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Overview
You are trying to catch a plane…it departs in a short 15 minutes! You arrive at airport 
security and encounter a line with 120 people ahead of you. They are all people
destined for a different plane that won’t depart for one and a half hours… and they are 
not in a hurry. You are in a hurry, but you must now wait. And your wait will be as long 
as it takes to service all of the other 120 people ahead of you in the line. If it takes one 
minute to perform a security check on each person, then the wait will be 120 minutes… 
2 whole hours! Performing these mental calculations in your head, you realize that it is 
futile- you will miss your plane.

If you ever had an experience like that (stuck in line behind a large group of people 
when you are in a hurry), then you are familiar with the frustrating phenomenon known 
as Bufferbloat. It affects people in lines, and it affects packets in the queues of network 
elements (like routers, switches, CMTSs, and CMs). 

Bufferbloat wthin the Internet is formally defined to be the undesirably long latency that 
can be experienced by a latency-sensitive packet that arrives at a shared queue when 
another set of packets from a different flow (that may or may not be latency-sensitive) 
are already filling many of the buffers within the queue. Many papers have hypothesized 
that the existence of Bufferbloat within upstream CM buffers and downstream CMTS 
buffers could be one of the primary sources of frustration for many Cable Data users.

Problems related to Bufferbloat have most likely always been present within the Internet, 
but they have become more apparent and more problematic in recent years due to 
several trends:

1) Higher bandwidth service tiers (ex: 50 and 100 Mbps tiers) are now being offered 
by service providers (such as Multiple System Operators or MSOs)

2) Higher bandwidth applications have become commonplace (ex: Peer-to-Peer File 
Transfers, Streaming Video, etc.) that can easily capitalize on the higher 
bandwidth service tiers

3) Those higher-bandwidth applications are mixed with many other applications that 
may not require high-bandwidth, but that do require low-latency transport (ex: 
VoIP, Web-Browsing, Gaming, etc.)

4) Network elements (routers, switches, CMs, CMTSs) now have the ability to build 
in large buffers using inexpensive, high-speed buffer memories, and some 



 

network elements have taken advantage of this fact by placing large buffers in 
their ingress ports to help absorb (without packet drops) any transient bursts of 
bandwidth that may occur on the Internet links

5) Many modern network elements have high-bandwidth ingress links and low-
bandwidth egress links. The Bufferbloat problem is exacerbated by the fact that 
the bursts on the high-bandwidth ingress links can easily fill up the buffer 
memories without giving them a chance to be drained by the low-bandwidth 
egress links. (Note: Upstream paths through CMs are particularly susceptible to 
this problem, and downstream paths through CMTSs are (to a lesser extent) also 
susceptible to this problem).

At a 10,000-foot level, managing Bufferbloat is relatively simple- it simply requires 
techniques that help to limit the depths of the buffers in the network elements through 
which the latency-sensitive packets are propagating. However, this procedure must be 
implemented with care, because many attempts at minimizing buffer depths (to mitigate 
Bufferbloat) will often lead to undesirable increases in packet loss rates and can also 
place undesirable limits on the maximum throughputs for TCP sessions with long 
Round-Trip Times (RTTs). As an example, one can approximate the peak TCP 
bandwidth for each RTT value (assuming that the buffer size must equal the TCP 
congestion window), and those approximations are tabulated in Table 1.

Buffer Size
(Kbytes)

RTT = 
20 msec

RTT = 
100 msec

RTT = 
200 msec

8 3.2 Mbps 640 kbps 320 kbps
16 6.4 Mbps 1.28 Mbps 640 kbps
32 12.8 Mbps 2.56 Mbps 1.28 Mbps
64 25.6 Mbps 5.12 Mbps 2.56 Mbps
128 51.2 Mbps 10.24 Mbps 5.12 Mbps
256 102.4 Mbps 20.48 Mbps 10.24 Mbps

Table 1- Peak TCP Throughputs as a function of RTT values and Buffer Size Values

Thus, the challenge for most Bufferbloat mitigation techniques is to find the “sweet spot” 
that mitigates Bufferbloat, minimizes packet loss, and permits TCP sessions to operate 
with high throughput. 

This paper will focus on the pros and cons of various techniques for reducing the effects 
of Bufferbloat within packet-based DOCSIS networks. The authors recognize and 
applaud the stellar work already carried out by Greg White and Dan Rice at CableLabs. 
The CableLabs paper [Whi2] describes the results of simulations comparing the 
performance levels of various techniques for managing Bufferbloat. The simulated 
techniques within that paper included:



 

1) Saturated Tail-Dropping Queues with large buffer depths
2) Saturated Tail-Dropping Queues with short buffer depths (optimized using the 

new DOCSIS 3.0 Buffer Control ECN, feature [Whi1] to set depths equal to the 
expected Bandwidth-Delay Product, or BDP) 

3) The Controlled Delay (CoDel) active queue management technique [Nich]
4) The Proportional Integral Enhanced (PIE) active queue management technique

[Pan]
5) The Statistical Flow Queue with CoDel (SFQ-CoDel) active queue management 

technique

As described in that CableLabs paper, all of the above approaches can help to reduce 
the impact of Bufferbloat, but each approach uses a slightly different technique and has 
very different performance results under different loads. The two Saturated Tail-
Dropping approaches perform simple dropping of packets whenever queues reach their 
maximum size, but they tend to suffer from the fact that they do not respond to queue
build-ups quickly and can then be forced to drop many packets (including latency-
sensitive packets) once queue saturation is reached. As a result, some latency-sensitive 
packets still experience Bufferbloat in Saturated Tail-Dropping systems. The CoDel and 
PIE approaches define various techniques for dropping packets and throttling high-
bandwidth TCP flows sooner than Saturated Tail-Dropping does- before the buffers 
reach saturation. CoDel triggers these drops using measured packet delays (which can 
be used to infer buffer depths) and PIE triggers these drops based on estimated buffer 
depths, and both approaches provide improvements over the Saturated Tail-Dropping 
approaches. The SFQ-CoDel approach is more complex, because it actually 
establishes different queues for each of the packet flows within a service group, and it 
uses hash codes to ideally steer different packet flows into different queues, and it then 
services the queues in a round-robin fashion. It has very good performance, but the 
performance levels suffer if there are hash collisions that steer two or more flows into a 
single queue, so the approach included a CoDel algorithm which attempted to use 
queue drops to deal with the performance degradation that results from a hash collision.

In this paper, we will not attempt to repeat the good work performed at CableLabs. 
Instead, we will attempt to build on and extend their work by studying some unexplored 
areas. We define a taxonomy of three generic but different Bufferbloat mitigation 
approaches (Type A, Type B, and Type C) and then explore all three approaches. As a 
result, three particular extensions to the CableLabs work will be explored within this 
paper:

Type C Extension: One extension to the CableLabs work will use simulations to 
explore (in more depth) the efficacy of the simple Type C Saturated Tail-Dropping 
proposals, monitoring packet latency as well as average bit-rate, bandwidth stability, 
and packet loss as the buffer depths are ranged well above and well below the desired
BDP value. This work will help MSOs understand what happens when the predicted 
BDP values (used to select buffer depths for the new DOCSIS 3.0 Buffer Depth ECN)



 

do not exactly match the actual BDP values experienced by the TCP sessions flowing 
through those buffers. 

Type A Extension: Another extension to the CableLabs work will take a fresh look at 
resolving the hash collision problems that were identified by CableLabs within the 
Statistical Flow Queing (SFQ)-based solutions. It will be shown that the resulting 
performance of the SFQ-based solutions may be optimal and may circumvent many of 
the hash collision problems identified by the CableLabs work. A technique for 
minimizing hash collisions is presented and leads to a new Type A Bufferbloat 
management technique that we call SFQ with Hashing/Serial Searching. This approach 
to Bufferbloat management may be viewed as an optimal solution if the supporting 
hardware can provide the resources required for this slightly more complex solution.

Type B Extension: This paper will also discuss and characterize several variants of a
new Type B active queue management proposal that was not explored in the 
CableLabs paper. This low-complexity approach will use simple Latency-based Random 
Early Detection (LRED) dropping (instead of Saturated Tail-Dropping) as an alternative 
mechanism to trigger TCP throttling prior to filling the buffer. LRED is a Bufferbloat 
mitigation technique that is similar to (but subtly different from) a normal RED (or 
WRED) algorithm. Details and benefits of the LRED scheme will be described below.

