

Minimizing Bufferbloat and Optimizing Packet
Stream Performance in DOCSIS 3.0 CMs and

CMTSs
A Technical Paper prepared for the Society of Cable Telecommunications Engineers

By

Tom Cloonan
Chief Technology Officer- Network Solutions

ARRIS
2400 Ogden Ave.- Suite 180, Lisle, IL 60532

630-281-3050
tom.cloonan@arrisi.com

Jim Allen
Staff Software Engineer

ARRIS
2400 Ogden Ave.- Suite 180, Lisle, IL 60532

630-281-3020
jim.allen@arrisi.com

Tony Cotter
Staff Software Engineer

ARRIS
Building 4300, Cork Airport Business Park Kinsale Road, Cork Co., Ireland

tony.cotter@arrisi.com

Ben Widrevitz
Sr. System Architect

ARRIS
2400 Ogden Ave.- Suite 180, Lisle, IL 60532

630-281-3273
ben.widrevitz@arrisi.com

Jeff Howe
Sr. Director- Broadband Architecture

ARRIS
2400 Ogden Ave.- Suite 180, Lisle, IL 60532

630-281-3124
jeff.howe@arrisi.com

Overview
You are trying to catch a plane…it departs in a short 15 minutes! You arrive at airport
security and encounter a line with 120 people ahead of you. They are all people
destined for a different plane that won’t depart for one and a half hours… and they are
not in a hurry. You are in a hurry, but you must now wait. And your wait will be as long
as it takes to service all of the other 120 people ahead of you in the line. If it takes one
minute to perform a security check on each person, then the wait will be 120 minutes…
2 whole hours! Performing these mental calculations in your head, you realize that it is
futile- you will miss your plane.

If you ever had an experience like that (stuck in line behind a large group of people
when you are in a hurry), then you are familiar with the frustrating phenomenon known
as Bufferbloat. It affects people in lines, and it affects packets in the queues of network
elements (like routers, switches, CMTSs, and CMs).

Bufferbloat wthin the Internet is formally defined to be the undesirably long latency that
can be experienced by a latency-sensitive packet that arrives at a shared queue when
another set of packets from a different flow (that may or may not be latency-sensitive)
are already filling many of the buffers within the queue. Many papers have hypothesized
that the existence of Bufferbloat within upstream CM buffers and downstream CMTS
buffers could be one of the primary sources of frustration for many Cable Data users.

Problems related to Bufferbloat have most likely always been present within the Internet,
but they have become more apparent and more problematic in recent years due to
several trends:

1) Higher bandwidth service tiers (ex: 50 and 100 Mbps tiers) are now being offered
by service providers (such as Multiple System Operators or MSOs)

2) Higher bandwidth applications have become commonplace (ex: Peer-to-Peer File
Transfers, Streaming Video, etc.) that can easily capitalize on the higher
bandwidth service tiers

3) Those higher-bandwidth applications are mixed with many other applications that
may not require high-bandwidth, but that do require low-latency transport (ex:
VoIP, Web-Browsing, Gaming, etc.)

4) Network elements (routers, switches, CMs, CMTSs) now have the ability to build
in large buffers using inexpensive, high-speed buffer memories, and some

network elements have taken advantage of this fact by placing large buffers in
their ingress ports to help absorb (without packet drops) any transient bursts of
bandwidth that may occur on the Internet links

5) Many modern network elements have high-bandwidth ingress links and low-
bandwidth egress links. The Bufferbloat problem is exacerbated by the fact that
the bursts on the high-bandwidth ingress links can easily fill up the buffer
memories without giving them a chance to be drained by the low-bandwidth
egress links. (Note: Upstream paths through CMs are particularly susceptible to
this problem, and downstream paths through CMTSs are (to a lesser extent) also
susceptible to this problem).

At a 10,000-foot level, managing Bufferbloat is relatively simple- it simply requires
techniques that help to limit the depths of the buffers in the network elements through
which the latency-sensitive packets are propagating. However, this procedure must be
implemented with care, because many attempts at minimizing buffer depths (to mitigate
Bufferbloat) will often lead to undesirable increases in packet loss rates and can also
place undesirable limits on the maximum throughputs for TCP sessions with long
Round-Trip Times (RTTs). As an example, one can approximate the peak TCP
bandwidth for each RTT value (assuming that the buffer size must equal the TCP
congestion window), and those approximations are tabulated in Table 1.

Buffer Size
(Kbytes)

RTT =
20 msec

RTT =
100 msec

RTT =
200 msec

8 3.2 Mbps 640 kbps 320 kbps
16 6.4 Mbps 1.28 Mbps 640 kbps
32 12.8 Mbps 2.56 Mbps 1.28 Mbps
64 25.6 Mbps 5.12 Mbps 2.56 Mbps
128 51.2 Mbps 10.24 Mbps 5.12 Mbps
256 102.4 Mbps 20.48 Mbps 10.24 Mbps

Table 1- Peak TCP Throughputs as a function of RTT values and Buffer Size Values

Thus, the challenge for most Bufferbloat mitigation techniques is to find the “sweet spot”
that mitigates Bufferbloat, minimizes packet loss, and permits TCP sessions to operate
with high throughput.

This paper will focus on the pros and cons of various techniques for reducing the effects
of Bufferbloat within packet-based DOCSIS networks. The authors recognize and
applaud the stellar work already carried out by Greg White and Dan Rice at CableLabs.
The CableLabs paper [Whi2] describes the results of simulations comparing the
performance levels of various techniques for managing Bufferbloat. The simulated
techniques within that paper included:

1) Saturated Tail-Dropping Queues with large buffer depths
2) Saturated Tail-Dropping Queues with short buffer depths (optimized using the

new DOCSIS 3.0 Buffer Control ECN, feature [Whi1] to set depths equal to the
expected Bandwidth-Delay Product, or BDP)

3) The Controlled Delay (CoDel) active queue management technique [Nich]
4) The Proportional Integral Enhanced (PIE) active queue management technique

[Pan]
5) The Statistical Flow Queue with CoDel (SFQ-CoDel) active queue management

technique

As described in that CableLabs paper, all of the above approaches can help to reduce
the impact of Bufferbloat, but each approach uses a slightly different technique and has
very different performance results under different loads. The two Saturated Tail-
Dropping approaches perform simple dropping of packets whenever queues reach their
maximum size, but they tend to suffer from the fact that they do not respond to queue
build-ups quickly and can then be forced to drop many packets (including latency-
sensitive packets) once queue saturation is reached. As a result, some latency-sensitive
packets still experience Bufferbloat in Saturated Tail-Dropping systems. The CoDel and
PIE approaches define various techniques for dropping packets and throttling high-
bandwidth TCP flows sooner than Saturated Tail-Dropping does- before the buffers
reach saturation. CoDel triggers these drops using measured packet delays (which can
be used to infer buffer depths) and PIE triggers these drops based on estimated buffer
depths, and both approaches provide improvements over the Saturated Tail-Dropping
approaches. The SFQ-CoDel approach is more complex, because it actually
establishes different queues for each of the packet flows within a service group, and it
uses hash codes to ideally steer different packet flows into different queues, and it then
services the queues in a round-robin fashion. It has very good performance, but the
performance levels suffer if there are hash collisions that steer two or more flows into a
single queue, so the approach included a CoDel algorithm which attempted to use
queue drops to deal with the performance degradation that results from a hash collision.

