Between Virtual Instances and Customer Instances 

1.5. Model Based Approach 
Use models to operate the lifecycle of services and the resources. Manage the models to manage the 
service or resource. Encapsulate service lifecycle operations using a consistent, model-based service 
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induction methodology so operations logic is portable and can be understood and simulated alone or in 
context. 

Control operations via design-able, reusable policy models.  Encapsulate business logic in policies. 
Design policies once and reuse them across multiple services, offers and applications as needed. Policies 
scale in a way that people cannot. 

Expect hybrid cloud, inter-cloud, NFVI, and hyper-converged infrastructure models to present and 
reinvent themselves over time and be ready to include them.  Choose a methodology and a platform to 
allow modular flexibility to progressively add innovative resource types as required.  

Perform service level cost modeling before and after implementation to identify and prioritize business, 
operational, financial and compliance factors. Let the numbers drive the resource and operational 
decisions. Remember, the cost to automate should be compared against the cost of not automating, 
including the development and support of M&Ps which will often have a comparable cost to automation 
independent of how often the M&P might be utilized. An M&P that is rarely used is more likely to 
introduce uncertainty than the corresponding automation. 

2. Resources 
For the purpose of this paper1, we will address two major classes of generalized telecommunications 
resources, separating them into compute (processing, storage, etc.) and links (networks). Improvements in 
hardware capabilities have resulted in general purpose hardware being able to displace specialized 
hardware needed for supporting network functions. The ability to deploy virtualized network functions 
(VNFs) and the separation of the data plane and control plane in networking enables the creation of 
physical (underlay) networks and the use of software to control the realized (overlay) networks in a 
manner that can be flexibly reconfigured as needed. These trends are both in-line with what we would 
expect from general technology evolution - but are far from where this evolution will end. 

Responsible architectural analysis and design will contemplate both the implications of these evolutionary 
steps, predict the likely vectors of subsequent evolution, and determine if it is worthwhile to predispose 
solutions to support any specific vector. Optimal placement of compute and link capacity is moving from 
highly specialized fixed components to components that are generalized and more flexibly configurable, 
creating a rather complex resource utilization problem. 

Placement of general purpose (compute) resources should be contemplated for these variants: locally on 
customer premises (CoP, Compute on Premises), regionally (as it relates to the provider network), 
centrally (as it related to the provider), and remotely (third-party). Similarly, (network) links should be 
                                                 

1 This differs from normal treatment in that what is normally referred to as compute is described 
as processing, and the term compute is used to describe both processing and storage. Similarly, a 
third class is often referred to as networks, whereas here, the term links is used instead. 
Components such as switches or routers are often classified as “network” rather than as compute, 
however, they are packet processors, and as they become virtualized, may be replaced by 
generalized compute. As such, the paradigm of “compute, storage, and network” is replaced with 
“compute and links”, which is more germane to this analysis. 
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contemplated as they connect the customer premises (access), connect resources (data-center), connect 
regional data-centers (metro), connect centralized data centers (backbone), and provide for connection to 
third-parties (interconnects). 

Service Provider facilities encompass a variety of configurations and locations into which generalized 
compute resources are placed. These facilities range from large, centralized data centers to regional data 
centers, to edge facilities. The evolution of the kinds of generalized compute resources that are placed at 
each of these facilities, and the mix and scale of compute resources within them will be dynamic and 
ever-changing (ex.: hybrid cloud, inter-cloud, NFVI, and hyper-converged infrastructure, etc.). In tension 
with these trends is the goal to select and manage compute resources in a manner that makes them usable 
by the largest set of services over time without the need to perform manual/physical changes; once put in 
place, the same compute resources should be usable by any service’s software elements as long as the 
resource meets the minimum capability profile for the software element. 

At present, CoP devices are likely to be x86-based, but, at scale, more cost-effective solutions are 
expected to emerge. Over time, device capability will improve, with the potential for device availability 
through retail channels and device upgradability (ex. compute capacity). These dynamics will further 
fragment the uniformity of capabilities across the device population. Independent of capability, these 
devices will be expected to support a combination of services, as subscribed to by the customer.   