Background on Bufferbloat 
The term Bufferbloat was popularized by Jim Gettys in his seminal 2011 paper [Gett]. 
Within that paper, Gettys identified the existence of the problem and argued that large 
buffers in network elements are the principal cause, because they can lead to excessive 
network delays with negative impacts on many latency-sensitive applications traversing 
the Internet. He theorized that the availability of lower-cost and higher-density DRAMs 
(Dynamic Random Access Memories) has caused some manufacturers of network 
elements to place larger and larger buffers into their products without carefully 
examining the implications of those larger buffer sizes.

In his paper, Gettys pointed out some repercussions of those larger buffer sizes. Gettys 
argued that behavior of TCP flows will oftentimes saturate and fill up the large available 
buffers contained within some of the Internet’s network elements. Large, saturated 
buffers can lead to long delay times for all packets passing through those buffers. While 
this condition may not be detrimental to many bandwidth-intensive TCP sessions (like 
FTP downloads), Gettys argued that the increased delays caused by the existence of 
these heavily-filled buffers could be detrimental to many other latency-sensitive types of 
network traffic (such Gaming sessions, Over-The-Top VoIP sessions, Web-browsing 
sessions, etc.). 

To show an example with typical numbers, assume that a network element (like aCM) is 
driving its Upstream packets through a 2 Mbps DOCSIS Upstream service flow (SF). If 



 

the CM uses a buffer for the SF that is 500 Kbyte in length (333 packets with typical 
1500 byte lengths), then a full buffer will take (500 Kbytes)*(8 bits/byte)/(2 Mbps) = 2 
seconds to empty. Thus, any packet that is injected into the CM when the buffer is full 
will incur a 2 second delay just to pass through the CM. This leads to high latencies on 
the packet streams, and these latencies can be entirely unacceptable for latency-
sensitive applications like VoIP sessions or Gaming or Web-browsing sessions that 
might be injecting packets into the heavily-filled buffers. These lengthy 2-second packet 
delays can cause other problems as well. As an example, it also implies that TCP 
bandwidth adjustments for congestion avoidance at other points in the Internet will not 
be able to occur quickly, because (if ACK acceleration is not enabled) ACKs going back 
through the CM on the Upstream towards servers in the Internet will be delayed by the 
same 2 second period. As a result, slow TCP bandwidth adjustments could lead to 
uncorrected and unacceptable congestion levels developing on the Downstream paths 
(due to ACKs being delayed in the Upstream paths).

Since many latency-sensitive application types (such as VoIP) do not actually generate 
enough bandwidth to saturate typical CM and CMTS buffers, two or more traffic streams 
from different applications must often be multiplexed through a single buffer to create 
the requisite conditions for the Bufferbloat problem to exist.  If multiple applications are 
sharing a buffer, then the high-bandwidth applications tend to saturate the buffer and 
the latency-sensitive applications tend to experience the negative repercussions of the 
resulting delays within the saturated buffer.

Gettys’s paper explores an age-old belief and rule-of-thumb stating that the amount of 
buffering that should be utilized within any network element should be equal to the BDP 
of the TCP session. The BDP (in this context) is usually defined to be the available 
bandwidth capacity of the egress link (or the available bandwidth capacity of a logical 
link like a DOCSIS SF in the case of a CMTS or CM) times the RTT currently being 
experienced by the TCP connection. This BDP value is usually provided in units of 
bytes (since bandwidth x latency = [bytes/second] x [seconds] = [bytes]). The rationale 
behind this age-old belief is that a TCP session should never need to transmit at a rate 
higher than the bandwidth capacity of the lowest-capacity link in its unidirectional path. 
Since each network element cannot very easily determine that path-wide bandwidth 
capacity value, each network element assumes (perhaps incorrectly) that its egress port 
is the lowest-capacity link in the TCP path, and it assumes that it should (in theory) set 
its own buffer depth assuming that its own egress link bandwidth capacity (Maximum 
Sustained Traffic Rate or Tmax for the SF) will be the highest transmission rate that the 
TCP session will ever have to support. A TCP session with a RTT would climb to a rate 
of Rmax if it can place BDP = Tmax*RTT  bytes onto the network within a window of 
time equal to RTT. As a result, Gettys argues that BDP = Tmax*RTT bytes would be the 
maximum number of bytes that any network element buffer would have to absorb 
without dropping packets for the TCP session, so the argument is that this is the optimal 
buffer size for that egress port on the network element. Gettys correctly points out that it 
is difficult to determine a single BDP value that is adequate for all TCP sessions passing 
through a network element, because the value can actually be quite different for 



 

different TCP sessions due to different RTT latencies that result from different distances 
that might exist between TCP sources and receivers on different TCP sessions. 

Gettys’s paper alludes to the fact that there is a sensitive trade-off between setting 
buffer depths too small (resulting in excessive packet loss and TCP bandwidth 
reduction- especially for TCP sessions with long RTTs) and setting buffer depths too 
large (resulting in excessive packet latencies). This leads to interesting issues when two 
or more TCP sessions are sharing a SF (and a buffer). Ideally, all of the X TCP 
sessions sharing the SF and buffer would have the same RTT value for their paths and 
would have the same bandwidth needs- then each of the X TCP sessions would receive 
~1/X of the total Tmax value for the SF and would consume ~1/X of the shared buffer. 
In essence, one can think of each session as having an effective bandwidth of Tmax/X. 
However, things get more complicated when the X TCP sessions do not have the same 
RTT values. For example, assume that X=2 and that one session is experiencing a 100 
msec RTT while the other session is experiencing a 10 msec RTT. The ideal buffer size 
for the first session would be ten times the size of the ideal buffer size for the second 
session. Since only one buffer size can be specified for the single shared buffer, this 
creates a dilemma that Bufferbloat researchers still need to resolve.

This paper will attempt to answer some of the above questions with extensions to the 
work done by Gettys and White. We will attempt to include details on buffer memory 
behavior as we explore the delicate inter-play between packet stream latency, packet 
stream loss, packet stream bandwidth, and packet stream stability. The goal is to find 
good guidelines and/or technologies that can be utilized by MSOs as they manage 
buffer memory sizes and attempt to provide good Quality of Experience (QoE) to all of 
the application types propagating through their DOCSIS networks.

To assist with the organization of this paper, the authors found it beneficial to divide the 
variously proposed Bufferbloat management techniques into a taxonomy containing at 
least three fundamental Bufferbloat management approaches. Within this document, we 
will call these Bufferbloat management techniques the Type A Management 
Techniques, the Type B Management Techniques, and the Type C Management 
Techniques. The taxonomy is illustrated in Figure 1a.



 

Figure 1a Taxonomy Of Different Bufferbloat Management Techniques

Type A Bufferbloat Management requires that each of the sessions that share a SF
must be separated into discrete processing blocks (ex: multiple queues), where each 
session is processed separately by a different processing block. For approaches 
discussed in this paper, SFQ-CoDel, Normal SFQ, and SFQ with Hashing/Serial 
Searching all can be mapped into the Type A Management grouping. These 
approaches tend to be more complex than their Type B and Type C counterparts, but if 
designed correctly, they can yield incredibly good results. 

Type B Bufferbloat Management requires that the sessions that share a SF must be 
treated as an aggregate by a single processing block (ex: within a single queue), where 
all of the sessions experience similar treatment and similar performance levels. 
However, by definition, we require that Type B Management approaches must include 
some type of algorithm that makes an attempt at dropping packets from the queue prior 
to the time when the buffer memory is saturated (filled up). In general, Type B 
Management approaches try to minimize latency for all sessions to ensure that the 
latency-sensitive sessions experience low latency. This is often done at the expense of 
the throughput or loss of packets for bandwidth-intensive sessions. For approaches 
discussed in this paper, CoDel, and PIE and LRED can all be mapped into the Type B 
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Management Grouping. These Type B approaches tend to be more complex than their 
Type C counterparts, and their results are usually much better than the Type C 
systems. These Type B approaches also tend to be less complex than their Type A 
counterparts, and their results are not always as good as the Type A systems- for the 
following reasons:

a. These Type B approaches tend to unnecessarily limit latency on BW-
sensitive flows (e.g., File Transfer Protocol or FTP) which tolerate latency 
very well.

b. Latency limiting always comes at the expense of packet loss and TCP 
throughput, which can becomes intolerable when attempting to achieve 
very low latencies.