In this paper, we will not attempt to repeat the good work performed at CableLabs.
Instead, we will attempt to build on and extend their work by studying some unexplored
areas. We define a taxonomy of three generic but different Bufferbloat mitigation
approaches (Type A, Type B, and Type C) and then explore all three approaches. As a
result, three particular extensions to the CableLabs work will be explored within this
paper:

Type C Extension: One extension to the CableLabs work will use simulations to
explore (in more depth) the efficacy of the simple Type C Saturated Tail-Dropping
proposals, monitoring packet latency as well as average bit-rate, bandwidth stability,
and packet loss as the buffer depths are ranged well above and well below the desired
BDP value. This work will help MSOs understand what happens when the predicted
BDP values (used to select buffer depths for the new DOCSIS 3.0 Buffer Depth ECN)

do not exactly match the actual BDP values experienced by the TCP sessions flowing
through those buffers.

Type A Extension: Another extension to the CableLabs work will take a fresh look at
resolving the hash collision problems that were identified by CableLabs within the
Statistical Flow Queing (SFQ)-based solutions. It will be shown that the resulting
performance of the SFQ-based solutions may be optimal and may circumvent many of
the hash collision problems identified by the CableLabs work. A technique for
minimizing hash collisions is presented and leads to a new Type A Bufferbloat
management technique that we call SFQ with Hashing/Serial Searching. This approach
to Bufferbloat management may be viewed as an optimal solution if the supporting
hardware can provide the resources required for this slightly more complex solution.

Type B Extension: This paper will also discuss and characterize several variants of a
new Type B active queue management proposal that was not explored in the
CableLabs paper. This low-complexity approach will use simple Latency-based Random
Early Detection (LRED) dropping (instead of Saturated Tail-Dropping) as an alternative
mechanism to trigger TCP throttling prior to filling the buffer. LRED is a Bufferbloat
mitigation technique that is similar to (but subtly different from) a normal RED (or
WRED) algorithm. Details and benefits of the LRED scheme will be described below.

Background on Bufferbloat
The term Bufferbloat was popularized by Jim Gettys in his seminal 2011 paper [Gett].
Within that paper, Gettys identified the existence of the problem and argued that large
buffers in network elements are the principal cause, because they can lead to excessive
network delays with negative impacts on many latency-sensitive applications traversing
the Internet. He theorized that the availability of lower-cost and higher-density DRAMs
(Dynamic Random Access Memories) has caused some manufacturers of network
elements to place larger and larger buffers into their products without carefully
examining the implications of those larger buffer sizes.

In his paper, Gettys pointed out some repercussions of those larger buffer sizes. Gettys
argued that behavior of TCP flows will oftentimes saturate and fill up the large available
buffers contained within some of the Internet’s network elements. Large, saturated
buffers can lead to long delay times for all packets passing through those buffers. While
this condition may not be detrimental to many bandwidth-intensive TCP sessions (like
FTP downloads), Gettys argued that the increased delays caused by the existence of
these heavily-filled buffers could be detrimental to many other latency-sensitive types of
network traffic (such Gaming sessions, Over-The-Top VoIP sessions, Web-browsing
sessions, etc.).

To show an example with typical numbers, assume that a network element (like aCM) is
driving its Upstream packets through a 2 Mbps DOCSIS Upstream service flow (SF). If

the CM uses a buffer for the SF that is 500 Kbyte in length (333 packets with typical
1500 byte lengths), then a full buffer will take (500 Kbytes)*(8 bits/byte)/(2 Mbps) = 2
seconds to empty. Thus, any packet that is injected into the CM when the buffer is full
will incur a 2 second delay just to pass through the CM. This leads to high latencies on
the packet streams, and these latencies can be entirely unacceptable for latency-
sensitive applications like VoIP sessions or Gaming or Web-browsing sessions that
might be injecting packets into the heavily-filled buffers. These lengthy 2-second packet
delays can cause other problems as well. As an example, it also implies that TCP
bandwidth adjustments for congestion avoidance at other points in the Internet will not
be able to occur quickly, because (if ACK acceleration is not enabled) ACKs going back
through the CM on the Upstream towards servers in the Internet will be delayed by the
same 2 second period. As a result, slow TCP bandwidth adjustments could lead to
uncorrected and unacceptable congestion levels developing on the Downstream paths
(due to ACKs being delayed in the Upstream paths).

Since many latency-sensitive application types (such as VoIP) do not actually generate
enough bandwidth to saturate typical CM and CMTS buffers, two or more traffic streams
from different applications must often be multiplexed through a single buffer to create
the requisite conditions for the Bufferbloat problem to exist. If multiple applications are
sharing a buffer, then the high-bandwidth applications tend to saturate the buffer and
the latency-sensitive applications tend to experience the negative repercussions of the
resulting delays within the saturated buffer.

Gettys’s paper explores an age-old belief and rule-of-thumb stating that the amount of
buffering that should be utilized within any network element should be equal to the BDP
of the TCP session. The BDP (in this context) is usually defined to be the available
bandwidth capacity of the egress link (or the available bandwidth capacity of a logical
link like a DOCSIS SF in the case of a CMTS or CM) times the RTT currently being
experienced by the TCP connection. This BDP value is usually provided in units of
bytes (since bandwidth x latency = [bytes/second] x [seconds] = [bytes]). The rationale
behind this age-old belief is that a TCP session should never need to transmit at a rate
higher than the bandwidth capacity of the lowest-capacity link in its unidirectional path.
Since each network element cannot very easily determine that path-wide bandwidth
capacity value, each network element assumes (perhaps incorrectly) that its egress port
is the lowest-capacity link in the TCP path, and it assumes that it should (in theory) set
its own buffer depth assuming that its own egress link bandwidth capacity (Maximum
Sustained Traffic Rate or Tmax for the SF) will be the highest transmission rate that the
TCP session will ever have to support. A TCP session with a RTT would climb to a rate
of Rmax if it can place BDP = Tmax*RTT bytes onto the network within a window of
time equal to RTT. As a result, Gettys argues that BDP = Tmax*RTT bytes would be the
maximum number of bytes that any network element buffer would have to absorb
without dropping packets for the TCP session, so the argument is that this is the optimal
buffer size for that egress port on the network element. Gettys correctly points out that it
is difficult to determine a single BDP value that is adequate for all TCP sessions passing
through a network element, because the value can actually be quite different for

different TCP sessions due to different RTT latencies that result from different distances
that might exist between TCP sources and receivers on different TCP sessions.

Gettys’s paper alludes to the fact that there is a sensitive trade-off between setting
buffer depths too small (resulting in excessive packet loss and TCP bandwidth
reduction- especially for TCP sessions with long RTTs) and setting buffer depths too
large (resulting in excessive packet latencies). This leads to interesting issues when two
or more TCP sessions are sharing a SF (and a buffer). Ideally, all of the X TCP
sessions sharing the SF and buffer would have the same RTT value for their paths and
would have the same bandwidth needs- then each of the X TCP sessions would receive
~1/X of the total Tmax value for the SF and would consume ~1/X of the shared buffer.
In essence, one can think of each session as having an effective bandwidth of Tmax/X.
However, things get more complicated when the X TCP sessions do not have the same
RTT values. For example, assume that X=2 and that one session is experiencing a 100
msec RTT while the other session is experiencing a 10 msec RTT. The ideal buffer size
for the first session would be ten times the size of the ideal buffer size for the second
session. Since only one buffer size can be specified for the single shared buffer, this
creates a dilemma that Bufferbloat researchers still need to resolve.