As denser alternatives to x86 CoP devices become popular, the desire to benefit from this in the 
datacenter will begin to gain momentum, and we will see a combination of hybrid virtualization stacks 
and virtualization stacks dedicated to dense packet processing. 

More capable CoP devices may be able to reduce the traffic demands on the access network, and 
depending on business models and who provides the CoP device, the bandwidth allocation on the access 
network may need to be dynamically adjusted to accommodate placement of network functions on the 
CoP or remotely. 

The concept of Universal CPE (uCPE) is closely tied to Compute on Premises (CoP). The understanding 
of what constitutes uCPE may lay within the perspective of the stakeholder, and even then, could be 
differentiated by the role.  For Service Provider (SP) product managers, the universality of uCPE could 
mean that it will support any combination of services that SP offers, for instance, some combination of 
video, voice, internet connectivity, home security and/or home automation services. Supply Chain or 
Field Service stakeholders might also include flexible (possibly modular) support of a multitude of WAN 
connectivity options. Additionally, we can expect the desire for this to be equipment provided by the 
customer and available in retail outlets, in order to reduce expected capital outlays. For retail-available 
components, the relationship between the connectivity aspect and CoP aspect of CPE may be severed, or 
at least may include the ability to modularly supplement CoP with devices such as NAS and Home 
Automation Hubs. 

The desire for CoP, from the consumer’s perspective, goes beyond simple optimization of compute and 
links, but includes capabilities such as caching of IoT data or the desire to improve performance of 
automation capabilities by having some of the decision processing occurring on-site. Retail providers of 
CoP will want to optimize cost at volume, and even if x86-based devices were the preference of the SP 
community, the OTT and IoT communities would likely move to a more cost effective dense packet 
processor. As VNFs evolve towards a micro-service orientation, the CoP domain is likely to be a hybrid 
of SP and customer-provided compute resources; therefore, convergence is expected across SP-services, 
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OTT-services, and IoT device capabilities. The question isn’t whether the CoP will evolve to support 
multiple processing paradigms, but whether the edge-compute and centralized-compute environments will 
also embrace supporting a hybrid of x86-based and dense-packet-processing-based paradigms. Similarly, 
we will have to consider management based on the availability of equivalent VNFs for each of the 
compute paradigms. The need to satisfy multiple compute domains across multiple service offerings that 
are provided and managed by multiple parties will greatly challenge the practice of treating compute as a 
resource under the control of the SP NFV architecture.  

An implication of the convergence of CoP usage is the provider/consumption model for CoP itself. 
Consider that businesses and residences are inherently dependent on the managed delivery of services 
such as power, water, and sewer. In fact, it is the rare circumstance that these services are offered and 
consumed as anything other than fully-managed services. It may be that within a short amount of time 
businesses and residences will also become inherently dependent on fully-managed CoP, used as assumed 
infrastructure. The main aim of such a managed CoP service is to provide available infrastructure 
positioned between the home network and external networks for use by multiple services and parties.  

3. Resource Consumption 
Many applications utilized by enterprises, which may be the most common class of applications 
supported in the IT environment, require a highly available infrastructure. A highly-available 
infrastructure drives the need for expensive components. Virtualization stacks that offer high-availability 
and nearly transparent VM migration are likely best suited for such enterprise applications, but, this 
approach, generally, comes at a cost premium as compared to an approach where the virtualization stack 
does not offer those capabilities and the application is designed accordingly. 

 

Figure 5 - Enterprise Application Model vs. Cloud Application Model 

The Cloud Model, which is becoming more prevalent, especially in the service provider (SP) space, shifts 
the burden from the infrastructure to the application (depicted above). The application is designed to 
account for the fact that a fault may occur in the infrastructure and it must handle these additional failure-
case scenarios itself. The virtualization stack in the cloud-model is responsible for making sure that the 
elastic infrastructure demands of the application, especially those used for self-healing, are handled 
transparently, and that seemingly immutable infrastructure is supplied to the application on-demand.  

