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Open CDN for Managed Video Delivery to Multiple Screens 

 

ABSTRACT 
 

The primary goal of a content delivery network (CDN) is to scale content libraries and bandwidth by 
utilizing distributed caching, as opposed to replicating entire libraries at each serving location in 
the network. Furthermore, in order to support multiple screens including existing and next-
generation set-top-box-connected televisions, personal computers and other IP-enabled devices, the 
edge caches of a CDN must support multiple delivery mechanisms such as User Datagram Protocol 
(UDP) streaming to existing QAM-based set-top boxes and Hypertext Transfer Protocol (HTTP) 
streaming and progressive download to IP devices. We propose an open CDN architecture that 
interconnects such heterogeneous edge caches to origin servers. The architecture is based upon 
open interfaces between tiers of the CDN hierarchy and between various functional planes of the 
CDN. Interfaces are layered on top of standard HTTP with Representational State Transfer 
(REST), with certain extensions and message formats to account for multi-screen video-related 
functionality. We describe the motivations behind our choice and show how the proposed 
architecture may be used by operators to deploy a fully standards-based converged CDN. 

 

 

1. INTRODUCTION 
 

One of the primary goals of a content delivery network (CDN) is to scale content libraries by 
utilizing distributed caching, as opposed to replicating entire libraries at each serving location. 
Distributed caches offload capacity from core networks, simultaneously allowing to optimize 
network bandwidth, reduce latency, and to scale end-user bandwidth.  

Video-on-demand (VOD) systems sometimes employ a form of distributed caching using the 
concept of asset propagation. In such networks, illustrated in Fig. 1(a), a central element monitors 
content popularity and pushes selected content to selected servers, with the goal of ensuring that 
popular content is pushed to edge VOD servers and unpopular content remains at centralized VOD 
servers. This represented a natural progression from the classical client-server model of previous-
generation VOD networks. Such an approach might suffer from a central bottleneck, namely, the 
asset propagation system, which needs to monitor and process the access patterns in the entire 
network. In contrast, edge caching CDNs are based on a “pull” model, illustrated in Fig. 1(b), 
wherein all content is placed in origin servers, and caching decisions are made in a distributed 
fashion in each node. Content is requested by a downstream node to serve cache misses, and/or to 
fill its own cache, based upon the locally resident caching algorithm. This approach promises to 
yield highly scalable CDNs for managed video delivery.  

In short, edge caching CDNs are based on the following broad principles: 

• A content management system that prepares content and ingests it into origin servers. The 
origin servers provide the authoritative location for each asset served by the CDN. 
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• Distributed caching servers that pull content on a cache miss, directly from origin servers or 
from intermediate caches en route to the origin server. The distributed servers implement a 
caching algorithm based on local access patterns to determine which content belongs in the 
cache, with the primary goal of maximizing cache hit ratio.  

• Portals designed with carefully crafted URI schemes (or resource representations for assets) 
that aid in routing requests to the correct servers in each level of the CDN hierarchy. The 
request routing is typically based on HTTP redirection [1] or DNS resolution [5]. 

• Policy-based content delivery at caching nodes, allowing for flexible CDN management. 
Policies typically allow caches to implement rules such as license windows, token 
authentication, geo-blocking, and various service level agreements. 

   

 
 

Figure 1: Content delivery models 
 
We propose an HTTP-based (RFC 2616) [1] open CDN for managed multi-screen video delivery, 
based on best-of-breed IP principles that have been proven to scale, in support of expanding content 
libraries and increasing subscriber bandwidth. The CDN is designed to conform to principles of 
HTTP Representational State Transfer (REST) [2] in order to ensure cacheability across the CDN 
data and control planes. Most importantly, every server in the CDN is designed to be stateless, i.e., 
the retrieved resource (media asset or control plane artifact) does not depend on prior client requests. 
In order to support multiple screens, including existing set-top boxes with UDP streaming, and IP-
enabled devices, including browser-enabled PCs and connected televisions with HTTP-based 
content delivery, the edge caches of the proposed CDN support multiple delivery mechanisms (as 
illustrated in Fig. 2). 
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Figure 2: Target multi-screen managed content delivery network 
 
The proposed multi-screen managed CDN may be broken down into three planes: 

• Data plane: In the data plane, edge caches support UDP streaming as well as HTTP 
progressive download for video delivery to end users. The rest of the CDN is based on open 
HTTP-based content delivery, in support of both UDP streaming and HTTP delivery edge 
caches. Every data plane HTTP request is designed to be cacheable.   

• Control plane—Request routing: The request routing stratum provides server location 
service in each tier of the CDN data plane hierarchy. We outline several open options based 
on HTTP and DNS, and their relationship with the chosen URI schemes. The results of 
request routing are designed to be cacheable, and amenable to persistent data plane 
connections, so that every data plane request does not trigger a routing request. 