Type C Bufferbloat Management is the simplest type of Bufferbloat Management 
system, and it requires that the sessions that share a SF must be treated as an 
aggregate by a single processing block (ex: within a single queue), where all of the 
sessions experience similar treatment and similar performance levels. (Note: This is 
similar to the Type B systems). However, by definition, we require that Type C 
Management approaches do NOT have any type of algorithm that makes an attempt at 
dropping packets from the queue prior to the time when the buffer memory is saturated 
(filled up). As a result, simple Saturated Tail-Dropping is the primary method that would 
be mapped into the Type C Management Grouping. In general, Type C Management 
approaches do not perform as well as their Type A and Type B counterparts.

Simulation Baseline
In order to provide a baseline simulation that can be used in comparing potential 
solutions to the Bufferbloat problem we used the simulated network configuration shown 
in Figure 1b. This model entails a single user who is concurrently uploading large 
amounts of FTP data to N independent network data servers and simultaneously 
playing an interactive game that is sensitive to upstream latency. (Each FTP session 
transmits a continuous stream of 90 MB FTP PUTs with 4 second spacing between 
blocks. The gaming session is modeled as a TCP session that transmits 10 KB 
messages at 2 second intervals.)  While this configuration is framed to model traffic in 
the upstream direction, the same analysis applies to the downstream direction (where 
the buffer would be incorporated into the CMTS).

We have intentionally kept the mixture of traffic types (e.g., data rates, RTTs, service 
types, protocols) as small as possible.  This makes it possible to create a simulation 
series that smoothly varies just one of these parameters and to chart performance as a 
function of that parameter.  A highly complex traffic mix would defeat this goal.



 

Figure 1b Description of Simulation Network

The upstream buffer used in this baseline model is a simple First-In-First-Out (FIFO)
packet buffer with <M> KB of available memory.  Buffer overflows are handled by 
dropping incoming packets when no more buffer storage space is available. This buffer 
model matches most upstream buffers in use today and should accurately demonstrate 
the phenomenon of Bufferbloat as it exists in many places in today’s network. 
Our simulation environment consisted of a packet level traffic simulator with 
microsecond level accuracy.  TCP, FTP protocols and CMTS behavior (when used) 
were modeled in detail. 

Our goal for the baseline simulation was to demonstrate how FTP upload data rate, 
gamer upstream latency, and overall data loss will vary as a function of the upstream 
buffer size. This was accomplished by repeating each simulation experiment 20 times 
while varying only the size of the upstream buffer.  By charting the parameters of 
interest (e.g, data rate, latency, drop rate) versus the amount of physical buffering 
available we can then show, not just a disconnected set of values, but how they vary 
smoothly with buffer size.  Thus we can show the performance of both large and small 
buffers (including those in between) in a single understandable chart.



 

Rather than describing the size of the upstream buffer in bytes, as might seem most 
logical, we have chosen instead to use the amount of time required to empty a full buffer 
at the maximum data rate (Tmax).  This choice of scale has a normalizing effect on the 
resulting graphical displays and allows us to more easily compare the results of 
experiments involving different upstream data rates (Tmax). Converting between the 
two metrics is fairly straight-forward. To convert from the time metric (in seconds) to a 
buffer depth metric (in bytes), simply multiply the time metric (in seconds) by Tmax/8 to 
produce the buffer depth metric (in bytes)

Our expectation is that the upstream packets from the gamer session will become 
queued behind a long standing queue of FTP session packets resulting in the gamer 
session experiencing unacceptable amounts of upstream latency.  We would expect 
larger upstream buffers to permit longer FTP standing queues resulting in even larger 
amounts of added upstream gamer latency.  Smaller upstream buffers, on the other 
hand, will experience many more packet drops and data retransmissions.

Type C Extension: Exploring Mismatches 
Between Actual BDP Values & Pre-Configured 

Buffer Depths With Saturated Tail-Drop Queues
At the current moment in history, MSOs will likely be limited (for a while) to using the 
Buffer Control mechanisms of DOCSIS 3.0 to try to manage upstream Bufferbloat, 
because other more advanced Bufferbloat management techniques (such as SFQ or 
CoDel or PIE) have not typically been implemented in many modems to date. As a 
result, most MSOs will be relying on the Saturated Tail-Drop mechanism to force 
throttling of TCP sessions when active buffer depths grow to be too large. This 
mechanism, which simply drops packets entering the tail of the queue whenever the 
buffer is full, is illustrated in Figure 1c.

Figure 1c Simple Operation Of Saturated Tail-Dropping Within A Queue
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When MSOs pre-configure the buffer depths for SFs using the Buffer Control 
mechanisms that are now available in DOCSIS 3.0 modems, they can change the 
Effective Buffer Size for each SF, but they will be forced to make some predictions and 
guesses about the best buffer depths that will minimize their Bufferbloat problems, 
minimize packet drops, and ensure high TCP throughputs. Gettys paper proposed that 
they set the buffer depths of their queues to be equal to the BDP of the packets passing 
through the network. To perform that BDP calculation, the MSO would have to select an
appropriate Bandwidth value and an appropriate Delay value that they expect the 
packets to experience. The Bandwidth value in the BDP can be set to the Tmax setting 
for the SF. (Note: As described in an earlier section of the paper, this works even if 
multiple sessions are sharing the Bandwidth of the SF). But the Delay value in the BDP 
would probably need to be a guestimate of the “typical” Round-Trip delays that might be 
expected for the packets passing through the SF. Typical guestimates might choose to 
use an average of the following rough RTT measurements made on the Internet [Kras]:

Typical RTT values between sites in the same region: ~20 msec
Typical RTT values between sites on the same continent: ~100 msec
Typical RTT values between sites on different continents: ~200 msec. 

Unfortunately, there may be multiple sessions (i.e.- packet streams) passing through the 
SF and through the shared buffer, and each session may be encountering different 
Round-Trip delays due to propagation through different distances and due to 
interactions with different congestion levels on the different propagation paths. As a 
result, the calculated BDP (and buffer depth) cannot be guaranteed to be set to a 
perfect value that corresponds to all of the sessions passing through that SF’s buffer.
We will now explore some of the repercussions of having a buffer depth setting that 
does not exactly match the actual BDP of a particular session.

Figure 2(a & b) shows the results of a series of simulations in which a gamer session 
plus 10 FTP sessions were competing for bandwidth over a 5 Mbps upstream service 
flow with an uncongested RTT value of 50 msec.  In Figure 2a we can see that the 
latency-sensitive gamer session experiences virtually the same latency as each of the 
FTP sessions for which latency is of no consequence. This is a direct result of the fact 
that the sessions are all sharing the same buffer. We also see that the latency 
experienced by each of the sessions increases linearly with the size of the upstream 
buffer.  This would tend to imply that MSOs might be wise to select smaller buffers. But 
how small is too small?

To answer that question, one must also consider packet loss and throughputs, which 
are captured as a function of the buffer depth in Figure 2b. In Figure 2b, we can see
that the total upstream data rate is nearly constant for all buffer sizes (with the exception 
of very small upstream buffers).  The minimum buffer size widely regarded as 
necessary to support adequate throughput is known as the BDP and calculated as the
product of the SF’s maximum upstream Data Rate (Tmax) times the Network RTT.   In 



this simulation series RTT is equal to 50 msec, and that particular buffer depth that 
drains in 50 msec (when drained by the Tmax value) is identified by the vertical, red, 
dashed line on the plot in Figure 2b. It can be seen that (as Gettys predicted) buffer 
depths smaller than this critical size (to the left of the vertical, red, dashed line) start to 
produce marked reductions in FTP bandwidth and also start to produce marked
increases in packet loss. This is primarily due to the fact that TCP sessions will likely 
attempt to send more packets through the small buffer than can be stored by the small 
buffer, resulting in buffer overflows and packet drops which ultimately force TCP to 
throttle its bandwidth.

We have also found that simulation runs with a large number of FTP sessions sharing 
the buffer produce similar aggregate throughput curves as simulation runs with a small 
number of FTP sessions sharing the buffer. The throughput is shared by the FTP 
sessions, and the knee in the curve to the left of the BDP value always occurs at 
roughly the same buffer size (given by the BDP). Thus, one can conclude that the
minimum buffer size suitable for an application does not depend on the number of 
concurrent sessions sharing a SF.

Also in Figure 2(b), the lower trace shows the data loss (measured in Mbps) resulting 
from packets dropped due to buffer overflows. While smaller upstream buffers 
experience more data loss than larger upstream buffers, the amount of data loss 
experienced in this experiment is not particularly alarming. However, its corresponding 
impact on TCP throughput performance is quite alarming when the buffers are made too 
small (i.e..- smaller than the BDP value).