This paper will attempt to answer some of the above questions with extensions to the
work done by Gettys and White. We will attempt to include details on buffer memory
behavior as we explore the delicate inter-play between packet stream latency, packet
stream loss, packet stream bandwidth, and packet stream stability. The goal is to find
good guidelines and/or technologies that can be utilized by MSOs as they manage
buffer memory sizes and attempt to provide good Quality of Experience (QoE) to all of
the application types propagating through their DOCSIS networks.

To assist with the organization of this paper, the authors found it beneficial to divide the
variously proposed Bufferbloat management techniques into a taxonomy containing at
least three fundamental Bufferbloat management approaches. Within this document, we
will call these Bufferbloat management techniques the Type A Management
Techniques, the Type B Management Techniques, and the Type C Management
Techniques. The taxonomy is illustrated in Figure 1a.

Figure 1a Taxonomy Of Different Bufferbloat Management Techniques

Type A Bufferbloat Management requires that each of the sessions that share a SF
must be separated into discrete processing blocks (ex: multiple queues), where each
session is processed separately by a different processing block. For approaches
discussed in this paper, SFQ-CoDel, Normal SFQ, and SFQ with Hashing/Serial
Searching all can be mapped into the Type A Management grouping. These
approaches tend to be more complex than their Type B and Type C counterparts, but if
designed correctly, they can yield incredibly good results.

Type B Bufferbloat Management requires that the sessions that share a SF must be
treated as an aggregate by a single processing block (ex: within a single queue), where
all of the sessions experience similar treatment and similar performance levels.
However, by definition, we require that Type B Management approaches must include
some type of algorithm that makes an attempt at dropping packets from the queue prior
to the time when the buffer memory is saturated (filled up). In general, Type B
Management approaches try to minimize latency for all sessions to ensure that the
latency-sensitive sessions experience low latency. This is often done at the expense of
the throughput or loss of packets for bandwidth-intensive sessions. For approaches
discussed in this paper, CoDel, and PIE and LRED can all be mapped into the Type B

Bufferbloat
Mitigation

Techniques

Type A
(separate

proc. block
per session
in Service

Flow &
early TCP
throttling)

Type B
(shared

proc. block
for sessions

in Service
Flow &

early TCP
throttling)

Type C
(shared

proc. block
for sessions

in Service
Flow &
no TCP

throttling)

SFQSFQ-CoDelSFQ w/
Hashing/

Serial Search

LREDPIECoDel Saturated
Tail-

Dropping

Increasing Complexity

Management Grouping. These Type B approaches tend to be more complex than their
Type C counterparts, and their results are usually much better than the Type C
systems. These Type B approaches also tend to be less complex than their Type A
counterparts, and their results are not always as good as the Type A systems- for the
following reasons:

a. These Type B approaches tend to unnecessarily limit latency on BW-
sensitive flows (e.g., File Transfer Protocol or FTP) which tolerate latency
very well.

b. Latency limiting always comes at the expense of packet loss and TCP
throughput, which can becomes intolerable when attempting to achieve
very low latencies.

Type C Bufferbloat Management is the simplest type of Bufferbloat Management
system, and it requires that the sessions that share a SF must be treated as an
aggregate by a single processing block (ex: within a single queue), where all of the
sessions experience similar treatment and similar performance levels. (Note: This is
similar to the Type B systems). However, by definition, we require that Type C
Management approaches do NOT have any type of algorithm that makes an attempt at
dropping packets from the queue prior to the time when the buffer memory is saturated
(filled up). As a result, simple Saturated Tail-Dropping is the primary method that would
be mapped into the Type C Management Grouping. In general, Type C Management
approaches do not perform as well as their Type A and Type B counterparts.

Simulation Baseline
In order to provide a baseline simulation that can be used in comparing potential
solutions to the Bufferbloat problem we used the simulated network configuration shown
in Figure 1b. This model entails a single user who is concurrently uploading large
amounts of FTP data to N independent network data servers and simultaneously
playing an interactive game that is sensitive to upstream latency. (Each FTP session
transmits a continuous stream of 90 MB FTP PUTs with 4 second spacing between
blocks. The gaming session is modeled as a TCP session that transmits 10 KB
messages at 2 second intervals.) While this configuration is framed to model traffic in
the upstream direction, the same analysis applies to the downstream direction (where
the buffer would be incorporated into the CMTS).

We have intentionally kept the mixture of traffic types (e.g., data rates, RTTs, service
types, protocols) as small as possible. This makes it possible to create a simulation
series that smoothly varies just one of these parameters and to chart performance as a
function of that parameter. A highly complex traffic mix would defeat this goal.

Figure 1b Description of Simulation Network

The upstream buffer used in this baseline model is a simple First-In-First-Out (FIFO)
packet buffer with <M> KB of available memory. Buffer overflows are handled by
dropping incoming packets when no more buffer storage space is available. This buffer
model matches most upstream buffers in use today and should accurately demonstrate
the phenomenon of Bufferbloat as it exists in many places in today’s network.
Our simulation environment consisted of a packet level traffic simulator with
microsecond level accuracy. TCP, FTP protocols and CMTS behavior (when used)
were modeled in detail.

Our goal for the baseline simulation was to demonstrate how FTP upload data rate,
gamer upstream latency, and overall data loss will vary as a function of the upstream
buffer size. This was accomplished by repeating each simulation experiment 20 times
while varying only the size of the upstream buffer. By charting the parameters of
interest (e.g, data rate, latency, drop rate) versus the amount of physical buffering
available we can then show, not just a disconnected set of values, but how they vary
smoothly with buffer size. Thus we can show the performance of both large and small
buffers (including those in between) in a single understandable chart.

Rather than describing the size of the upstream buffer in bytes, as might seem most
logical, we have chosen instead to use the amount of time required to empty a full buffer
at the maximum data rate (Tmax). This choice of scale has a normalizing effect on the
resulting graphical displays and allows us to more easily compare the results of
experiments involving different upstream data rates (Tmax). Converting between the
two metrics is fairly straight-forward. To convert from the time metric (in seconds) to a
buffer depth metric (in bytes), simply multiply the time metric (in seconds) by Tmax/8 to
produce the buffer depth metric (in bytes)

Our expectation is that the upstream packets from the gamer session will become
queued behind a long standing queue of FTP session packets resulting in the gamer
session experiencing unacceptable amounts of upstream latency. We would expect
larger upstream buffers to permit longer FTP standing queues resulting in even larger
amounts of added upstream gamer latency. Smaller upstream buffers, on the other
hand, will experience many more packet drops and data retransmissions.

Type C Extension: Exploring Mismatches
Between Actual BDP Values & Pre-Configured

Buffer Depths With Saturated Tail-Drop Queues
At the current moment in history, MSOs will likely be limited (for a while) to using the
Buffer Control mechanisms of DOCSIS 3.0 to try to manage upstream Bufferbloat,
because other more advanced Bufferbloat management techniques (such as SFQ or
CoDel or PIE) have not typically been implemented in many modems to date. As a
result, most MSOs will be relying on the Saturated Tail-Drop mechanism to force
throttling of TCP sessions when active buffer depths grow to be too large. This
mechanism, which simply drops packets entering the tail of the queue whenever the
buffer is full, is illustrated in Figure 1c.