• Policy and management plane: The policy and management plane is responsible for 
enforcing caching and content delivery policies. Policy requests from the data plane to the 
policy plane are primarily based on HTTP and designed to be cacheable. In addition, this 
stratum is responsible for CDN element management and statistics collection.  

Note that the proposed CDN should be viewed as an application of well-known IP principles and 
open standards towards building an infrastructure for managed video delivery. We focus on guiding 
principles for building such an infrastructure, and not on detailed interface specifications, which we 
leave for standards bodies in the industry. 

 4



Open CDN for Managed Video Delivery to Multiple Screens 

Section 2 provides a brief background on HTTP and REST, which forms the basis of our proposed 
CDN. Section 3 introduces the CDN reference architecture, including the three planes enumerated 
above, along with the requirements associated with each. Use cases and applications of the CDN 
reference architecture from an operator’s perspective are presented in Section 4. Sections 5-7 outline 
open proposals and recommendations for each of the CDN planes. Finally, Section 8 summarizes the 
proposed open CDN architecture. 

2. BACKGROUND: HTTP AND REST 
 

This proposal embraces the principles of REST for defining interactions between various 
components of a CDN. Here, we briefly overview those principles. In essence, REST [2] denotes the 
architectural style of the web. Given that all systems have tradeoffs, an architectural style represents 
a set of constraints applied to induce desired architectural properties while accepting certain 
tradeoffs. REST’s constraints are intended to induce properties necessary for large-scale distributed 
hypermedia systems. Some of the key properties of so called RESTful systems are: 

• Simplicity, performance and scalability 

• Loose coupling between client and server 

• Stateless self-describing (idempotent) requests 

• Visibility allowing monitoring, mediation and caching 

• Servers driving client state via hypermedia representations 

• Negotiation of different types of content between client and server 

• Ability of client and server to evolve independently 

An important abstraction in REST is the resource, which essentially is anything that can be named, 
e.g., CDN files, control plane artifacts. Under REST, all resources are identified using uniform 
resource identifiers (URI), which must be created on the server side. To clients, URIs are essentially 
just opaque identifiers. Clients and servers exchange representations of resource state via a uniform 
interface. For example, when an HTTP client performs a GET request [1] for a particular resource, 
the server typically returns the HTML representation of the requested resource. The returned 
representation indicates the state of the resource at the time of the request. This approach is in 
contrast to prior distributed object systems or web-service remote procedure call (RPC) systems that 
provide a specialized interface for each different object type, and keep object state and data 
encapsulated within server-side entities. 

A critically important constraint in REST is the notion of the server driving client state via 
hypermedia. RESTful services typically publish a single top-level URI that returns a hypermedia 
representation containing links to associated resources, which clients can traverse to decide which 
links it can use and the actions to be taken. To this end, RESTful resources tend to make use of 
standard hypermedia types such as (X)HTML [6] and Atom [7], which are well known and thus 
likely to be acceptable to independently developed clients, rather than inventing proprietary media 
types. Proprietary or non-standard media types limit the clients that can make use of a resource, and 
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media types that do not support hyperlinks force clients and servers to somehow exchange 
information out of band in order to execute, thereby increasing coupling. 

Other important REST constraints are: 

• Statelessness: Clients, not servers, keep session state, and all requests are self-contained, thus 
inducing the properties of visibility (no need to look outside any given request to understand 
it), reliability (easier recovery from partial failures), and scalability (server need not manage 
individual client state for numerous clients). 

• Caching: Responses are explicitly marked as to if and how they may be cached. Caching 
helps induce the properties of performance and scalability by reducing and eliminating 
certain interactions, thus improving latency and reducing network traffic. 

• System layering: Components see only their interactions with their immediate neighbors, 
thus simplifying the overall system and allowing intermediaries such as load balancers, 
proxies, and caches to be introduced into a system without breaking interactions, which helps 
induce scalability and performance. 

HTTP is the most widely known RESTful protocol. Its uniform interface consists of its verbs, 
mainly GET, PUT, POST, and DELETE. HTTP requests and responses are generally self-contained 
and self-descriptive, and resources use specific HTTP headers such as Cache-Control, Expires, Etag, 
and Last-Modified to control if and how their responses may be cached. The Accept header allows 
clients to negotiate representations. Intermediaries such as proxies, reverse proxies, caches, and load 
balancers prove the viability of REST's constraints and also contribute significantly to the utility and 
scale of the web. Developing RESTful HTTP services and resources generally requires paying 
careful attention to the hypermedia constraint, the stateless constraint, and how best to use URIs to 
identify resources and indicate relationships between them. 