Figure 2(a & b)  Latency & Throughput (Tmax = 5 Mbps)

Figure 3(a & b) shows the results of a similar series of simulations for which the 
upstream SF rate (Tmax) was limited to 1 Mbps.  Notice that Figures 2 and 3 look very 
similar (as a result of our choice of units for the X axis scaling) even though the 
corresponding buffer sizes in Figure 2 are (due to their different Tmax values) five times 
as large as those in Figure 3.



We can also see that the poor throughput for buffers smaller than the BDP value is even 
more pronounced for the low speed SFs (with low Tmax values) in Figure 3b. This 
indicates that MSOs should be wary of operating with very small buffers when the SF
Tmax values are low, because they risk placing limits on the maximum throughputs of 
TCP sessions that utilize those buffers.

Figure 3(a & b)  Latency & Throughput (Tmax = 1 Mbps)

Just as concerning is the significantly high data loss rate predicted by Figure 3b for low 
speed (e.g, 1 Mbps) upstream SFs when the buffer sizes are made small.  For 
upstream buffers able to store only 200 msec of data the data loss rate is nearly 6% of
maximum channel rate.  This could be especially damaging in the downstream direction 
where this dropped data has already made a complete transit of the Internet and must 
now be retransmitted from its source.

It appears that any plan to manage Bufferbloat and latency purely through buffer size 
ought to pay careful attention to the data loss rate and the maximum TCP throughputs 
for low speed SFs.  Large buffer sizes are helpful in keeping packet losses low and TCP 
throughputs high, but they can suffer from larger latencies on the latency-sensitive 
sessions. Conversely, small buffer sizes are helpful in keeping latencies low on latency-
sensitive sessions, but they can suffer from high packet losses and low TCP 
throughputs. Careful adjustments must be made- probably to values to that slightly 
larger than the BDP value.

Once the buffer size has been selected for a SF based on a configured Tmax value and 
a predicted RTT, one may wonder what happens if the actual RTTs for a traversing 
packet stream are different from the predicted RTT.

If the actual RTT is much shorter than the prediction, then the selected buffer depth 
would be larger than it needs to be, implying that the Effective Buffer Size is larger than 
the actual BDP and the system would be operating on the curves of Figure 2 and



 

Figure 3 to the right of the BDP value. This would result in larger-than-necessary 
latencies (but would yield low packet drop rates and high TCP throughputs).

If, on the other hand, the actual RTT is much longer than the prediction, then the 
selected buffer depth would be smaller than it needs to be, implying that the Effective 
Buffer Size is smaller than the actual BDP and the system would be operating on the 
curves of Figure 2 and Figure 3 to the left of the BDP value. This would result in larger-
than-necessary packet drop rates and lower TCP throughputs (but would yield lower 
latencies).

Type A Extension: Stochastic Flow Queuing with 
Hashing/Serial Searching To Reduce Hash 

Collisions
Generic Operation and Analysis

In this section we will examine the effect that the use of a Stochastic Flow Queuing 
(SFQ) approach might have upon the Bufferbloat issue.  We will demonstrate both the 
strength of this mechanism in the absence of hash collisions and the detrimental effects 
that hash collisions might have. We will then describe a technique that could greatly 
reduce the probability of hash collisions within SFQ systems.

By definition, packets from a single “flow” (or sub-flow or session) share a common 5-
tuple- i.e., they all have the same Ethertype, IP Source Address, IP Destination Address, 
TCP/UDP Source Port, and TCP/UDP Destination Port within their headers, and they 
are assumed to be associated with a single TCP or UDP session. It is important to
understand the difference between a session and a SF, because there is often 
confusion around the two concepts. SFs can have many sessions (and packet streams 
with many different 5-tuples) mapped into them, but a session has one and only one 5-
tuple associated with it.

Since packets from a single session share the same 5-tuple, one can use these five 
fields in the header of the packets to help separate them into separate and discrete 
sessions. Hashing is one quick way to map the packets into their designated session in 
real time. Hashing is a combinatorial combination (ex: Exclusive OR) of the five headers 
that produces a Y-bit result that points to one of 2Y unique sessions.

In a network element designed with separate buffers for each session, this hashing 
function can be used to rapidly steer each packet into its appropriate buffer (as shown in 
Figure 4). A Round-Robin Scheduler can then be used to extract packets from the 
multiple queues. The resulting SFQ approach may be considered to be more expensive 
and complex (from a hardware point-of-view) than other Bufferbloat mitigation 



 

techniques, but the ability of this approach to mitigate Bufferbloat issues is stellar (as 
shown in the CableLabs paper). We will therefore consider this approach in more detail 
within this paper.

Figure 4 Basic Operation Of SFQ

The packet sequencing challenge that leads to the Bufferbloat problem has much in 
common with the issues of congestion control among DOCSIS SFs.  In both cases 
several functionally unrelated packet streams compete for a limited amount of 
bandwidth that is insufficient to handle the full amount of offered traffic.

The issue of congestion control among DOCSIS SFs, however, has been successfully 
addressed by CMTS manufacturers and no counterpart of the Bufferbloat problem 
seems to exist between DOCSIS SFs.  Since the problem seems to be satisfactorily 
addressed in the DOCSIS domain, it might be wise to examine the parallels between 
these two problem domains to see what we might learn from DOCSIS congestion 
control that might be applied to the Bufferbloat issue.

As mentioned previously, a somewhat complex approach to solving Bufferbloat that has 
been widely discussed is called SFQ.  It turns out that the SFQ mechanism is quite 
similar to the way that DOCSIS congestion control is implemented in a CMTS.  Docsis 
supports separate queues for SFs in order to allow for Quality of Service functionality.
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While this is similar to SFQ in some ways, there are very important differences. This 
section will attempt to identify similarities and differences between these two 
mechanisms.

In the existing DOCSIS scheme, packets are first categorized into separate SF’s by 
virtue of a fixed, provisioned rule set (e.g. by a range of IP destinations). Each SF has 
its own queue, and the set of queues are serviced in a round robin manner (or using 
other scheduling techniques). The rules by which packets are assigned to queues are 
not only fixed, but they are mutually exclusive in the sense that each queue will never 
contain packets from more than one service flow.  Because each queue does not 
interact with the others,  a highly loaded queue’s contents cannot block or slow the
transmission of packets in a different queue. In other words, Bufferbloat effects are 
absent from a service flow perspective. However within a given service flow, different 
TCP/IP sessions can interfere with each other if they map to the same packet stream
within theSF.  These rules are agnostic to the type of application involved with the 
packets, and therefore in general maintain net-neutrality. 

Like the existing DOCSIS SF scheme, SFQ offers separate queues which avoid 
Bufferbloat between the queues. The mapping of packets into each queue is aimed at 
avoiding delaying one TCP/IP flow (a session) by another session.   In this case, the 
rule-set by which packets are assigned to queues is dynamic and seeks to put each 
session into its own queue. If this goal is achieved packets from one flow cannot be
impeded by packets from a different flow, making the latencies independent between 
sessions. This is a highly attractive attribute. 

By their nature, Internet sessions dynamically appear and disappear over relatively 
short periods of time, and in general are not predictable in advance. To implement SFQ, 
therefore, decisions need to be made to separate sessions by five-tuple and 
dynamically create (and destroy) queues for each flow.     

In practical terms it may not always be possible to have as many queues as there are 
sessions; if this occurs, then the SFQ system may be forced to temporarily enter an 
undesirable state where more than one session is assigned to the same queue; in this 
undesirable case the Bufferbloat phenomenon can exist between sessions. However,  
by a judicious design choice of the number of allowed queues, this should be a rare 
case. 

The dynamic assignment of packets to different SFQ queues needs to be fast and 
minimize situations where multiple SFs get assigned to the same queue. DOCSIS 
service flow classification is less of a challenge since a pre-configured rule-set can be 
used to create a search  index which is not only static, but it also results in never having 
a queue with more than one SF mapped into it. In the case of SFQ, dynamically created 
hashing algorithms will be needed which will result in  efficient and effective 
classification. But hashing collision must be minimized. For example, the authors have 



 

considered several alternatives and have identified some combinations of hashes and 
linear searches which seem appropriate.

In order to be effective in eliminating or minimalizing the Bufferbloat phenomenon, the 
SFQ implementations must be placed in the CM for upstream packets and in the CMTS 
for downstream packets. Due to the complexities of these SFQ approaches, it may not 
always be possible to include these functions in the CMs and CMTSs. 