Significant application re-design is required to move an application from the Enterprise Model to the 
Cloud Model, and the expense, which may or may not be capitalized as NRE, may not be warranted for 
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many applications. For those situations, continued use of high-availability virtualization stacks becomes 
appropriate. 

On the other hand, the nature of the Enterprise Model may limit the availability potential of the 
application to roughly 99.9%, which meets the requirement of many IT applications, but doesn’t meet the 
requirement of many SP applications, which require either three-nines-five (99.95%) or five-nines 
(99.999%) availability. 

In keeping with the ‘Business First, Resources Second’ optimization principle, we believe it is important 
to support a reasonable number of environments such as the ones above so that the various constituents 
gain repeatable, optimized environments that suit their specific needs.  

 

Figure 6 - Desired Relationship of Stacks to Resource Pools 

Many virtualization stacks support multi-tenancy, and this is something that should be employed with 
great caution, especially with service provider applications that leverage and depend on the SDN 
capabilities integral to these virtualization platforms. We must avoid putting operations in the position 
where one tenant application requires a specific version of a virtualization stack that conflicts with 
another tenant application’s requirements due to known compatibility issues. Additionally, secure 
isolation enforced at the network level may be more realistic than performing (ore relying on third-parties 
to perform) security audits on the virtualization stack. 

In this approach, virtualization stacks should be treated as resources, just like compute and storage, that 
are consumed based on policy and the actual requirements of the service being placed. OpenStack, 
VMWare, containers, bare metal and future stacks should all be enabled to the degree they are required by 
the services. Resource optimization will still occur, just at the layer underneath stacks, through the use of 
common processing and link resources to the degree permitted by the services. 

From an equipment standpoint, the goals are to have the smallest possible footprint required to meet the 
demands, and to maximize utilization and reusability while minimizing ‘flavors’ of equipment, and, 
therefore, to minimize CapEx. A related goal is to ensure services are portable across different 
infrastructure platforms and providers so the SP is free to take advantage of lower cost options as they are 
available. 

4. Automation 
Automation, Workflow and Orchestration are utilities that are manually operated or reactively triggered to 
achieve a specific result. They create leverage for human operators and significantly reduce the manual 
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steps required in a given process. Today there are common tools for deployment, also called fulfillment, 
of cloud services.  

While their names might lead one to believe otherwise, these utilities do not cover the full operational 
lifecycle of a service. Today, their actions are limited to deployment, single-app scaling and application-
based fault tolerance at best. This is not to say they are not useful - only that they aren’t as broad as they 
may seem. 

A comparison of scripts, automation, workflow, orchestration and sovereign systems is shown below in 
Figure 7.  The top line in the diagram shows these utilities compared to one another in terms of suitability 
for single vs. multiple tasks, synchronous (potentially single-threaded) vs. asynchronous (potentially 
multi-threaded) operations, and their abilities to incorporate rules and policies.  The lines below address 
the levels of information with which they can interact.  Finally, the bottom line shows the level of 
intelligence they can encapsulate. 

 

Figure 7 - Comparison of Scripts, Automation, Workflow, Orchestration, and Sovereign 
Systems 

The hierarchy of automation that begins with scripting. Scripting is a series of commands run in a specific 
sequence, and is kicked off by calling that script. Automation builds upon scripting by explicitly 
removing the manual need to invoke the script. Automation can be invoked based on some scheduling 
system or trigger. Scripting and Automation are typically focused on accomplishing a specific task (or 
closely related set of tasks) in a single- threaded or synchronous manner.  

Automation is a utility that exists at many levels in the software and hardware of a cloud. It provides rule-
based actions and reactions for a single task. Automation is very useful, but it is generally limited to a set 
of known actions. Automation can perform poorly in the face of previously unseen conditions 
(exceptions). Automation systems cannot be used effectively for integration because they only focus on a 
single task at a time. 