3. REQUIREMENTS AND REFERENCE ARCHITECTURE 
 

In addition to a general preference for RESTful principles on all planes of a CDN—so as to yield a 
scalable distributed architecture that most leverages emerging IP technologies—we establish the 
following high-level requirements on multi-screen CDN design.  
Data Plane 

• Client-controlled transfer: Within the CDN infrastructure, a client is any caching node 
requesting content from a higher-tier node so as to serve a cache miss and/or to fill its own 
cache. In order to maintain a stateless server and have the client keep “session” state (for the 
cache miss/fill session), the transfer of content over the CDN must be coordinated by the 
client. The client must determine which content to request, when to make the request (e.g., 
proxy caching, background caching), how to make the request (e.g., assets in entirety or in 
segments), and whether or not to cache the requested content (caching algorithm). 

• Clustering: The CDN infrastructure must allow for local clustering of multiple physical 
servers so as to realize a single logical node (edge, regional, origin). While this may be 
viewed as a form of local request routing, it should not be confused with the problem of 
“network” request routing that steers a request to a logical node. In fact, separating clustering 
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and network request routing is a manifestation of the “system layering” constraint of REST, 
though both might use similar techniques. 

• Broad application support for multi-screen: The CDN must support multiple delivery 
technologies to end users. Specifically, it must support the multiple formats and multiple 
delivery protocols required to support the various devices. 

• Multiple types of content sources: The CDN must accommodate multiple types of content 
sources, e.g., operator-provided origin servers for existing VOD and broadband content, and 
origins provided by third-party content aggregator sites. This requirement essentially 
mandates the ability to interface with standard origin servers, including standard-based 
restricted (i.e., content unaware) ones such as network-attached storage systems.    

• User control functions—trick mode and random access: The CDN must support network-
based VOD functions such as trick mode and time-based random access. The CDN itself 
must not restrict the richness of such functions, e.g., the number of trick speeds. This 
requirement may be relaxed in the future as video networks converge towards all-IP 
offerings, where such functions are subsumed by the client. 

 

Control Plane—Request Routing 

• Cacheability: In order to account for fragmented content delivery (e.g., in the case of HTTP 
adaptive streaming), request routing should not be invoked by the data plane nodes on every 
content request. This, in essence, restricts the options for request routing to those whose 
results can be “cached” by the data plane nodes. Here, caching does not strictly refer to 
HTTP caching—instead it refers to re-use of request routing state at the client. 

• Persistent TCP connections: The request routing scheme should allow for persistent 
connections in the data plane. This constraint eliminates certain schemes, which rely on layer 
7 techniques (e.g., certain kinds of simple HTTP redirection) that lead to frequent socket re-
establishment.  

• Multiple URI options in the content management system: The CDN must allow for multiple 
types of URI formats crafted by the content management systems. In some cases, content 
management systems may fully qualify the end-user content URI, making those URIs self-
sufficient for request routing purposes. In other cases, content management systems may use 
different URIs (e.g., to hide origin locations from the end user) for different tiers in the 
network (e.g., end-user URIs and origin URIs). The request routing function must allow for 
URI conversions within the CDN. 

• Multiple independent phases: CDN request routing must allow the option for multiple 
phases, each of which must be independent from the other. Here, we simultaneously impose 
the REST constraints of “system layering” and “independent evolution.” Request routing 
must then be anchored at the data plane node (the client of the request routing stratum), 
which becomes the only stateful node in the architecture. 
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Policy and Management Plane 

• Policy-based data plane: The CDN must provide for policy-based content delivery. This 
essentially implies that the data plane nodes must (directly, wherever possible) have the 
ability to invoke policies on each content request. Here, we do not restrict the types of 
policies and where they are executed (e.g., within the data plane node, via a policy interface 
to a policy application server)—instead, we must allow for various kinds of operator 
provisioned policies in the architecture. 

• Cacheability: Responses to policy requests made by the data plane should be cacheable. This 
restricts the kinds of messages and URIs that may be used to carry out the policy decisions. 
For example, in fragmented content delivery, the policy decision should only be carried out 
on the first fragment request.  

Towards these requirements, we propose the reference architecture illustrated in Fig. 3. 

 

 
Figure 3: Reference architecture for an open Content Delivery Network 

 

The above architecture is essentially an HTTP-based CDN for multi-screen content delivery, derived 
from best-of-breed IP concepts, with a liberal application of HTTP and REST principles. The 
screen-specific variations are relegated to the two ends of the CDN, namely, at the content 
management system and at the end-user client. In support of multiple types of end-user clients, the 
edge cache implements the necessary transport protocols such as UDP and HTTP. The rest of the 
CDN is all based on standard HTTP for content transfer. 
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The content management system (CMS) is responsible for making assets available, transforming 
them into the necessary formats to account for multiple types of clients, and preparing URIs and 
making them available. Strictly speaking, the CMS is not part of the CDN. However, it may 
sometimes provide information to the request routing stratum (via an interface not shown in the 
figure) depending upon the chosen URI schemes. The CMS may be augmented by an asset 
preparation system (unless the function is subsumed within the CMS itself), which is responsible for 
generating CDN specific metadata, e.g., index files to serve time-based content requests to the edge 
cache, and to assist in trick mode within the CDN. 