Figure 5(a & b) shows the results of a simulation series that was identical to the 
situation modeled in Figure 2 with the single exception that the upstream buffer 
separated each upstream TCP session onto its own queue.  These queues were then
drained in a simple packet round-robin fashion. 

Figure 5a shows that this has resulted in identical packet latency for all FTP sessions 
(for which latency is of no concern), but the separation of sessions into different queues 
within the SFQ arrangement has almost completely eliminated any additional latency on 
the gaming session (resulting in only the 50 msec of round-trip latency that is inherent in 
the uncongested network layout).  Figure 5b shows that both the overall data 
throughput and packet loss rates are virtually identical to the baseline experiment in 
Figure 2b.  We can see here that (in cases where we were able to guarantee a total 
absence of hashing collisions) the use of SFQ buffering can completely eliminate 
Bufferbloat, resulting in an overall performance equivalent to that of DOCSIS congestion 
control.

It should be apparent that the MSO is free to be more cavalier in their selection of buffer 
sizes when SFQ is used. Since they don’t know the exact BDP values for the actual 
packets, they can lean towards the use of larger BDP values (like 200 msec or so) and 
not incur the penalty of longer delays for the latency-sensitive sessions (since those 
sessions will be placed on their own queue and typically experience low latencies in a 
fashion similar to that of the gaming session in Figure 4a.

Figure 5(a & b)  Latency & Throughput (SFQ w/o Hash Collisions)



 

If the MSO chooses longer buffer depths in an SFQ environment, then the sessions with 
heavy bandwidth (such as the FTP sessions above) will experience longer latencies as 
they fill the larger buffers (as shown in Figure 5a), but this additional latency on any 
FTP session is, in this case, due only to previously queued packets for that same FTP 
session and should not be viewed as a problem.  (Note: The FTP packets are being 
delivered from source to destination as quickly as the network will permit. Whether the
packets from a particular FTP session are stored at the source or at the network 
element buffer is unimportant). For this reason the throughput of each FTP session 
actually improves slightly (but with quickly diminishing returns) as the total buffer size
increases due to a need to drop fewer packets in order to prevent buffer overflow. As 
shown, the longer buffers do not typically lead to longer latencies for the latency-
senstive sessions (such as the gamer session), because most latency-sensitive 
applications (gaming, VoIP, etc.) do not typically generate enough bursty bandwidth to 
fill their isolated SFQ buffer. Web-browsing is an interesting latency-sensitive 
application that can generate enough bursty bandwidth to fill its isolated SFQ buffer, but 
as with the FTP sessions, the bandwidth will be delivered as fast as the link will permit. 

Figure 6   Latency CDF (Gamer in red & FTP in blue) for SFQ

Figure 6 shows the Cumulative Distribution Function (CDF) for all packet latencies for 
both gamer traffic (in red) and FTP sessions (in green) flowing through an SFQ system 
with effective buffers sized to be able to store 960 msec of 5 Mbps traffic (i.e.- 600 
Kbyte buffers).  This chart shows that all gamer packet latencies (in red) are tightly 
clustered between 40 & 100 msec while most FTP packets experience latencies over a 
much wider range between 0.5 and 1.0 sec.

This chart shows that all of the individual packet latencies (not just their average value) 
fall within a desirable range when a well-designed SFQ system is utilized.
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We now turn our attention to examining how SFQ buffer performance is affected in the 
event of a hashing collision. Hash collisions cause problems that occur when two (or 
more) different sessions map to the same identical hash value and therefore have their 
packet streams steered to the same identical SFQ queue. This condition essentially 
breaks the perfect isolation that previously existed between sessions passing through 
the different SFQ queues. Figure 7(a & b) shows the results of a simulation series
where hash collisions have occurred.

Figure 7(a & b)  Latency & Throughput (SFQ w/ Hash Collision)

Thus, Figure 7 is identical to Figure 5 with the exception that a single hash collision 
has been purposely forced between the gamer session and one of the FTP sessions. It
is apparent from Figure 7a that the gamer session now experiences the same amount 
of Bufferbloat that was present in the baseline simulation series, because the packets 
incur the latency of a single FTP stream and packet drops to throttle the FTP stream do 
not occur until Saturated Tail-Dropping occurs. In effect, the previous benefits of SFQ 
buffering are completely undone in the event of a hashing collision involving a latency-
sensitive session.

This might seem counterintuitive since the gamer is now sharing a hash queue with only 
one of the ten FTP sessions instead of with all 10 FTP sessions (as is the case in the 
baseline series).  However, the difference here is that the single SFQ that the gamer 
shares in this case is draining at only 1/10th the rate of the baseline queue – so the net 
result is the same.

In summary, these two sets of simulations show two important things:

1. In the absence of hash collisions, SFQ buffering is excellent at mitigating the 
Bufferbloat problem and is fully as good as the current DOCSIS congestion 
control algorithms (and shows no signs of Bufferbloat).

2. In the presence of hash collisions involving latency-sensitive sessions, SFQ 
shows no improvement at all over standard Saturated Tail-Dropping queue– but 
also no further degradation, either.



 

Both the excellent performance of SFQ buffering and its vulnerability to infrequent hash 
collisions has been previously observed in the literature, and a combined approach 
(SFQ-CoDel) has been suggested [Whi2].  This combined approach proposes the use 
of an additional CoDel mechanism on top of the normal SFQ operation to help partially 
minimize the large latencies that can result in the event of a hash collision involving 
latency-sensitive sessions. But the performance results of the combined approach are 
not as astounding as the results experienced by a standard SFQ system that avoids 
hash collisions altogether. As a result, we will explore (below) ways to greatly decrease 
the probability of hash collisions within standard SFQ systems.

Decreasing Hash Collision Probability

In this section we will look specifically at the likelihood that one of these hash collisions 
might occur.  Instead of simply assuming that these collisions are always going to 
happen, what if we could design a mechanism for which the probability of a hashing 
collision were so extremely rare that it could reasonably be ignored. (Note: The reader 
should remember that even in the worst-case scenario with SFQ experiencing a hash 
collision, the latency would never be greater than what we currently see every day in the 
field with standard Saturated Tail-Dropping). If such a low-collision hashing mechanism 
could be found, then SFQ buffering would not require a second mechanism, like CoDel, 
to cover for the effects of buffer collisions. (Or it could add the second mechanism and 
rarely rely on it, so that the SFQ system could typically experience the higher-level 
performance offered by normal SFQ operation).

It turns out that the harder problem here is the challenge of simply calculating the 
collision probability rather than how to design the hashing mechanism.  Many (but 
certainly not all) commonly used hashing mechanisms actually already have extremely 
low collision probabilities – but it is not a simple matter to calculate that probability 
numerically.

In the CableLabs paper, it was assumed that a simple hashing algorithm was used (by 
itself) for selecting into which queue a session should be mapped. For example, if each
service flow was provided with a generous number of (say) Q=256 SFQ queues into 
which one could separate the sessions propagating through that service flow, a simple 
hash would blindly steer the packets to the queue to which they originally hashed 
(assuming the use of an 8-bit hash pointer). This approach falls victim to the well-known 
“Birthday Paradox,” whereby there is a high probability that two sessions will experience
a hash collision- even within the 256 SFQ queues and even with a small number of 
sessions sharing the service flow’s 256 SFQ queues. In general, the probability that the 
first session that grabs a queue experiences no hash collision is P(1)=1. The probability 
that the second session that grabs a queue experiences no hash collision is 
P(2)=255/256, and the probability that neither the first or second session experience a 
hash collision is given by P(1)*P(2) = 1*(255/256) = 99.6%. The probability that the third 
session that grabs a queue experiences no hash collision is P(3)=254/256, and the 



 

probability that neither the first or second or third session experiences a hash collision is 
given by P(1)*P(2)*P(3) = 1*(255/256)*(254/256) = 98.8%. This process can be 
continued to calculate the probability of a hash collision whenever X sessions are 
sharing a service group, and the results are plotted in Figure 8. As can be seen in the 
figure, the probability of a hash collision rises rapidly as the number of sessions sharing 
a service flow grows. With as few as 10 sessions, the probability of a hash collision 
within the 256 queues rises above 16% when normal hashing is used! With as few as 
20 sessions, the probability of a hash collision within the 256 queues rises above 50%
when normal hashing is used! These results are horrendous, and as indicated in the 
CableLabs paper, they imply that SFQ alone does not work well as a Bufferbloat 
mitigation scheme because of the high probability that hash collisions will return its 
performance back to the lower performance levels of a Saturated Tail-Dropping system 
(which probably doesn’t justify the added complexity of an SFQ solution).