Figure 1c Simple Operation Of Saturated Tail-Dropping Within A Queue

Drain Rate
= D(t)

Arrival Rate
= A(t)

Queue Growth Rate
= Q’(t)
= A(T) – D(t)

Total Buffer Size
T = 8 packets

Trigger
for pkt
drops

Effective Buffer Size
B = 8 packets

Newly-Arriving
Packet Must
Be Tail-Dropped
Due To Saturated
Buffer

Queue Depth Q = 8 packets

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

When MSOs pre-configure the buffer depths for SFs using the Buffer Control
mechanisms that are now available in DOCSIS 3.0 modems, they can change the
Effective Buffer Size for each SF, but they will be forced to make some predictions and
guesses about the best buffer depths that will minimize their Bufferbloat problems,
minimize packet drops, and ensure high TCP throughputs. Gettys paper proposed that
they set the buffer depths of their queues to be equal to the BDP of the packets passing
through the network. To perform that BDP calculation, the MSO would have to select an
appropriate Bandwidth value and an appropriate Delay value that they expect the
packets to experience. The Bandwidth value in the BDP can be set to the Tmax setting
for the SF. (Note: As described in an earlier section of the paper, this works even if
multiple sessions are sharing the Bandwidth of the SF). But the Delay value in the BDP
would probably need to be a guestimate of the “typical” Round-Trip delays that might be
expected for the packets passing through the SF. Typical guestimates might choose to
use an average of the following rough RTT measurements made on the Internet [Kras]:

Typical RTT values between sites in the same region: ~20 msec
Typical RTT values between sites on the same continent: ~100 msec
Typical RTT values between sites on different continents: ~200 msec.

Unfortunately, there may be multiple sessions (i.e.- packet streams) passing through the
SF and through the shared buffer, and each session may be encountering different
Round-Trip delays due to propagation through different distances and due to
interactions with different congestion levels on the different propagation paths. As a
result, the calculated BDP (and buffer depth) cannot be guaranteed to be set to a
perfect value that corresponds to all of the sessions passing through that SF’s buffer.
We will now explore some of the repercussions of having a buffer depth setting that
does not exactly match the actual BDP of a particular session.

Figure 2(a & b) shows the results of a series of simulations in which a gamer session
plus 10 FTP sessions were competing for bandwidth over a 5 Mbps upstream service
flow with an uncongested RTT value of 50 msec. In Figure 2a we can see that the
latency-sensitive gamer session experiences virtually the same latency as each of the
FTP sessions for which latency is of no consequence. This is a direct result of the fact
that the sessions are all sharing the same buffer. We also see that the latency
experienced by each of the sessions increases linearly with the size of the upstream
buffer. This would tend to imply that MSOs might be wise to select smaller buffers. But
how small is too small?

To answer that question, one must also consider packet loss and throughputs, which
are captured as a function of the buffer depth in Figure 2b. In Figure 2b, we can see
that the total upstream data rate is nearly constant for all buffer sizes (with the exception
of very small upstream buffers). The minimum buffer size widely regarded as
necessary to support adequate throughput is known as the BDP and calculated as the
product of the SF’s maximum upstream Data Rate (Tmax) times the Network RTT. In

this simulation series RTT is equal to 50 msec, and that particular buffer depth that
drains in 50 msec (when drained by the Tmax value) is identified by the vertical, red,
dashed line on the plot in Figure 2b. It can be seen that (as Gettys predicted) buffer
depths smaller than this critical size (to the left of the vertical, red, dashed line) start to
produce marked reductions in FTP bandwidth and also start to produce marked
increases in packet loss. This is primarily due to the fact that TCP sessions will likely
attempt to send more packets through the small buffer than can be stored by the small
buffer, resulting in buffer overflows and packet drops which ultimately force TCP to
throttle its bandwidth.

We have also found that simulation runs with a large number of FTP sessions sharing
the buffer produce similar aggregate throughput curves as simulation runs with a small
number of FTP sessions sharing the buffer. The throughput is shared by the FTP
sessions, and the knee in the curve to the left of the BDP value always occurs at
roughly the same buffer size (given by the BDP). Thus, one can conclude that the
minimum buffer size suitable for an application does not depend on the number of
concurrent sessions sharing a SF.

Also in Figure 2(b), the lower trace shows the data loss (measured in Mbps) resulting
from packets dropped due to buffer overflows. While smaller upstream buffers
experience more data loss than larger upstream buffers, the amount of data loss
experienced in this experiment is not particularly alarming. However, its corresponding
impact on TCP throughput performance is quite alarming when the buffers are made too
small (i.e..- smaller than the BDP value).

Figure 2(a & b) Latency & Throughput (Tmax = 5 Mbps)

Figure 3(a & b) shows the results of a similar series of simulations for which the
upstream SF rate (Tmax) was limited to 1 Mbps. Notice that Figures 2 and 3 look very
similar (as a result of our choice of units for the X axis scaling) even though the
corresponding buffer sizes in Figure 2 are (due to their different Tmax values) five times
as large as those in Figure 3.

We can also see that the poor throughput for buffers smaller than the BDP value is even
more pronounced for the low speed SFs (with low Tmax values) in Figure 3b. This
indicates that MSOs should be wary of operating with very small buffers when the SF
Tmax values are low, because they risk placing limits on the maximum throughputs of
TCP sessions that utilize those buffers.

Figure 3(a & b) Latency & Throughput (Tmax = 1 Mbps)

Just as concerning is the significantly high data loss rate predicted by Figure 3b for low
speed (e.g, 1 Mbps) upstream SFs when the buffer sizes are made small. For
upstream buffers able to store only 200 msec of data the data loss rate is nearly 6% of
maximum channel rate. This could be especially damaging in the downstream direction
where this dropped data has already made a complete transit of the Internet and must
now be retransmitted from its source.

It appears that any plan to manage Bufferbloat and latency purely through buffer size
ought to pay careful attention to the data loss rate and the maximum TCP throughputs
for low speed SFs. Large buffer sizes are helpful in keeping packet losses low and TCP
throughputs high, but they can suffer from larger latencies on the latency-sensitive
sessions. Conversely, small buffer sizes are helpful in keeping latencies low on latency-
sensitive sessions, but they can suffer from high packet losses and low TCP
throughputs. Careful adjustments must be made- probably to values to that slightly
larger than the BDP value.

Once the buffer size has been selected for a SF based on a configured Tmax value and
a predicted RTT, one may wonder what happens if the actual RTTs for a traversing
packet stream are different from the predicted RTT.

If the actual RTT is much shorter than the prediction, then the selected buffer depth
would be larger than it needs to be, implying that the Effective Buffer Size is larger than
the actual BDP and the system would be operating on the curves of Figure 2 and

Figure 3 to the right of the BDP value. This would result in larger-than-necessary
latencies (but would yield low packet drop rates and high TCP throughputs).

If, on the other hand, the actual RTT is much longer than the prediction, then the
selected buffer depth would be smaller than it needs to be, implying that the Effective
Buffer Size is smaller than the actual BDP and the system would be operating on the
curves of Figure 2 and Figure 3 to the left of the BDP value. This would result in larger-
than-necessary packet drop rates and lower TCP throughputs (but would yield lower
latencies).