Workflow builds upon scripting and automation by executing a series of loosely related tasks, retaining 
the single-threaded/synchronous nature. It is a utility that provides rule-based actions across multiple 
tasks. Workflows are commonly used to execute processes. They are single threaded per task. Like 
automation, workflow systems can perform poorly in the face of exceptions.  
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Figure 8 - Evolution between Scripts, Automation, Workflow, Orchestration, and 
Sovereign Systems 

Orchestration deals with the relationship between multiple workflows in a multi-threaded asynchronous 
manner, and can deal with invocation at multiple points of a process based on rules. 

Orchestration systems are commonly used for deployment of applications across cloud resources. They 
might spawn a thread to acquire compute resources, and deploy and configure software on those 
resources, while another thread acquired storage and configures it, all for the same application. While 
orchestration systems typically terminate an activity when fulfillment is complete, there are some that can 
be called repeatedly to affect scaling.  Beyond deployment, initial configuration, scale, and 
decommissioning, orchestration systems do not effectively address other aspects of the operational 
lifecycle of a service. 

4.1. Resource Management 
Model-Based Systems (MBS) are being deployed to close the gaps in automating fragmented manual 
operations. MBS are replacing Run Book Automation (RBA) systems, which traditionally are fragmented 
and costly because they rely on manual scripts and templates that represent legacy software. Furthermore, 
RBA is constrained to only those operations for provisioning, which are often specific to one 
infrastructure domain (i.e., Compute or Network or Storage and their related configurations). The one-to-
one relationship of RBA binds automation to a vendor’s technology implementation. Not only is the SP 
wedded to that vendor, RBA also limits automation to simply those provisioning transactions for a 
specific infrastructure technology. RBA requires the vendor’s customer to maintain multiple teams of 
operating experts to administer and manage its various systems. These teams are repeated in each 
technology domain. MBS solve the RBA problem through advanced abstraction by de-coupling and 
converging automated operations. Through automation, MBS significantly reduces OpEx and improves 
resiliency, control and availability of those services consuming the underlying infrastructure. 

It is typical in the NFV and IaaS/PaaS spaces for solutions to provide an end-to-end ecosystem that can 
manage almost any task required. The question becomes, even if they can, should they? What is the 
appropriate set of criteria to make those decisions? One could make the argument that each link-domain 
and each compute-domain should be managed by an independent domain-specific controller 
(orchestrator) and that coordination between these domains should occur using a higher-level (sovereign) 
system. This does not mean that these domain specific systems don’t communicate with each other, but 
there would be no static configuration between them and no clear master among them. 
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As resources increasingly move to orchestrated virtualization, operators will see the number of resource-
oriented orchestration systems increase in their network. For most domains, there are orchestrators that 
handle that specific domain; but, there is also a need for a higher-level orchestrator which is orchestrating 
the end-to-end as a whole. Similar to the situation for early automation and workflow-based control 
systems, directly integrating third party components tends to increase capital burden over time (left-side 
of diagram below). That approach becomes an integration nightmare and locks in domain orchestrators. 
By using a higher-level cross-domain orchestrator, policies can be defined generically and then applied 
down into the domain orchestrators. This preferred approach enables policies to span domain 
orchestrators, allowing for quicker introduction of new domain orchestrators over time with reduced 
integration overhead and minimal redesign. 

 

Figure 9 - Integration Platform 

The desirable approach is to have an integration platform intermediate between resource orchestrators 
(right-side of diagram above). It is necessary to avoid use of a simple automation or workflow-based 
integration platform for this purpose; use, at a minimum, an orchestration-capable platform to act as this 
integration layer. 

As offers become more complicated, a cross-domain orchestrator is needed. Offers like in-home services 
require a handful of additional service provider services in order for them to work properly; examples 
include physical network, overlay network, firewall, CoP or CPE device, etc. The ability to coordinate the 
service across domain orchestrators is critical to understanding the overall SLA for the end customer 
offer. 