Figure 8 Probability Of Hash Collisions With Normal Hashing Into 256 Queues

In an effort to rectify this inherent problem of SFQ systems that utilize simple hashing 
for session-to-SFQ queue mapping, we will now propose and analyze the performance 
of a slightly different system that uses a slightly different algorithm for session-to-SFQ 
queue mapping. 

The new proposal uses a fairly straightforward combination of hashing and serial 
searches. In the particular system with 256 SFQ queues per Service Flow, the system 
would hash into one of 64 queue groups, and each queue group would contain four
queues. Once a session is mapped into a queue group, a serial search will identify the 
first unused queue within the four queues of the queue group and then assign that 
session to that particular unused queue. Since a serial search through four queues is 
not exceptionally challenging, this was deemed to be somewhat reasonable from a 
hardware/software complexity point of view. Using this simple modification, up to four 
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different sessions can randomly hash into the same queue group and still be intelligently 
steered into different queues, so the probability of a hash collision is greatly reduced 
through the use of the simple serial search mechanism. Obviously, in the unlikely event 
that five or more sessions hash into the same queue group, then this modified SFQ 
system is forced to allow a hash collision to occur and the system must then steer two 
different sessions into a common queue. But we can perform Monte-Carlo simulation 
techniques to calculate the probability of experiencing a hash collision as a function of 
the number of queue groups in the hash table and the number of queues in the queue 
group.

The occurrence of a collision for the modified SFQ design with 64 queue groups and 4 
queues per queue group would require that 5 (=4+1) different sessions hash to the 
same queue group before a hash collision would occur. Since we were unable to 
calculate a closed form solution for calculating the probability of such an event, we 
resort to the use of Monte Carol simulation techniques.  Figure 9 shows the results of 
this simulation, with the x-axis showing the number of sessions that are sharing the 
service flow and with the y-axis showing the probability of a hash collision.

Figure 9   Hash Collision Probability With 64 Queue Groups And 4 Queues Per Queue 
Group (256 Queues Total)

Within Figure 9, the green plot shows the probability of a hash collision if we perform 
normal hashing into the 256 individual queues. The red plot shows the probability of a 
hash collision if we perform normal hashing into the 64 queue groups and register a 
hash collision any time that two or more sessions map to the same queue group (even 
though this would not result in a hash collision with our added serial search mechanism 
that is described by the blue plot). The blue plot shows the probability of hash collision if 
we perform normal hashing into the 64 queue groups and then perform a serial search 
for an unused queue within the 4 queues inside of the queue group. From the blue plot, 
we can see that even as many as 20 concurrent sessions would have only a 0.05% 
chance of experiencing a hash collision! Even as many as 35 concurrent sessions
would have only a 1% likelihood of having any hash collision at all.



 

Thus, the addition of this proposed serial search mechanism to the simple hashing 
techniques normally used in SFQ systems provides great reductions in the probability of 
SFQ hash collisions. This is even true when Peer-to-Peer services (such as BitTorrent) 
are being utilized by users within the home. BitTorrent experiments that were performed 
by the authors on the Internet indicated that most of our observed BitTorrent sessions 
had up to 50 peers, but typically had only 10 (or so) concurrent TCP sessions that were 
actively exchanging data with those peers. While this is not full validation, it does give a 
good indication that the improved latency performance of SFQ with Hashing/Serial 
Searching can likely provide excellent performance for most of the use cases that will 
be found in most homes.

It is worth remembering that most of the potential (but unlikely) hash collisions within an 
SFQ system with Hashing/Serial Searching would still not degrade service.  It is only 
when a latency-sensitive session actually collides with a very high throughput session 
that any Bufferbloat issues would result.

While not all hashing mechanism designs will produce the collision-free performance 
that we have shown in this example, many variations on the above design do exist 
which would produce excellent results even with very large numbers of concurrent 
sessions. It may well be the case that a straightforward SFQ buffer, by itself, could 
completely eradicate Bufferbloat (even without the addition of secondary mechanisms
like CoDel). Nevertheless, one could easily add a secondary mechanism (such as 
CoDel or the LRED algorithms proposed in the next section) on top of SFQ with 
Hashing/Serial Searching to produce a very powerful Bufferbloat mitigation system.

Type B Extension: Latency-Based Random Early 
Detection (LRED) For Managing Bufferbloat

Generic Operation and Analysis

The SFQ Bufferbloat mitigation technique that employed both hashing and serial 
searches (as described in the previous section) uses a Type A approach that definitely 
provides very good control of Bufferbloat for latency-sensitive sessions while also 
yielding low packet loss and high TCP throughputs. However, it is possible that some 
network elements may not have the hardware and software resources to implement the 
higher complexity levels required by an SFQ solution. As a result, the authors wanted to 
also explore simpler (medium-level complexity) Bufferbloat mitigation techniques that 
fell into the Type B camp.

In this section, we will propose and analyze a novel Bufferbloat mitigation technique that 
would probably be categorized as a Type B approach. It shares a lot of similarities with 



 

the CoDel and PIE approaches. CoDel and PIE are both very clever techniques that 
have been shown to provide good results in managing Bufferbloat. But we began to 
wonder if there wasn’t a slightly simpler approach to the packet dropping algorithms that 
could piggy-back on top of and capitalize on some congestion control algorithms that 
might already be present within certain network elements. 

This led the authors to consider the use of the well-known Random Early Detection 
(RED) algorithms or Weighted Random Early Detection (WRED) algorithms that are 
often implemented in one form or another within network elements. [Floy] Normal RED 
algorithms adjust the dropping probability of packets passing through a network queue 
as a function of the current queue depth (or a queue depth average). Normal WRED 
algorithms add packet priority to the mix.  In general, packets with lower priority and 
packets in longer queues will experience higher dropping probabilities in an attempt to 
throttle TCP flows. 

These algorithms are usually included in network elements to manage congestion 
control within the networks by inserting random packet drops to throttle TCP sessions in 
order to avoid buffer overflow. These algorithms are typically based on special dropping 
probability curves that are used to determine the probability with which each packet 
passing through a queue should be dropped. The standard shape of the RED dropping 
probability curve is shown in Figure 10(a and b), and it is described by three distinct 
parameters (the minimum threshold MINth, the maximum threshold MAXth, and the 
dropping probability Pa at MAXth). Different configured values of MINth, MAXth, and Pa 
can yield quite different dropping probabilities for the packets passing through the 
queues as network congestion and queue depths change. (Note: Figure 10a uses the 
traditional queue depths and Figure 10b is a non-traditional version that uses packet 
sojourn times. Either real-time or average queue depths and sojourn times can be and 
have been utilized in different implementations). 

Queue depth (Figure 10a) and packet latency (Figure 10b) are closely related in Type 
B mechanisms, where    Depth = Latency * Tmax / 8.  One advantage of using packet 
latency instead of queue depth for RED calculations is that the “effective Tmax” that is 
experienced under heavy network congestion may be significantly lower than the 
configured Tmax. Mechanisms based on latency will automatically compensate for this 
change in Tmax, where mechanisms based on queue depth will not. For Type A 
mechanisms this difference is even more important since every sub-queue has a 
different length and effective Tmax.  A latency-based RED mechanism requires an
aditional overhead of saving a simple packet timestamp on entry to the queue.

If this RED or WRED mechanism were already implemented within a network element 
(or could be easily added), we wondered if we could use some of the sub-systems from 
RED or WRED congestion control algorithms to help create a simple Type B Bufferbloat 
management system.



 

Figure 10(a & b &c) Typical Drop Probability Curves for RED & WRED

Thus, in this section we introduce a novel Bufferbloat management technique called 
Latency-Based Random Early Detection (LRED).  LRED adds a slight modification to 
RED in that it adjusts the dropping probability as a function of the latency experienced 
by packets as they exit the queue. 

There are several ways to implement this solution. One of which is to modify a single 
First-In-First-Out (FIFO) buffer queue by time stamping each packet on arrival.  Upon 
retrieving a packet from the head of the queue we compare the length of time that the 
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packet has remained in the queue (i.e.- the packet’s sojourn time). Depending on the 
magnitude of the sojourn time, the system calculates a dropping probability value 
between 0.0 and 1.0 for this packet by accessing the dropping probability curve shown 
in Figure 10b. Using this dropping probability value, a random number generator is then 
used to determine a uniformly distributed random variable between 0.0 and 1.0. If the 
random variable is less than the dropping probability value, then the packet is dropped. 
Otherwise the packet is passed.  