Type A Extension: Stochastic Flow Queuing with
Hashing/Serial Searching To Reduce Hash

Collisions
Generic Operation and Analysis

In this section we will examine the effect that the use of a Stochastic Flow Queuing
(SFQ) approach might have upon the Bufferbloat issue. We will demonstrate both the
strength of this mechanism in the absence of hash collisions and the detrimental effects
that hash collisions might have. We will then describe a technique that could greatly
reduce the probability of hash collisions within SFQ systems.

By definition, packets from a single “flow” (or sub-flow or session) share a common 5-
tuple- i.e., they all have the same Ethertype, IP Source Address, IP Destination Address,
TCP/UDP Source Port, and TCP/UDP Destination Port within their headers, and they
are assumed to be associated with a single TCP or UDP session. It is important to
understand the difference between a session and a SF, because there is often
confusion around the two concepts. SFs can have many sessions (and packet streams
with many different 5-tuples) mapped into them, but a session has one and only one 5-
tuple associated with it.

Since packets from a single session share the same 5-tuple, one can use these five
fields in the header of the packets to help separate them into separate and discrete
sessions. Hashing is one quick way to map the packets into their designated session in
real time. Hashing is a combinatorial combination (ex: Exclusive OR) of the five headers
that produces a Y-bit result that points to one of 2Y unique sessions.

In a network element designed with separate buffers for each session, this hashing
function can be used to rapidly steer each packet into its appropriate buffer (as shown in
Figure 4). A Round-Robin Scheduler can then be used to extract packets from the
multiple queues. The resulting SFQ approach may be considered to be more expensive
and complex (from a hardware point-of-view) than other Bufferbloat mitigation

techniques, but the ability of this approach to mitigate Bufferbloat issues is stellar (as
shown in the CableLabs paper). We will therefore consider this approach in more detail
within this paper.

Figure 4 Basic Operation Of SFQ

The packet sequencing challenge that leads to the Bufferbloat problem has much in
common with the issues of congestion control among DOCSIS SFs. In both cases
several functionally unrelated packet streams compete for a limited amount of
bandwidth that is insufficient to handle the full amount of offered traffic.

The issue of congestion control among DOCSIS SFs, however, has been successfully
addressed by CMTS manufacturers and no counterpart of the Bufferbloat problem
seems to exist between DOCSIS SFs. Since the problem seems to be satisfactorily
addressed in the DOCSIS domain, it might be wise to examine the parallels between
these two problem domains to see what we might learn from DOCSIS congestion
control that might be applied to the Bufferbloat issue.

As mentioned previously, a somewhat complex approach to solving Bufferbloat that has
been widely discussed is called SFQ. It turns out that the SFQ mechanism is quite
similar to the way that DOCSIS congestion control is implemented in a CMTS. Docsis
supports separate queues for SFs in order to allow for Quality of Service functionality.

Drain Rate
= D(t) /3

Arrival Rate
= A(t)

Trigger
for pkt
drops

Effective Buffer Size
B = 8 packets

Queue #1

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

P
k
t

Arriving Mix
of Packets

P
k
t

P
k
t

P
k
t

Drain Rate
= D(t) /3

Trigger
for pkt
drops

Effective Buffer Size
B = 8 packets

Queue #2

P
k
t

P
k
t

P
k
t

Drain Rate
= D(t) /3

Trigger
for pkt
drops

Effective Buffer Size
B = 8 packets

Queue #3

P
k
t

P
k
t

Steer
Based
on
Hash

Round-
Robin
Sched

While this is similar to SFQ in some ways, there are very important differences. This
section will attempt to identify similarities and differences between these two
mechanisms.

In the existing DOCSIS scheme, packets are first categorized into separate SF’s by
virtue of a fixed, provisioned rule set (e.g. by a range of IP destinations). Each SF has
its own queue, and the set of queues are serviced in a round robin manner (or using
other scheduling techniques). The rules by which packets are assigned to queues are
not only fixed, but they are mutually exclusive in the sense that each queue will never
contain packets from more than one service flow. Because each queue does not
interact with the others, a highly loaded queue’s contents cannot block or slow the
transmission of packets in a different queue. In other words, Bufferbloat effects are
absent from a service flow perspective. However within a given service flow, different
TCP/IP sessions can interfere with each other if they map to the same packet stream
within theSF. These rules are agnostic to the type of application involved with the
packets, and therefore in general maintain net-neutrality.

Like the existing DOCSIS SF scheme, SFQ offers separate queues which avoid
Bufferbloat between the queues. The mapping of packets into each queue is aimed at
avoiding delaying one TCP/IP flow (a session) by another session. In this case, the
rule-set by which packets are assigned to queues is dynamic and seeks to put each
session into its own queue. If this goal is achieved packets from one flow cannot be
impeded by packets from a different flow, making the latencies independent between
sessions. This is a highly attractive attribute.

By their nature, Internet sessions dynamically appear and disappear over relatively
short periods of time, and in general are not predictable in advance. To implement SFQ,
therefore, decisions need to be made to separate sessions by five-tuple and
dynamically create (and destroy) queues for each flow.

In practical terms it may not always be possible to have as many queues as there are
sessions; if this occurs, then the SFQ system may be forced to temporarily enter an
undesirable state where more than one session is assigned to the same queue; in this
undesirable case the Bufferbloat phenomenon can exist between sessions. However,
by a judicious design choice of the number of allowed queues, this should be a rare
case.

The dynamic assignment of packets to different SFQ queues needs to be fast and
minimize situations where multiple SFs get assigned to the same queue. DOCSIS
service flow classification is less of a challenge since a pre-configured rule-set can be
used to create a search index which is not only static, but it also results in never having
a queue with more than one SF mapped into it. In the case of SFQ, dynamically created
hashing algorithms will be needed which will result in efficient and effective
classification. But hashing collision must be minimized. For example, the authors have

considered several alternatives and have identified some combinations of hashes and
linear searches which seem appropriate.

In order to be effective in eliminating or minimalizing the Bufferbloat phenomenon, the
SFQ implementations must be placed in the CM for upstream packets and in the CMTS
for downstream packets. Due to the complexities of these SFQ approaches, it may not
always be possible to include these functions in the CMs and CMTSs.

Figure 5(a & b) shows the results of a simulation series that was identical to the
situation modeled in Figure 2 with the single exception that the upstream buffer
separated each upstream TCP session onto its own queue. These queues were then
drained in a simple packet round-robin fashion.

Figure 5a shows that this has resulted in identical packet latency for all FTP sessions
(for which latency is of no concern), but the separation of sessions into different queues
within the SFQ arrangement has almost completely eliminated any additional latency on
the gaming session (resulting in only the 50 msec of round-trip latency that is inherent in
the uncongested network layout). Figure 5b shows that both the overall data
throughput and packet loss rates are virtually identical to the baseline experiment in
Figure 2b. We can see here that (in cases where we were able to guarantee a total
absence of hashing collisions) the use of SFQ buffering can completely eliminate
Bufferbloat, resulting in an overall performance equivalent to that of DOCSIS congestion
control.