The request routing stratum shows several request routing functional blocks, one for each tier of the 
data plane. For example, the origin server routing block provides origin server location to a 
requesting regional cache. It monitors the health of the available origin servers using a standard 
status interface (not explicitly shown in the figure). Depending upon the chosen URI 
implementation, some of those blocks may not be necessary. Also, in practice, several blocks may 
be consolidated into a single physical system if necessary.  

4. CDN: EXAMPLE APPLICATIONS 
 

There are two major applications of the proposed CDN reference architecture for managed video 
delivery: large scale VOD libraries [3] for existing set-top boxes using traditional UDP-based edge 
streaming, and IP video delivery [4] of managed content to multiple IP devices using HTTP adaptive 
streaming. Both applications can leverage the same core CDN infrastructure, with specific 
adaptations—of content formats and content delivery schemes—for various CPE devices. 

In the first application, namely, VOD CDN, content is typically encoded using MPEG-2 or MPEG-4 
AVC compression, encapsulated into MPEG-2 single program transport streams. They may be 
ingested into one or more origin servers by the CMS, through asset preparation. The CMS manages 
the content life cycle including licensing windows. The set of origin servers is also called the VOD 
library, or persistent store, in this application. Common VOD index files, for supporting pre-
generated trick files or dynamic on-the-fly trick mode, may be generated by an asset preparation 
system during ingest to the origin servers. 

• Data Plane: The data plane of the VOD CDN application uses regional caches in the 
regional data center and VOD streaming servers as edge caches, performing UDP streaming, 
in the local head-end. Upon request from the digital set-top boxes, the selected content files 
may be pulled using HTTP, by the edge cache from a regional cache, and by the regional 
cache from the respective origin server, if there are cache misses at the various stages of the 
CDN. The net effect is that only the most popular VOD content is cached at edge caches 
and/or regional caches, while long tail content remains at origin servers. This allows the 
VOD application to provide an almost infinite amount of popular and long-tail content, such 
as movies, TV shows, and other on-demand content.  

• Control Plane: The control plane of the VOD CDN application uses HTTP- or DNS-based 
request routing from edge caches to regional caches, and from regional caches to origin 
servers. The request routing associated with the selection of an edge cache (or VOD 
streaming server) for UDP streaming of an MPEG-2 single program transport stream is 
performed by the VOD session and resource management. In this CDN application, the VOD 
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session manager is responsible for establishing a session upon receiving a request from a set-
top box, following which it interfaces with various resource managers for resource 
allocation. One example of a resource manager is the edge resource manager responsible for 
access network bandwidth allocation. 

• Policy and Management Plane: The policy and management plane of the VOD CDN 
application includes functions such as content status and verification, data warehouse 
reporting, content cache policy control, and network management. 

In the second application, namely, managed IP video CDN, content is typically encoded using 
multiple bit rate profiles with MPEG-4 AVC compression, and encapsulated into fragmented MP4 
containers. Such fragmentation allows the client to switch bit rates, on a fragment by fragment basis, 
in order to adapt to server and network conditions. Content may be encrypted during ingest into the 
origin server. They may be ingested into one or more origin servers by the CMS through asset 
preparation. The CMS manages the content life cycle including licensing windows. In addition, it is 
responsible for transcoding content into multiple formats, suitable for the various targeted IP 
devices. 

• Data Plane: The data plane of the managed IP video CDN application uses regional caches 
in the regional data center, and edge caches in the regional data center or local head-end. 
Unlike the first VOD CDN application, the data plane of the managed IP video CDN 
application can leverage HTTP caching and adaptive streaming all the way to the end-user IP 
devices. Upon request from the IP devices, the selected content files (fragments) may be 
pulled using HTTP by the edge cache from a regional cache, and by the regional cache from 
an origin server, if there are cache misses at the various tiers of the CDN. HTTP adaptive 
streaming allows the various cache nodes to be unaware of content formats, with all content 
awareness subsumed at the origin. At the same time, it may be possible to have further 
optimizations at the cache nodes to improve caching efficiency and latency, based upon the 
various HTTP adaptive streaming formats.  

• Control Plane: The control plane of the managed IP video CDN application uses HTTP- or 
DNS-based request routing from the client to an edge cache, from the edge cache to regional 
cache, and from the regional cache to origin server. Unlike the first VOD CDN application, 
the control plane for the managed IP video CDN application can leverage similar request 
routing techniques at every stage of the content delivery network. 

• Policy and Management Plane: The policy and management plane of the managed IP video 
CDN application is somewhat similar to that of the VOD CDN application. It may include 
functions such as content status and verification, data warehouse reporting, content cache 
policy control, and network management. 