A similar implementation based on queue depth (instead of sojourn time) can also be 
envisioned, but it would use the dropping probability curve shown in Figure 10a. (Note: 
When using queue depths, LRED and RED become virtually identical). Results are 
similar with either approach on uncongested networks.

Over time, we have also looked at modifications to the RED dropping probability curves 
and migrated towards the curve shown in Figure 10c. (Note: This particular curve was 
used for the LRED simulations described in this paper). This curve tended to start 
dropping of packets more aggressively with a dropping probability of Pmin when the 
sojourn times exceeded the MINth value and then leveled off the drop probabilities at a 
maximum value of Pmax when the sojourn times exceeded the MAXth value. We are 
exploring other dropping probability curve shapes as well.

Our thinking in moving to the curve in Figure 10c is that, while it may be desirable to 
move to a 100% drop rate when we are dropping packets to preserve basic network 
functionality (as is a common motivation for using RED), we were reluctant to go that 
high simply to provide latency QoS on an otherwise well-functioning service flow, where 
such a high drop rate would destroy the session throughput.  We were pleased to find 
that surprisingly low drop rates can have significant influence on session latency.

The advantages of the LRED approach are twofold:
1. Tail drops (from conventional buffer overflows) become head drops making TCP 

much more effective in responding to and recovering from the dropped packet.
2. Drop clusters (which can be quite common for small buffer sizes and for systems 

that employ simple Saturated Tail-Dropping algorithms) are eliminated.  These 
clusters can be extremely destructive to latency-sensitive sessions.

Figure 11(a & b) shows the results of a simulation series that was identical to the 
situation modeled in Figure 2, but LRED techniques were employed to initiate early 
dropping of packets. The dropping probability curve of Figure 10c was utilized within 
this simulation series, with the following parameters: MINth = 200 msec, MAXth = 400 
msec, Pmin = 1%, and Pmax = 5%.  

Figure 11a shows that this has resulted in identical packet latency for both FTP and 
Gamer sessions, but the use of LRED dropping has caused these latency values to 
level out at about 200 msec even when the buffer depth size is increased. As a result, 
LRED dropping is throttling the TCP sessions and ensuring that only a finite amount of 



the buffer is utilized. Figure 11b shows that both the overall data throughput and packet 
loss rates are quite reasonable as well.  

Figure 11(a & b)  Latency & Throughput (LRED)

It should be apparent that an MSO is free to be more cavalier in their selection of buffer 
sizes when LRED is used, because as long as the buffer is large enough, the effect of 
LRED dropping will limit the total latency experienced by the FTP and Gaming sessions.  
Since MSOs don’t know the exact BDP values for the actual packets, they can lean 
towards the use of larger buffer depths and not incur the penalty of longer delays for the 
latency-sensitive sessions.

Figure 12   Latency CDF (Gamer & FTP) for LRED

Figure 12 shows the Cumulative Distribution Function (CDF) for all packet latencies for 
both gamer traffic (in red) and FTP sessions (in blue) flowing through the same LRED 
system described in Figure 11 with a physical buffer sized to be able to store 960 msec 
of 5 Mbps traffic (i.e.- 600 Kbyte buffers).  We can see that all packet latencies (not just 
the average) are distributed between 100 and 210 msec.
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In this example we see a close relationship between the value of MINth (200 msec) and 
the resulting average latency (200+ msec) experienced by packets passing through the 
buffer.  In fairness, we should state clearly at this point that “your mileage may vary”.  In 
our studies we have found the resulting latency to be “near” the MINth value (below 
when few drops are needed and above when significant drops are required). It is also 
important to remember that the MINth value is compared to the sojourn time that a 
packet spends on queue – while the packet latency also includes the upstream (in this 
case) portion of the uncongested network RTT.

Naturally, there are physical limits on how little packet latency can be practically 
achieved through LRED alone without requiring an unacceptable drop rate.  We have 
introduced the Pmax drop rate in Figure 10c as a fail-safe mechanism to cause LRED 
to limit its drop rate when faced with an unreachable latency goal.

A number of factors affect the ease (efficiency) with which LRED can achieve it target 
latency. The following factors (and their combination) can reduce the effectiveness of 
LRED:  

1) Large number of concurrent sessions
2) Low Tmax
3) Large uncongested RTT

Recall that for N concurrent sessions a single packet drop can affect only 1/Nth of the 
active TCP streams.  A greater drop rate will be required to have the same effect on all 
TCP streams for a larger value of N. In addition, as the value of Tmax is reduced the 
interval of time between drops increases resulting in less efficient control of the TCP 
stream.

Fortunately, LRED seems to have a very large sweet spot and may be applicable to a 
major portion of our network problem domain (especially as Tmax values are trending 
up). Future work might map this multi-dimensional sweet spot.

Figure 13(a & b)  Latency & Throughput (LRED w/ Tmax = 1 Mbps)



 

Figure 13(a & b) illustrates how LRED behaves when it fails to achieve its packet 
latency goal of 50 msec.  This example uses 10 concurrent FTP sessions plus a single 
gamer session over a slow 1 Mbps Tmax.  It achieves average latencies near 100 
msec.  We can see that the packet drop rate was allowed to grow to over 10% before 
LRED gave up on trimming another 50 msec off of the average latency.

As a result, in its current state of development, LRED appears to be quite suitable for 
application as a stand-alone Type B Bufferbloat Mitigation technique if the target latency 
is on the order of 100 msec or greater. LRED can also serve well as a very simple, 
secondary Bufferbloat Mitigation mechanism that can be added on top of an SFQ 
system to limit the maximum latency incurred within any of the queues of the SFQ 
system (or to take control if/when hash collisions occur). However, the LRED solution 
(as it currently exists) requires high dropping probabilities to force the sessions to have 
target latencies of much less than 100 msec. This problem is exacerbated if many 
sessions are sharing the queue that is being managed. Modifications to the LRED 
solution are currently under study in an attempt to extend its operating point to target 
latencies that are much less than 100 msec.

Combining SFQ with Hashing/Serial Searching & LRED

In the CableLabs paper, the authors described a combination of SFQ and CoDel that 
offered the benefits of SFQ performance (when no hash collisions occurred) and relied 
on the CoDel scheme to improve on the reduced performance levels that occur in the 
event of a hash collision.  In this paper the Type B (CoDel) mechanism does not 
distinguish between low and high latency sessions and is required to introduce large 
levels of latency control in order to manage latency-sensitive sessions in the event of a 
hash collision.

In this section we will describe a similar approach using SFQ w/ Hashing/Serial Search 
in combination with LRED that has very attractive properties.  The advantages of this 
approach derive from the ability to avoid ever dropping packets from latency-sensitive 
sessions (due to their short sojourn times) and the ability to use very low levels of LRED 
drops (sufficient only to avoid overflowing a large physical buffer).  Since hash collisions 
are extremely rare LRED need not keep the latency of non-latency-sensitive session 
extremely low.

The motivation for adding LRED to the SFQ w/ Hashing/Serial Search mechanism is 
focused on a fairly minor defect in the unmodified SFQ approach.  In the approach as 
presented in Figure  5 a very small drop rate results from infrequent overflows of the 
total physical buffer.  These drops occur very infrequently but do not discriminate 
between FTP and gamer sessions.  TCP recovery mechanisms, however, are much 
less effective for short packet burst (such as those typical of latency-sensitive sessions) 
– and these are the very latencies we are trying to shorten.  The addition of LRED to 
this approach allows us to introduce just enough LRED drops to insure that drops never 



 

occur due to buffer overflow – and, therefore, latency-sensitive packets are never 
dropped because their small latency is well below MINth.

Figure 14(a & b) shows the results of a simulation series identical to the one shown in 
Figure 2 with the exception that the buffer uses both SFQ with Hashing/Serial 
Searching (described in the previous section) and LRED with the following parameters: 
MINth = 700 msec, MAXth = 1400 msec, Pmin = 1%, and Pmax = 5%. Notice that 
resulting FTP packet latency peaks at a value that is marginally larger than 500 msec
while the gamer session latency is around 50 msec (very near the uncongested RTT 
minimum).