It should be apparent that the MSO is free to be more cavalier in their selection of buffer
sizes when SFQ is used. Since they don’t know the exact BDP values for the actual
packets, they can lean towards the use of larger BDP values (like 200 msec or so) and
not incur the penalty of longer delays for the latency-sensitive sessions (since those
sessions will be placed on their own queue and typically experience low latencies in a
fashion similar to that of the gaming session in Figure 4a.

Figure 5(a & b) Latency & Throughput (SFQ w/o Hash Collisions)

If the MSO chooses longer buffer depths in an SFQ environment, then the sessions with
heavy bandwidth (such as the FTP sessions above) will experience longer latencies as
they fill the larger buffers (as shown in Figure 5a), but this additional latency on any
FTP session is, in this case, due only to previously queued packets for that same FTP
session and should not be viewed as a problem. (Note: The FTP packets are being
delivered from source to destination as quickly as the network will permit. Whether the
packets from a particular FTP session are stored at the source or at the network
element buffer is unimportant). For this reason the throughput of each FTP session
actually improves slightly (but with quickly diminishing returns) as the total buffer size
increases due to a need to drop fewer packets in order to prevent buffer overflow. As
shown, the longer buffers do not typically lead to longer latencies for the latency-
senstive sessions (such as the gamer session), because most latency-sensitive
applications (gaming, VoIP, etc.) do not typically generate enough bursty bandwidth to
fill their isolated SFQ buffer. Web-browsing is an interesting latency-sensitive
application that can generate enough bursty bandwidth to fill its isolated SFQ buffer, but
as with the FTP sessions, the bandwidth will be delivered as fast as the link will permit.

Figure 6 Latency CDF (Gamer in red & FTP in blue) for SFQ

Figure 6 shows the Cumulative Distribution Function (CDF) for all packet latencies for
both gamer traffic (in red) and FTP sessions (in green) flowing through an SFQ system
with effective buffers sized to be able to store 960 msec of 5 Mbps traffic (i.e.- 600
Kbyte buffers). This chart shows that all gamer packet latencies (in red) are tightly
clustered between 40 & 100 msec while most FTP packets experience latencies over a
much wider range between 0.5 and 1.0 sec.

This chart shows that all of the individual packet latencies (not just their average value)
fall within a desirable range when a well-designed SFQ system is utilized.

Hash Collisions

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Packet Latency (sec)

Packet Latency CDF

Gamer FTP

We now turn our attention to examining how SFQ buffer performance is affected in the
event of a hashing collision. Hash collisions cause problems that occur when two (or
more) different sessions map to the same identical hash value and therefore have their
packet streams steered to the same identical SFQ queue. This condition essentially
breaks the perfect isolation that previously existed between sessions passing through
the different SFQ queues. Figure 7(a & b) shows the results of a simulation series
where hash collisions have occurred.

Figure 7(a & b) Latency & Throughput (SFQ w/ Hash Collision)

Thus, Figure 7 is identical to Figure 5 with the exception that a single hash collision
has been purposely forced between the gamer session and one of the FTP sessions. It
is apparent from Figure 7a that the gamer session now experiences the same amount
of Bufferbloat that was present in the baseline simulation series, because the packets
incur the latency of a single FTP stream and packet drops to throttle the FTP stream do
not occur until Saturated Tail-Dropping occurs. In effect, the previous benefits of SFQ
buffering are completely undone in the event of a hashing collision involving a latency-
sensitive session.

This might seem counterintuitive since the gamer is now sharing a hash queue with only
one of the ten FTP sessions instead of with all 10 FTP sessions (as is the case in the
baseline series). However, the difference here is that the single SFQ that the gamer
shares in this case is draining at only 1/10th the rate of the baseline queue – so the net
result is the same.

In summary, these two sets of simulations show two important things:

1. In the absence of hash collisions, SFQ buffering is excellent at mitigating the
Bufferbloat problem and is fully as good as the current DOCSIS congestion
control algorithms (and shows no signs of Bufferbloat).

2. In the presence of hash collisions involving latency-sensitive sessions, SFQ
shows no improvement at all over standard Saturated Tail-Dropping queue– but
also no further degradation, either.

Both the excellent performance of SFQ buffering and its vulnerability to infrequent hash
collisions has been previously observed in the literature, and a combined approach
(SFQ-CoDel) has been suggested [Whi2]. This combined approach proposes the use
of an additional CoDel mechanism on top of the normal SFQ operation to help partially
minimize the large latencies that can result in the event of a hash collision involving
latency-sensitive sessions. But the performance results of the combined approach are
not as astounding as the results experienced by a standard SFQ system that avoids
hash collisions altogether. As a result, we will explore (below) ways to greatly decrease
the probability of hash collisions within standard SFQ systems.

Decreasing Hash Collision Probability

In this section we will look specifically at the likelihood that one of these hash collisions
might occur. Instead of simply assuming that these collisions are always going to
happen, what if we could design a mechanism for which the probability of a hashing
collision were so extremely rare that it could reasonably be ignored. (Note: The reader
should remember that even in the worst-case scenario with SFQ experiencing a hash
collision, the latency would never be greater than what we currently see every day in the
field with standard Saturated Tail-Dropping). If such a low-collision hashing mechanism
could be found, then SFQ buffering would not require a second mechanism, like CoDel,
to cover for the effects of buffer collisions. (Or it could add the second mechanism and
rarely rely on it, so that the SFQ system could typically experience the higher-level
performance offered by normal SFQ operation).

It turns out that the harder problem here is the challenge of simply calculating the
collision probability rather than how to design the hashing mechanism. Many (but
certainly not all) commonly used hashing mechanisms actually already have extremely
low collision probabilities – but it is not a simple matter to calculate that probability
numerically.

In the CableLabs paper, it was assumed that a simple hashing algorithm was used (by
itself) for selecting into which queue a session should be mapped. For example, if each
service flow was provided with a generous number of (say) Q=256 SFQ queues into
which one could separate the sessions propagating through that service flow, a simple
hash would blindly steer the packets to the queue to which they originally hashed
(assuming the use of an 8-bit hash pointer). This approach falls victim to the well-known
“Birthday Paradox,” whereby there is a high probability that two sessions will experience
a hash collision- even within the 256 SFQ queues and even with a small number of
sessions sharing the service flow’s 256 SFQ queues. In general, the probability that the
first session that grabs a queue experiences no hash collision is P(1)=1. The probability
that the second session that grabs a queue experiences no hash collision is
P(2)=255/256, and the probability that neither the first or second session experience a
hash collision is given by P(1)*P(2) = 1*(255/256) = 99.6%. The probability that the third
session that grabs a queue experiences no hash collision is P(3)=254/256, and the

probability that neither the first or second or third session experiences a hash collision is
given by P(1)*P(2)*P(3) = 1*(255/256)*(254/256) = 98.8%. This process can be
continued to calculate the probability of a hash collision whenever X sessions are
sharing a service group, and the results are plotted in Figure 8. As can be seen in the
figure, the probability of a hash collision rises rapidly as the number of sessions sharing
a service flow grows. With as few as 10 sessions, the probability of a hash collision
within the 256 queues rises above 16% when normal hashing is used! With as few as
20 sessions, the probability of a hash collision within the 256 queues rises above 50%
when normal hashing is used! These results are horrendous, and as indicated in the
CableLabs paper, they imply that SFQ alone does not work well as a Bufferbloat
mitigation scheme because of the high probability that hash collisions will return its
performance back to the lower performance levels of a Saturated Tail-Dropping system
(which probably doesn’t justify the added complexity of an SFQ solution).