5. DATA PLANE 
Content Origination 
There are two models for ingest into the origin server, as shown in Fig. 4. In the direct write model 
(Fig. 4(a)), media content and metadata are directly written into the origin HTTP server, using HTTP 
POST or FTP PUT methods, to the URI(s) crafted by the CMS. Typically, an asset preparation 
server is notified by the CMS about new content availability, using an ingest provisioning message 
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(e.g., a VOD asset ingest interface). The asset preparation server then writes the media, possibly 
modified, and the generated metadata into the origin. For example, in the VOD CDN application, the 
asset preparation server may fetch content from a staging folder (content source) using FTP and 
generate VOD index files, specifically to enable network-based trick mode in the CDN. In the 
managed IP video CDN application, the asset preparation server may perform transcoding and 
fragmenting, and write the resulting fragments and metadata into the origin. In practice, the asset 
preparation function may be performed by a pipeline of multiple physical servers. 

 

 
Figure 4: Models for ingest into the origin server 

 

In the provisioned write model (Fig. 4(b)), there is no element in the content management workflow 
(including any asset preparation servers) that writes directly into the origin server. Instead, the CMS 
notifies a media head function about new content and metadata availability. The media head, in turn, 
fetches the content and metadata from respective sources (e.g., staging folder and the asset 
preparation server, for media and metadata, respectively) using HTTP GET or FTP GET methods, 
and writes it into the origin HTTP server. It should be apparent that in the direct write model, the 
asset preparation system essentially subsumes the media head function.  

Typically, there is no need to ingest content directly into other CDN nodes. As an optimization in 
some cases, caches in other CDN nodes may be “warmed” under the direction of the CMS. Such 
cache warming may be achieved by sending an ingest provision message to downstream caches, by 
forcing a cache-fill by sending a dummy request to the cache, or by pushing content and metadata 
via multicast techniques.  

 11



Open CDN for Managed Video Delivery to Multiple Screens 

CDN Data Plane Nodes 
Edge Caches 
The edge caches of the CDN implement multiple delivery protocols in support of multi-screen video 
delivery, e.g., UDP streaming in the VOD CDN application and HTTP delivery in the managed IP 
video CDN application. In addition, it implements an HTTP-based open content delivery interface to 
fetch content on a cache miss and/or to fill its own cache. In essence, it functions as a streaming 
gateway in the VOD CDN application and as an opaque (i.e., media un-aware) proxy cache for IP 
Video. The edge cache may use diverse caching modes including any combination of 

• Segment-based transfer (using ranges) or file-based transfer; 

• Background cache fill, i.e., not while serving a cache miss, or piggy-backed cache fill; and 

• Best-effort versus rate-based transfer (e.g., at some nominal rate) 

It uses judiciously chosen caching algorithms (e.g., direct-replacement cache-fill with least-recently-
used (LRU) eviction, threshold-based cache-fill) in order to maximize the cache-hit ratio. While the 
content delivery interface must be standardized in order to ensure a multi-vendor CDN, we submit 
that the caching mode and algorithm should be client-controlled in accordance with principles of 
REST. The content delivery interface must allow the client (in this case, the edge cache) to execute 
any of the above modes as desired. 

In practice, for the VOD CDN application, existing streaming servers in the head-ends may be 
repurposed into edge caches by adding support for the open content delivery interface—to fetch 
content in real-time as opposed to being based on offline VOD ingest provisioning. 

Origin Servers 
We envision two types of origin servers in an open CDN, both based on HTTP. A basic origin server 
is an HTTP v1.1 compliant web server, essentially providing file-based access to downstream nodes. 
A basic origin server may suffice if a downstream node (e.g., an edge cache or the end-user client 
itself) implements media-aware requests. For example, in the VOD CDN application, an edge cache 
may use HTTP to serve its cache misses, assisted by VOD index files to support trick mode and 
time-based random access operations. As another example, in some HTTP streaming applications 
(e.g., [8]), the end-user client may employ playlist files and use HTTP to request segments from a 
basic origin server. 

In contrast, an augmented origin server is an HTTP v1.1 compliant application server, which maps 
the requested URI, using server-based index or manifest files, or other logic, into a resource to be 
delivered. In addition, an augmented origin server may provide support for additional features such 
as bit-rate profiles for content delivery. In fact, in several HTTP adaptive streaming technologies for 
the managed IP video CDN application, an augmented origin is designed to be the only media-aware 
network node, with opaque caching all the way from the client. As another example, in the VOD 
CDN application, an augmented origin server may be used, providing time-based access to normal-
mode and trick-mode MPEG-2 transport streams.   

Regional Caches 
In most cases, as shown in Fig. 5(a), the regional caches in our proposed CDN are expected to be 
opaque HTTP v1.1 caches—irrespective of whether the origin servers are basic or augmented. In 
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order to ensure such cacheability, augmented origin servers must support RESTful URIs. The latter 
is indeed the case with all HTTP adaptive streaming technologies. 