Figure 14(a & b)  Latency & Throughput (SFQ with Hashing/Serial Searching & LRED)

Figure 15 and Figure 16 show that all latency-sensitive packets (not just their average 
value) fall in a very narrow distribution between 50 and 100 msec. Both of these 
examples use a Tmax of 5 Mbps and a physical buffer size able to hold 960 msec of 
data at that rate. In both cases the Baseline (in green) curve shows the latency 
common to both traffic types in the baseline (Type A) example shown in Figure 2.

We can see from these two figures that the LRED value of MINth can be varied 
smoothly between 700 and 200 msec without affecting the gamer latency – only the 
FTP latency is affected.



 

Figure 15  Latency CDF (SFQ with Hashing/Serial Searching + LRED 700)

Figure 16  Latency CDF (SFQ with Hashing/Serial Searching + LRED 200)
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Considerations For All Bufferbloat Mitigation 
Schemes

While performing the aforementioned analyses, there were several potential issues that 
were identified by the authors. It seemed prudent to outline some of those issues within this 
paper. 

In general, the flow of Internet traffic through a network involves interaction between multiple 
devices and multiple internet protocols. A minor change in the behavior of any one device 
may cause an unintended change elsewhere. This change can be a technical change 
(whereby instabilities can occur) or can be a social change (whereby certain types of service 
implementation are favored over others).

The following is a list of some of the identified issues. 

LEDBAT 

The LEDBAT algorithm, which is widely used to throttle bitTorrent traffic, is designed to 
reduce the data transmission rate whenever latency is detected. A Bufferbloat avoidance 
algorithm will significantly reduce the latency, As a result, Bufferbloat mitigation can result in 
congestion not being detected by LEDBAT algorithms, and this may lead to the undesirable 
condition where this class of traffic may take a larger share of the available service flow 
capacity.

Session Bloat

We have found the effectiveness of all types of Bufferbloat mitigation to be very sensitive to
the number of concurrent sessions flowing through a buffer.  This property might well be 
expected since the only fundamental type of flow control that is available is packet dropping 
which relies on a response from TCP.  Any single dropped packet can affect only one of a 
set a concurrent flows – all other flows are not aware of this drop.  We might expect a 
service flow with 50 concurrent sessions to require ~50 times as many dropped packets to 
achieve a same degree of latency control.

The performance of any Bufferbloat mitigation mechanism should be evaluated against a 
large number of concurrent sessions since this condition cannot be avoided in the field and 
is intentionally increased by services such as BitTorrent and web browsing.

If a Bufferbloat mitigation algorithm eliminates or significantly reduces the latency on a
session at the expense of its overall session throughput then it might encourage services to 
create even more parallel sessions like BitTorrent and web browsers do today.  This could
further aggravate the condition for all buffers in a network.



 

Low Bandwidth Service Flows

We have found Bufferbloat mitigation on low bandwidth flows (e.g., 1 Mbps and below) to be 
more difficult (especially with a large number of concurrent sessions).  It might be advisable 
to closely study the behavior of an avoidance mechanism on SFs with low Tmax values 
before it is adopted and deployed.

Large bursts

A large data burst arriving at a buffer already straining to limit latency can disturb its 
equilibrium and sometimes trigger undesirable transient behavior.  Acceptance testing for a 
potential Bufferbloat solution should include data burst stress testing.

Most Bufferbloat avoidance schemes detect latency due to a buildup of packets in a queue 
but a large burst can then arrive on top of that. Although latency is reduced to a minimum 
acceptable level for the application which is generating the burst, it may not be an 
acceptable level for other applications sharing the same service-flow. For example, the 
resultant bursty latency may still be excessive for a gaming application which shares the 
same service-flow. Therefore, some Bufferbloat improvement schemes may work well for 
sessions where latency does not matter but may be insufficient for applications like gaming 
where latency really matters.

Short-lived flows

The majority of schemes which aim to control the SF bitrate by dropping packets work well 
for a small number of long-lived sessions. However, real Internet traffic is composed of a lot 
of short random bursts for web page downloads and short periodic bursts for adaptive bit 
rate (ABR) video. Careful attention should be paid to any operational overhead imposed by 
the frequent creation and deletion of these short-lived sessions.

A mechanism, like SFQ, that attempts to identify and separate these flows must be able to 
create and delete these session queues with very little overhead.

Sudden rate changes

A sudden drop in bitrate (for example, from the DOCSIS peak-rate to the max-sustained-
rate) may frequently occur in the normal course of CMTS traffic policing. This will cause a 
buildup in latency in the SF queue as packets continue to arrive at a high rate but leave the 
queue at a much lower rate. A Bufferbloat avoidance scheme will attempt to counteract this 
increase in latency but may take several seconds to reach a new equilibrium point. This
could lead to instability in all TCP flows which would not have occurred in the absence of 
Bufferbloat mitigation. As a result, we should be alert to possible incompatibilities between 
standard DOCSIS QoS algorithms and Bufferbloat algorithms, 

All of the above areas may require new research to be carried out in the future.



 

Conclusions
This paper has attempted to extend the analysis work on DOCSIS Bufferbloat 
management techniques that was originally started by CableLabs. In particular, the 
paper studied four different types of Bufferbloat management techniques. One of the 
techniques was a low-complexity technique known as Saturated Tail-Dropping. A 
second technique was a medium-complexity technique known as Latency-based RED.
A third technique was a high-complexity technique known as SFQ with Hashing/Serial 
Searching. Finally, a combined technique using both SFQ with Hashing/Serial 
Searching and Latency-based RED was also studied. 

In general, the authors would recommend that an MSO or vendor who can support the 
added complexity should first consider SFQ with Hashing/Serial Searching coupled with 
Latency-based RED. This solution probably provides the best performance of all 
solutions studied within the paper, as it separates each of the sessions within a service 
flow into different queues and produces near optimal performance on latency-sensitive 
sessions.

If a slightly simpler approach is required, then the MSO or vendor should consider SFQ 
with Hashing/Serial Searching. This approach still separates each of the sessions within 
a SF into different queues and produces excellent performance.

If an even simpler approach is required, then the MSO or vendor should consider 
Latency-based WRED. This solution uses packet sojourn times to determine when 
random packet drops should be triggered to throttle TCP bandwidths and reduce queue 
depths. In general, this solution does a fairly good job at limiting latency for all of the 
sessions sharing a service flow buffer, but it does experience more packet loss and 
more TCP throughput reduction than the previous solutions.

If the simplest approach is required, then the MSO or vendor should consider a 
Saturated Tail-Dropping solution. These solutions only drop packets to throttle TCP 
bandwidths whenever the shared buffer is entirely filled. The challenging part of this
solution is to choose an appropriate buffer depth. The authors propose using a buffer 
depth that is slightly larger than the BDP values for the traffic with the longest expected 
RTT.  The analysis in the paper showed that a session whose RTT is much longer than 
the anticipated RTT may excessively overflow the buffer size and experience large 
packet loss and much lower TCP throughputs.

The end goal of Bufferbloat Mitigation is to achieve low-latency for gaming sessions 
even in the presence of bursty, high-bandwidth TCP traffic that is sharing the same SF.
So far, the only available schemes which achieves this goal consistently are the SFQ-
based (Type A) schemes. However, the CoDel and PIE and LRED schemes can also 
achieve it for a high percentage of the time. Unfortunately, implementation practicalities 



 

(ex: hardware or processing limitations in some CMs or CMTSs) may limit the 
application of SFQ within some devices, so continued research must continue on 
alternative schemes in order to achieve the end goal of a simple Bufferbloat Mitigation 
scheme which imposes negligible latency, with acceptable packet loss and close-to-the-
target TCP throughput level.
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Abbreviations and Acronyms
ABR Available Bit Rate
BDP Bandwidth Delay Product
CDF Cumulative Distribution Function
CM Cable Modem 
CMTS Cable Modem Termination System
CoDel Controlled Delay
DOCSIS Data over Cable Service Interface Specification
DRAM Dynamic Random Access Memory
ECN Explicit Congestion Notification
FIFO First in First Out
FTP File Transfer Protocol
IP Internet Protocol
LEDBAT Low Extra Delay Background Transport
LRED Latency-Based Random Early Detection
Mbps Megabits per second
MSO Multiple System Operator
PIE Proportional Integral Enhanced
QoS Quality of Service
RED Random Early Detection
RTT Round-trip Time
SF Service Flow
SFQ Stochastic Flow Queuing
TCP Transmission Control Protocol
Tmax Maximum Sustained Traffic Rate
UDP User Datagram Protocol
VoIP Voice over Internet Protocol
WRED Weighted Random Early Detection