Service deployments are becoming more complex and need to be deployed faster in order to keep up with 
demand. The ability to abstract common functionality into reusable and highly-reliable service models 
enables deployment to be faster and creates a better service experience. These models should be 
abstracted from the underlying stacks to make them portable across infrastructure and component 
services. 

 

The ability to dynamically adjust to real-time telemetry to ensure the SLA and service needs being met at 
all times is going to become very critical. The number of services that will need to be supported by 
service provides is increasing quickly and the budget for operations is only going to shrink. Autonomous 
Operations enables the ability to automated known tasks, scale up repetitive tasks and execute them at 
computer speed with customer accuracy. The days of having people manually monitor and operate 
services is going to come to an end given the size and complexity of what is coming. 
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4.2. Sovereign Systems 
Sovereign systems are top-level controllers that operate multiple services together in context with each 
other and across varied sets of infrastructure. Such systems are almost always model-based and use 
models to analyze, predict and manage the operation of services on top of ‘real managed things.’  

Sovereign systems combine four key elements: (1) stateful awareness, (2) converged declarative 
telemetry, (3) late-binding policy, and (4) abstraction. A runtime, state-aware process that understands the 
needs of all of the services, capabilities and capacities of all the resources, and the requirements of the 
policies simultaneously. Converged and declarative telemetry related to each service. (Note: declarative 
telemetry means the service declares the telemetry that is important and relative to it and consumes that 
data specifically.  Contrast this with the more typical raw event data that has missing context and requires 
correlation.) Policy control is applied continuously to manage the automated processes across the service 
or resource lifecycle. An abstraction layer separates the traditional infrastructure systems and controllers 
from models that define the service’s operational lifecycle. 

Sovereign systems sit above traditional infrastructure systems and controllers (e.g.: scripts, automation, 
workflow and orchestration) and below traditional OSS/BSS systems and portals. They do not replace 
these systems. Sovereign systems typically receive an order from an OSS/BSS system or portal for a 
service and then work through an API fabric to operate infrastructure systems and controllers, to gather 
telemetry, and to exert control on services and resources to fulfill and lifecycle operate the ordered 
service, enabling these systems to operate autonomously.   

Key differentiators of Sovereign Systems include: 

1. They operate continuously, covering the full service-lifecycle.  
2. They run many services simultaneously, in context with each other. 
3. They operate under policy control and make policies real in the services and infrastructure 
4. They are stateful and understand the meaningful condition of each service 
5. They understand resources and capacity and know how much capacity remains 
6. They contain a real-time ‘as-built’ graph of the cloud components they are responsible for and a 

real-time dependency map.   
7. They understand service level health, and can remediate, migrate, scale, and move services 
8. They can handle complex multi-stage activities like upgrade  
9. Sovereign systems can be programmed to learn from experience, and services operating under a 

sovereign system can learn from each other.  

Sovereign systems make use of automation and orchestration utilities that exist southbound where 
appropriate. For instance, it is common for a Sovereign system to use automation and orchestration 
utilities presented by stacks like VMWare or OpenStack.  
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Figure 10 - Dimensions of Machine Learning 

Through modeling, sovereign systems allow methods and procedures (M&Ps) to be written in software 
rather than on paper, and they allow these M&Ps to be executed with computer speed and reliability.  

Where historic cloud approaches have previously attempted to address deployment and configuration 
only, a sovereign system addresses the full lifecycle of a service: order, deploy, assure health, assure 
compliance, remediate faults, failover if required, upgrade, move, port, and destroy/delete. Because they 
address they the full lifecycle, Sovereign systems have the potential not only to mitigate the additional 
OpEx that comes with virtualization and cloud, but also to change fundamentally the cost of business by 
eliminating manual work. 

Sovereign systems also need to address very specific concerns related to the potential to accelerate and 
amplify the effect of failures. Domain orchestrators may not act as expected, either due to malfunction or 
issues in the how they were modeled. The sovereign system must be able to predict the degree of impact 
that is expected, monitor the implementation, detect when such an anomaly occurs, and accommodate the 
anomaly as it can. It should employ circuit-breaker logic with corresponding alarming and notification, 
rather than enforcing changes that could spiral out of control, or that might result in excessive 
reconfiguration and possibly reconfiguration loops.  