 

 
Figure 5: Regional cache options 

 

In some cases, as shown in Fig. 5(b), the regional cache may function as a gateway between a basic 
origin (e.g., a NAS server) and an edge cache (or downstream client) that requires augmented 
services, either in the form of special streaming media URIs or additional delivery features. For 
example, in the VOD CDN application, an edge cache may require additional features, such as 
network-based trick mode, or bit-rate provisions, while relying on a basic origin. In this case, the 
regional cache is implemented as a back-to-back client-server, functioning as a proxy gateway.   

Content Delivery Interface 
While the caching modes and algorithms are best left to cache implementation, the industry must 
standardize the content delivery interface between two adjacent tiers of the open CDN. We propose 
a standard interface based on the HTTP v1.1 GET method. This includes support for HTTP byte-
ranges, for random access and segmented transfer, and standard HTTP redirect to support local 
clustering and network request routing. We submit that this suffices for basic origin services.  

For the managed IP video CDN application, the emerging HTTP adaptive streaming techniques 
provide for augmented origin services by employing special URI formats (for content fragments), 
manifest files that allow to interpret those formats, and index data-structures to translate from the 
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time domain to file byte-ranges. We propose a similar augmented origin service for the VOD CDN 
application, layered on top of basic HTTP. Specifically, we propose the adoption of: 

• Special URI formats for VOD, to specify both normal-mode and trick-mode playback 

• Support for HTTP time-range requests: for random-access and segmented transfer 

• Bit-rate profiles via extended HTTP headers or independent HTTP (e.g., POST) messages. 

This augmented service provides for quality-of-service, which might be important in the absence of 
bit-rate adaptation, and removes the need for clients to fetch and process VOD index files, hence 
increasing client scalability. We note that companion manifest files may be needed to maintain 
alignment of HTTP time-range requests so as to aid in segment cacheability. 

In accordance with standard HTTP, we eschew special commands for aborting an open content 
transfer. Content transfer is terminated either when the entire requested range (byte or time) or 
fragment is served, or when the client closes the TCP connection, whichever is earlier. Since the 
CDN is stateless across transfers, there is no likelihood of orphaned state in any server. For 
fragment-by-fragment transfer, we recommend that the client (including the CDN caches, where 
applicable) use persistent TCP connections for successive fragment requests.  

6. CONTROL PLANE: REQUEST ROUTING 
 

The request routing function straddles the CDN data and control planes as shown in Fig. 6. In the 
figure, we illustrate the concept of “layered” request routing, wherein a server location decision in 
each tier of the CDN undergoes multiple phases, e.g., a global request routing decision that directs a 
request to a specific data center, and a local request routing decision that selects a specific server 
within that data center. This multi-layered decision is anchored at the requesting client, thus 
allowing any of the phases to be optional (e.g., a global routing decision that subsumes the local 
server selection, or a local routing decision subsumed by an HTTP proxy server), and allowing each 
phase to evolve independently, thus achieving one of the desirable properties of REST. For example, 
an operator may start with DNS techniques for global routing requesting, and, as the server footprint 
in a data center increases over time, add HTTP redirection for local routing. 

Referring to Fig. 6, we separate out the logical functions associated with request routing in each tier 
of the CDN, again, allowing for independent evolution of each tier. For example, an edge cache 
routing function monitors the status of the available edge caches and directs end-user requests to the 
most appropriate edge cache, while a regional cache routing function monitors the status of the 
available regional caches and directs edge-cache requests (cache misses) to the most appropriate 
regional cache. As an example of independent evolution, the edge cache routing may be DNS-based 
and content unaware, the regional cache routing may be based on simple URI rewrite rules (or 
configuration), while origin routing may be based on HTTP redirection with content awareness.  

We propose an open HTTP-based interface for server monitoring in each tier. In support of 
monitoring, each server in the hierarchy (including edge caches, regional caches, and origin servers) 
publishes a status URI, which the request routing engine of that tier may access via a standard GET 
message. In addition to server monitoring, a request routing engine may utilize various kinds of 
“location services,” e.g., to determine the location of a requesting client using geo-databases of IP 
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addresses, or to determine the location of a physical server that contains the requested content using 
information from the content management system. 

 

 
Figure 6: Multi-layered request routing architecture 

 

Request routing relies heavily on the structure of the URIs crafted by the content management 
system. In some cases, the end-user URI contains sufficient information to assist in request routing 
all the way to the origin. Alternatively, request routing engines may need a location service from the 
content management system to map one URI to another, e.g., an end-user URI to an origin URI. 
Where needed, we propose an open HTTP-based interface for location service. In support of such a 
service, the content management system may publish a location service URI, which a request routing 
function may access via a standard GET message. The correct content management system to query 
may be deduced by the request router via rules on the incoming URI. 