Figure 8 Probability Of Hash Collisions With Normal Hashing Into 256 Queues

In an effort to rectify this inherent problem of SFQ systems that utilize simple hashing
for session-to-SFQ queue mapping, we will now propose and analyze the performance
of a slightly different system that uses a slightly different algorithm for session-to-SFQ
queue mapping.

The new proposal uses a fairly straightforward combination of hashing and serial
searches. In the particular system with 256 SFQ queues per Service Flow, the system
would hash into one of 64 queue groups, and each queue group would contain four
queues. Once a session is mapped into a queue group, a serial search will identify the
first unused queue within the four queues of the queue group and then assign that
session to that particular unused queue. Since a serial search through four queues is
not exceptionally challenging, this was deemed to be somewhat reasonable from a
hardware/software complexity point of view. Using this simple modification, up to four

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

Pr
ob

ab
ili

ty

Sessions Sharing a Service Group

Probability of Hash Collision with Normal
Hashing int 256 Queues

P(No Hash Collision) P(Hash Collision)

different sessions can randomly hash into the same queue group and still be intelligently
steered into different queues, so the probability of a hash collision is greatly reduced
through the use of the simple serial search mechanism. Obviously, in the unlikely event
that five or more sessions hash into the same queue group, then this modified SFQ
system is forced to allow a hash collision to occur and the system must then steer two
different sessions into a common queue. But we can perform Monte-Carlo simulation
techniques to calculate the probability of experiencing a hash collision as a function of
the number of queue groups in the hash table and the number of queues in the queue
group.

The occurrence of a collision for the modified SFQ design with 64 queue groups and 4
queues per queue group would require that 5 (=4+1) different sessions hash to the
same queue group before a hash collision would occur. Since we were unable to
calculate a closed form solution for calculating the probability of such an event, we
resort to the use of Monte Carol simulation techniques. Figure 9 shows the results of
this simulation, with the x-axis showing the number of sessions that are sharing the
service flow and with the y-axis showing the probability of a hash collision.

Figure 9 Hash Collision Probability With 64 Queue Groups And 4 Queues Per Queue
Group (256 Queues Total)

Within Figure 9, the green plot shows the probability of a hash collision if we perform
normal hashing into the 256 individual queues. The red plot shows the probability of a
hash collision if we perform normal hashing into the 64 queue groups and register a
hash collision any time that two or more sessions map to the same queue group (even
though this would not result in a hash collision with our added serial search mechanism
that is described by the blue plot). The blue plot shows the probability of hash collision if
we perform normal hashing into the 64 queue groups and then perform a serial search
for an unused queue within the 4 queues inside of the queue group. From the blue plot,
we can see that even as many as 20 concurrent sessions would have only a 0.05%
chance of experiencing a hash collision! Even as many as 35 concurrent sessions
would have only a 1% likelihood of having any hash collision at all.

Thus, the addition of this proposed serial search mechanism to the simple hashing
techniques normally used in SFQ systems provides great reductions in the probability of
SFQ hash collisions. This is even true when Peer-to-Peer services (such as BitTorrent)
are being utilized by users within the home. BitTorrent experiments that were performed
by the authors on the Internet indicated that most of our observed BitTorrent sessions
had up to 50 peers, but typically had only 10 (or so) concurrent TCP sessions that were
actively exchanging data with those peers. While this is not full validation, it does give a
good indication that the improved latency performance of SFQ with Hashing/Serial
Searching can likely provide excellent performance for most of the use cases that will
be found in most homes.

It is worth remembering that most of the potential (but unlikely) hash collisions within an
SFQ system with Hashing/Serial Searching would still not degrade service. It is only
when a latency-sensitive session actually collides with a very high throughput session
that any Bufferbloat issues would result.

While not all hashing mechanism designs will produce the collision-free performance
that we have shown in this example, many variations on the above design do exist
which would produce excellent results even with very large numbers of concurrent
sessions. It may well be the case that a straightforward SFQ buffer, by itself, could
completely eradicate Bufferbloat (even without the addition of secondary mechanisms
like CoDel). Nevertheless, one could easily add a secondary mechanism (such as
CoDel or the LRED algorithms proposed in the next section) on top of SFQ with
Hashing/Serial Searching to produce a very powerful Bufferbloat mitigation system.

Type B Extension: Latency-Based Random Early
Detection (LRED) For Managing Bufferbloat

Generic Operation and Analysis

The SFQ Bufferbloat mitigation technique that employed both hashing and serial
searches (as described in the previous section) uses a Type A approach that definitely
provides very good control of Bufferbloat for latency-sensitive sessions while also
yielding low packet loss and high TCP throughputs. However, it is possible that some
network elements may not have the hardware and software resources to implement the
higher complexity levels required by an SFQ solution. As a result, the authors wanted to
also explore simpler (medium-level complexity) Bufferbloat mitigation techniques that
fell into the Type B camp.

In this section, we will propose and analyze a novel Bufferbloat mitigation technique that
would probably be categorized as a Type B approach. It shares a lot of similarities with

the CoDel and PIE approaches. CoDel and PIE are both very clever techniques that
have been shown to provide good results in managing Bufferbloat. But we began to
wonder if there wasn’t a slightly simpler approach to the packet dropping algorithms that
could piggy-back on top of and capitalize on some congestion control algorithms that
might already be present within certain network elements.

This led the authors to consider the use of the well-known Random Early Detection
(RED) algorithms or Weighted Random Early Detection (WRED) algorithms that are
often implemented in one form or another within network elements. [Floy] Normal RED
algorithms adjust the dropping probability of packets passing through a network queue
as a function of the current queue depth (or a queue depth average). Normal WRED
algorithms add packet priority to the mix. In general, packets with lower priority and
packets in longer queues will experience higher dropping probabilities in an attempt to
throttle TCP flows.

These algorithms are usually included in network elements to manage congestion
control within the networks by inserting random packet drops to throttle TCP sessions in
order to avoid buffer overflow. These algorithms are typically based on special dropping
probability curves that are used to determine the probability with which each packet
passing through a queue should be dropped. The standard shape of the RED dropping
probability curve is shown in Figure 10(a and b), and it is described by three distinct
parameters (the minimum threshold MINth, the maximum threshold MAXth, and the
dropping probability Pa at MAXth). Different configured values of MINth, MAXth, and Pa
can yield quite different dropping probabilities for the packets passing through the
queues as network congestion and queue depths change. (Note: Figure 10a uses the
traditional queue depths and Figure 10b is a non-traditional version that uses packet
sojourn times. Either real-time or average queue depths and sojourn times can be and
have been utilized in different implementations).

Queue depth (Figure 10a) and packet latency (Figure 10b) are closely related in Type
B mechanisms, where Depth = Latency * Tmax / 8. One advantage of using packet
latency instead of queue depth for RED calculations is that the “effective Tmax” that is
experienced under heavy network congestion may be significantly lower than the
configured Tmax. Mechanisms based on latency will automatically compensate for this
change in Tmax, where mechanisms based on queue depth will not. For Type A
mechanisms this difference is even more important since every sub-queue has a
different length and effective Tmax. A latency-based RED mechanism requires an
aditional overhead of saving a simple packet timestamp on entry to the queue.