A point of clarification is that Sovereign Systems should not be confused with the concept of data 
sovereignty.  Data Sovereignty is a policy that states where data can be stored or routed or used.  For 
instance, the Australian National Healthcare System has a data sovereignty requirement that the medical 
information for Australian citizens can only be stored, routed and used within the nation of 
Australia.   You may use a Sovereign System as one way to accomplish this (there are others), but 
otherwise the concepts are not connected. 

5. Proof of Concept 
We created 3 different proof-of-concepts (PoCs) with a Sovereign system from Sea Street called StratOS. 
These PoCs were designed to prove out the concepts described in this paper across different types 
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services, which includes service provider services, customer-facing offerings and 
implementing/integrating multiple stacks together across domains in the IT operations domain.  

For the service provider service we used video encoding. This PoC deployed, configured and managed 
the operational lifecycle of encoders deployed on bare-metal blade servers. The StratOS system modeled 
the behaviors of the encoders, video streams, video quality monitoring devices and the infrastructure 
deployed on. StratOS models each component in the system and aggregates these components into 
higher-level models that provide a combined higher-level view of the end-to-end server. This means that 
the StratOS system has a complete and fully stateful awareness of the entire encoder system. This 
includes the encoder location, configuration, mapping of the health of each video stream both upstream 
and downstream of the encoder. Once deployed, the system collects telemetry from the infrastructure, 
encoders and video quality devices and converges this data to determine the health of each individual 
stream, the infrastructure, encoder application, network, etc. Policies are then applied to the converged 
data to determine what action, if any, is required to be taken. For example, if the output video quality 
device reports “no video”, the source quality device would be checked to see if the issue is an encoder 
issue or upstream from the encoder. Given these data points, StratOS would then take actions, as needed, 
to remediation to solution such as failover to a standby encoder.  

For the customer-facing offering we focused on building a managed router solution with virtualized 
network functions (VNFs). This PoC created the overlay network for a managed router customer utilizing 
VNFs (i.e. firewall & content filter) from multiple vendors. The StratOS model for this deployment 
created each VNF individually and provided the required configuration to connect the service chain 
together. As with the encoder PoC, the StratOS model contains higher-level models that aggregate lower-
level models together enabling StratOS to operate the operational lifecycle at both an end-to-end offer 
level and component level. This late-binding of network services proved the ability for a Sovereign 
system to be able to create dynamic offers for customers based on individual needs. In the PoC we created 
multiple types of SLAs that can be applies to each customer to determine the HA configuration of the 
service chain, determined placement of services and types of VNFs to be used. Once deployed, StratOS 
collected telemetry from each of the VNFs, network and the CPE devices to determine the health of the 
end-to-end offer. When a failure in the offer is detected, StratOS was able to failover the customer to a 
new service chain within seconds and automate the remediation of failed service chain.  

For implementing/integrating multiple stacks together we looked at the IT Operations challenges where 
private local networks use one type network and the operations backbone uses another. For this PoC 
StratOS modeled the generic requirements of an IT operations system; a set of VMs and network access 
to NTP, DNS, the Internet and other private networks. StratOS then determine the correct configuration 
required within in each environment in order to create the proper routes in the multiple networks showing 
that a Sovereign system can work across and connect multiple environments.   

In each of these cases, the StratOS models are designed to be portable across infrastructure through their 
abstraction layer. In some cases, we ran the same PoC across different infrastructure stacks and vendors 
without changing the models or policies defined in StratOS.   

During the proof-of-concept work we did, we examined the cost savings for two of services: (1) managed 
router and (2) video encoding. The result of these analyses showed additive operating savings beyond the 
benefits of virtualization and standardization of 41% and 31%, respectively. These projected savings were 
gained through the efficiencies of automated failure detection and remediation, fewer human errors and 
consistent operations engendered from lifecycle automation.  
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Services that don’t scale often and are stable will see closer to a 30% cost savings through automation, 
while services which are very dynamic, tend to be less stable, or are scaled often will have closer to a 
60% cost savings. 