We enumerate four request routing techniques for an open CDN, any of which may be used in any 
of the phases/tiers of the multi-layered requesting routing stratum. 

Independent URI Resolution 
In this technique, the requesting client makes an independent HTTP request for an asset location, 
and is provided a post-routed URI (sometimes a post-routed URI prefix) that points directly to the 
correct server in the next tier. This is in contrast to transparent request routing, which happens as 
part of making the HTTP request for the asset itself. As the request routing is not transparent, it 
requires a special HTTP client that can first make the independent routing request, and can 
subsequently use the returned URI (or URI prefix) to make future requests for (different portions of) 
the same asset. Since the request routing uses an independent HTTP request, this scheme is 
amenable to persistent TCP connections in the data plane. Similarly, since a special HTTP client 
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cannot be avoided, the same client can implement logic to “cache” the URI prefix and use it for 
subsequent requests, thus ensuring cacheability.   

As an example, in the VOD CDN application, the edge cache may query a request router using the 
asset identifier provided by the VOD session manager, and is provided a URI prefix that points to 
the correct regional cache or origin server. In the managed IP video CDN application, an edge cache 
may query a request router using the “content prefix” portion of the URI supplied by the end-user 
client, and is provided a different URI prefix that points to the correct regional cache or origin 
server. The special HTTP client in the edge cache contains the logic to use the same URI prefix for 
subsequent fragment requests.   

URI Rewrite Rules 
This is a lightweight technique that relies on a sufficiently expressive URI provided by the content 
management system to the end-user, and caches that are configured with rules to convert the 
incoming URI to a post-routed URI. No external request routing phases are necessary, making it 
easily amenable to persistent TCP connections in the data plane, while retaining the benefits of 
caching—as the same set of rules are applied on each incoming URI. The only drawbacks of this 
scheme are that it might be difficult to create such expressive URIs (and associated rules) in 
complex multi-tier CDNs, and it typically mandates additional means for local request routing and 
server monitoring. Specifically, URI rewrite rules may need to be coupled with local server 
selection, and the client may need to monitor the status of the server cluster itself. 

As an example, the content management system may provide the end-user with a URI prefix 
http://ss2.edge-server10.domain/hbo.com/superman/.  On a cache miss, edge-server10 may replace 
the hostname portion with its configured regional cache, and originate a request for 
http://ss2.regional-server5.domain/hbo.com/superman/. The regional cache, in turn may convert the 
URI prefix to http://ss2.hbo.origin.domain/superman/, using a URI rewrite rule,  in order to direct 
the request to the second streaming server in the origin cluster configured for hbo.  

Enhanced DNS 
DNS is one of the most popular request routing techniques in traditional CDNs. This technique 
employs an authoritative DNS server, responsible for resolving virtual host names (of the URIs 
served by the CDN) to IP addresses of the selected CDN nodes. The DNS server typically uses the 
location of the requesting node to determine the nearest server. This scheme is transparent, i.e., it 
needs no special logic in the client, amenable to persistent TCP connections in the data plane, and 
cacheable using standard DNS caching.  

There are two significant drawbacks to enhanced DNS: 

• The authoritative DNS server has to deduce the exact location of the requesting client, since 
the DNS request it receives originates from the recursive DNS server of the client, and not 
from the client itself. In some cases, this may not provide the necessary granularity to make 
the correct server selection. 

• The DNS server has access only to the host name portion of the requested URI. This makes 
it difficult to perform content-aware request routing, where necessary. This drawback is 
sometime circumvented by including a host name prefix that contains information about the 
requested asset, e.g., a hash function of the asset, or the type of the asset. Nevertheless, it 
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might be difficult to incorporate the precise location of each asset, e.g., as populated by a 
content management system into multiple origin servers, into the host name prefix.  

HTTP Redirection 
HTTP redirection, typically using the standard temporary redirect (307) feature of HTTP, is another 
popular transparent request routing technique. No special clients are necessary, and unlike DNS-
based schemes, the request router has access to the exact location of the requesting client. In this 
scheme, as part of standard HTTP redirection, a new URI is provided to the client in the location 
header of the response. Typically, this is an absolute URI, i.e., the entire original URI is modified.  

HTTP redirection with absolute URIs is not particularly amenable to persistent TCP connections. 
Since each HTTP request must be redirected (since they have different absolute URIs), those 
requests cannot be multiplexed into a single TCP connection in the data plane. Due to the same 
reasons, each HTTP request must be individually redirected, i.e., it is not possible to re-use request 
routing state at the client across URI requests.  

The above limitation may be addressed by including a relative URI in the location header of the 
HTTP response. The client may now use the same relative URI across requests that share the same 
prefix. This also makes it suitable for persistent TCP connections. However, the request router now 
has access only to the relative portion (prefix) of the requested URI, making it difficult to perform 
content-aware routing, where necessary. Again, this drawback may be circumvented by including 
another prefix to the host name that contains information about the requested asset.    