 

Figure 11 - Factors that Impact Potential for Operational Savings 

Automation of the Operational Lifecycle of Services reduces operating costs by: 

• Automating manual tasks typically taken on by tier 1 and 2 operations staff, these include typical 
daily tasks such as monitoring and telemetry convergence, and less frequent tasks such as failure 
detection, troubleshooting, cause determination and remediation.  

• Automating deployment of applications and services, including upgrades and mass configuration 
changes (e.g., re-IPing a service), through common models that contain instance specific 
properties. 

• Automating security requirements/audits, capacity management, service/datacenter load 
balancing and other maintenance tasks performed by operations.  

• Automating the recovery of a failed offer, application or service by whatever means necessary to 
get the offer or service up and running again. This includes changes to compute instances, 
network configuration and more.  

• Automating the data flow between the offers, OSS and BSS systems reducing the need for 
operational staff to enter or translate data to multiple systems. 

• Automating the collection of log and other data needed to analyze failure and determine what 
actions need to be taken to prevent similar failures in the future. 

An interesting phenomenon we ran into when evaluating these cost savings relates the relative fallacy of 
contemplating these as true savings; they may be more accurately described as cost avoidance. 
Companies typically have a finite pool of resources that they attempt to spend in an optimal fashion, with 
far more demands than the budget can accommodate. Reducing the cost per action will often allow the 
company to do more using the same budget, thus a “savings” or “avoidance” of 33% might be more 
realistically viewed as increasing the operational capacity of the organization by 50% (you can do half 
again as much as before) and a cost savings of 67% can be viewed as tripling the operational capacity of 
the organization! 

 

Figure 12 - Factors that Impact Potential for Operational Expense Cost Avoidance 
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While claims of 33%-75% may be hard to believe. Being able to operate 2x – 10x the amount of 
equipment (the equivalent of 50%-90% “savings”) is easier for people to understand. 

 

Figure 13 - Using Virtualization-Enabled Automation to Empower the Workforce 

The reality may lay someone in between, for example, leveraging virtualization-enabled automation may 
enable a smaller workforce to handle 5x the amount of equipment with half the expense rather than 
achieving a 90% cost savings. 

Conclusion 
Although virtualization increases the complexity of solutions, it enables highly flexible automation. 
Initially, only a few things may leverage this virtualization-enabled automation, however, it will become a 
pervasive technology paradigm. To prevent virtualization for the sake of virtualization and over-
integration of technologies from disparate domains, it is important to have a future-state vision that can be 
used to guide decisions. Although it is tempting to describe the benefits in terms of cost savings or cost 
avoidance alone, the theoretical costs would likely have been prohibitive, and an expression of 
operational efficiencies (do-more-with-less) may be more realistic. 

Abbreviations 
API Application Program Interface 
BSS Business Support Systems 
CDN Content Distribution Network 
CoP Compute on Premises 
CPE Customer Premises Equipment 
IaaS Infrastructure as a Service 
IDRO Inter-Domain Resource Orchestrator 
IoT Internet of Things 
IT Information Technology 
LAN Local Area Network 
M&P Method & Procedure 
MBS Model Based System 
MBSE Model Based Systems Engineering 
NAS Network Attached Storage 
NFVI Network Function Virtualization Infrastructure 
NFVO Network Function Virtualization Orchestrator 
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OSS Operations Support Systems 
OTT Over-The-Top 
PaaS Platform as a Service 
PNF Physical Network Function 
PoC Proof of Concept 
RBA Run Book Automation 
ROADM Reconfigurable Optical Add-Drop Multiplexer 
SLA Service Level Agreement 
SOA Service Oriented Architecture 
SP Service Provider 
uCPE Universal Customer Premises Equipment 
VM Virtual Machine 
VNF Virtual Network Function 
VNFM Virtual Network Function Manager 
WAN Wide Area Network 
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