7.  POLICY AND MANAGEMENT 
 

The CDN policy and management plane is the most customizable portion of the architecture, and 
hence the most variable. In order to allow for maximum flexibility, the CDN data plane nodes must 
be implemented as policy-based content delivery elements. In general, our proposed architecture 
allows for two types of policies: 

• Inline policies: These refer to rules executed by a CDN data plane node, as part of 
delivering the requested content. For example, the URI rewrite rule for origin determination 
(described in the previous section) is a form of inline policy. Inline policies are typically 
implemented using a URI rules engine or scripts executed as part of HTTP delivery. 

• External policies: These refer to policies executed by external policy servers. Such policies 
are realized by a CDN data plane node by making requests to the configured policy servers 
as part of HTTP delivery. The responses to such requests are either binary in nature, i.e., 
whether or not to serve the requested content, or are (X)HTML documents, which may be 
executed by scripts in the CDN node. 

In the proposed open CDN, for each external policy, the respective policy server publishes a URI, 
which a CDN data plane node may access via a standard HTTP message. The responses to such 
policy requests may be cached by the CDN data plane node. Policy requests may be content-based, 
e.g., how long may an asset reside in cache, or subscriber-based, e.g., is a particular subscriber 
authorized to view content, or a combination of both. 
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A complete enumeration of various possible content delivery policies is beyond the scope of this 
paper. However, we provide the following examples for illustrative purposes: 

• Session authentication: A token-based session authentication can be enforced at various tiers 
of the CDN, including caching nodes and origin server. In this case, the requesting CPE 
device uses a pre-assigned or pre-determined session token when requesting the content from 
an edge cache. The edge cache in turn queries an external policy server using the token and 
other subscriber information to carry out session authentication. The result of this 
authentication is cacheable until a time-to-live (TTL) period for any subsequent request.    

• Cache policy control: This content-based policy ensures that the assets that are removed by 
the content management system from the origin servers are purged from downstream caches. 
In a typical implementation, the CMS notifies the policy server about content removal. The 
CDN data plane nodes (edge caches, regional caches) query the policy server before an asset 
is served. To aid in cacheability, the policy server responds with time-to-live (TTL) counters 
for each binary response. A short TTL results in quick purging, while a long TTL is better 
for cacheability.   

8. SUMMARY 
  

We have proposed guiding principles for the design of an open multi-screen content delivery 
network, based on best-of-breed IP technology principles. The proposed architecture is primarily 
based on the HTTP protocol with Representational State Transfer (REST) concepts. The CDN uses 
these concepts across its various planes, including the data plane, request routing stratum and the 
policy and management plane. We submit that such an approach will provide operators with 
architectural options that will result in the same scalability and distribution properties of the World 
Wide Web, and address the growing needs of video delivery to multiple types of end-user devices. 
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ABBREVIATIONS AND ACRONYMS 
 

CDN Content Delivery Network 
CMS Content Management System 
CPE Customer Premises Equipment 
DNS Domain Name Service 
FTP File Transfer Protocol 
HTML HyperText Markup Language 
HTTP HyperText Transfer Protocol 
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IP Internet Protocol 
NAS Network Attached Storage 
QAM Quadrature Amplitude Modulation 
REST Representational State Transfer 
RPC Remote Procedure Call 
TCP Transmission Control Protocol 
TTL Time to Live 
UDP User Datagram Protocol 
URI Universal Resource Identifier 
VOD Video on Demand 

 

REFERENCES 
 
[1] R. Fielding et al., “HyperText Transfer Protocol—HTTP/1.1,” Request for Comments (RFC) 
2616, Internet Engineering Task Force, 1999 
 
[2] R. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” 
Doctoral Dissertation, Chap. 5, UC Irvine, 2000. 
 
[3] W. Mao, “Building Large VOD Libraries with Next Generation On Demand Architecture”, 
NCTA Technical Papers, 2008 
 
[4] W. Mao, “Key Architecture and Interface Options for IP Video Over Cable”, SCTE Conference 
on Emerging Technologies, 2009 
 
[5] P. Mockapetris, “Domain Names – Implementation and Specification,” Request for Comments 
(RFC) 1035, Internet Engineering Task Force, 1989 
 
[6] T. Bray, ed., “Extensible Markup Language (XML) 1.0, Fifth Edition,” W3C recommendation, 
http://www.w3c.org/TR/REC-xml, Nov 2008 
 
[7] M. Nottingham et al., “The Atom Syndication Format,” Request for Comments (RFC) 4287, 
Internet Engineering Task Force, Dec 2005 
 
[8] R. Pantos, ed., “HTTP Live Streaming,” draft-pantos-http-live-streaming-01, Internet Draft 
(work in progress), Internet Engineering Task Force, Jun 2009 