If this RED or WRED mechanism were already implemented within a network element
(or could be easily added), we wondered if we could use some of the sub-systems from
RED or WRED congestion control algorithms to help create a simple Type B Bufferbloat
management system.

Figure 10(a & b &c) Typical Drop Probability Curves for RED & WRED

Thus, in this section we introduce a novel Bufferbloat management technique called
Latency-Based Random Early Detection (LRED). LRED adds a slight modification to
RED in that it adjusts the dropping probability as a function of the latency experienced
by packets as they exit the queue.

There are several ways to implement this solution. One of which is to modify a single
First-In-First-Out (FIFO) buffer queue by time stamping each packet on arrival. Upon
retrieving a packet from the head of the queue we compare the length of time that the

Packet Sojourn Time

Packet Dropping Probability

MINth MAXth

Pa
1.0

0.0

b) Dropping Probability Curve As A Function of Sojourn Time

Queue Depth

Packet Dropping Probability

MINth MAXth

Pa
1.0

0.0

a) Dropping Probability Curve As A Function of Queue Depth

Packet Sojourn Time

Packet Dropping Probability

MINth MAXth

Pmax

1.0

0.0

c) Modified Dropping Probability Curve As A Function of Sojourn Time

Pmin

packet has remained in the queue (i.e.- the packet’s sojourn time). Depending on the
magnitude of the sojourn time, the system calculates a dropping probability value
between 0.0 and 1.0 for this packet by accessing the dropping probability curve shown
in Figure 10b. Using this dropping probability value, a random number generator is then
used to determine a uniformly distributed random variable between 0.0 and 1.0. If the
random variable is less than the dropping probability value, then the packet is dropped.
Otherwise the packet is passed.

A similar implementation based on queue depth (instead of sojourn time) can also be
envisioned, but it would use the dropping probability curve shown in Figure 10a. (Note:
When using queue depths, LRED and RED become virtually identical). Results are
similar with either approach on uncongested networks.

Over time, we have also looked at modifications to the RED dropping probability curves
and migrated towards the curve shown in Figure 10c. (Note: This particular curve was
used for the LRED simulations described in this paper). This curve tended to start
dropping of packets more aggressively with a dropping probability of Pmin when the
sojourn times exceeded the MINth value and then leveled off the drop probabilities at a
maximum value of Pmax when the sojourn times exceeded the MAXth value. We are
exploring other dropping probability curve shapes as well.

Our thinking in moving to the curve in Figure 10c is that, while it may be desirable to
move to a 100% drop rate when we are dropping packets to preserve basic network
functionality (as is a common motivation for using RED), we were reluctant to go that
high simply to provide latency QoS on an otherwise well-functioning service flow, where
such a high drop rate would destroy the session throughput. We were pleased to find
that surprisingly low drop rates can have significant influence on session latency.

The advantages of the LRED approach are twofold:
1. Tail drops (from conventional buffer overflows) become head drops making TCP

much more effective in responding to and recovering from the dropped packet.
2. Drop clusters (which can be quite common for small buffer sizes and for systems

that employ simple Saturated Tail-Dropping algorithms) are eliminated. These
clusters can be extremely destructive to latency-sensitive sessions.

Figure 11(a & b) shows the results of a simulation series that was identical to the
situation modeled in Figure 2, but LRED techniques were employed to initiate early
dropping of packets. The dropping probability curve of Figure 10c was utilized within
this simulation series, with the following parameters: MINth = 200 msec, MAXth = 400
msec, Pmin = 1%, and Pmax = 5%.

Figure 11a shows that this has resulted in identical packet latency for both FTP and
Gamer sessions, but the use of LRED dropping has caused these latency values to
level out at about 200 msec even when the buffer depth size is increased. As a result,
LRED dropping is throttling the TCP sessions and ensuring that only a finite amount of

the buffer is utilized. Figure 11b shows that both the overall data throughput and packet
loss rates are quite reasonable as well.

Figure 11(a & b) Latency & Throughput (LRED)

It should be apparent that an MSO is free to be more cavalier in their selection of buffer
sizes when LRED is used, because as long as the buffer is large enough, the effect of
LRED dropping will limit the total latency experienced by the FTP and Gaming sessions.
Since MSOs don’t know the exact BDP values for the actual packets, they can lean
towards the use of larger buffer depths and not incur the penalty of longer delays for the
latency-sensitive sessions.

Figure 12 Latency CDF (Gamer & FTP) for LRED

Figure 12 shows the Cumulative Distribution Function (CDF) for all packet latencies for
both gamer traffic (in red) and FTP sessions (in blue) flowing through the same LRED
system described in Figure 11 with a physical buffer sized to be able to store 960 msec
of 5 Mbps traffic (i.e.- 600 Kbyte buffers). We can see that all packet latencies (not just
the average) are distributed between 100 and 210 msec.

0.0

0.5

1.0

0 0.05 0.1 0.15 0.2 0.25 0.3

Pr
ob

ab
ili

ty

Packet Latency (sec)

Packet Latency CDF: LRED 200

Gamer FTP

In this example we see a close relationship between the value of MINth (200 msec) and
the resulting average latency (200+ msec) experienced by packets passing through the
buffer. In fairness, we should state clearly at this point that “your mileage may vary”. In
our studies we have found the resulting latency to be “near” the MINth value (below
when few drops are needed and above when significant drops are required). It is also
important to remember that the MINth value is compared to the sojourn time that a
packet spends on queue – while the packet latency also includes the upstream (in this
case) portion of the uncongested network RTT.

Naturally, there are physical limits on how little packet latency can be practically
achieved through LRED alone without requiring an unacceptable drop rate. We have
introduced the Pmax drop rate in Figure 10c as a fail-safe mechanism to cause LRED
to limit its drop rate when faced with an unreachable latency goal.

A number of factors affect the ease (efficiency) with which LRED can achieve it target
latency. The following factors (and their combination) can reduce the effectiveness of
LRED:

1) Large number of concurrent sessions
2) Low Tmax
3) Large uncongested RTT

Recall that for N concurrent sessions a single packet drop can affect only 1/Nth of the
active TCP streams. A greater drop rate will be required to have the same effect on all
TCP streams for a larger value of N. In addition, as the value of Tmax is reduced the
interval of time between drops increases resulting in less efficient control of the TCP
stream.

Fortunately, LRED seems to have a very large sweet spot and may be applicable to a
major portion of our network problem domain (especially as Tmax values are trending
up). Future work might map this multi-dimensional sweet spot.

Figure 13(a & b) Latency & Throughput (LRED w/ Tmax = 1 Mbps)

Figure 13(a & b) illustrates how LRED behaves when it fails to achieve its packet
latency goal of 50 msec. This example uses 10 concurrent FTP sessions plus a single
gamer session over a slow 1 Mbps Tmax. It achieves average latencies near 100
msec. We can see that the packet drop rate was allowed to grow to over 10% before
LRED gave up on trimming another 50 msec off of the average latency.

As a result, in its current state of development, LRED appears to be quite suitable for
application as a stand-alone Type B Bufferbloat Mitigation technique if the target latency
is on the order of 100 msec or greater. LRED can also serve well as a very simple,
secondary Bufferbloat Mitigation mechanism that can be added on top of an SFQ
system to limit the maximum latency incurred within any of the queues of the SFQ
system (or to take control if/when hash collisions occur). However, the LRED solution
(as it currently exists) requires high dropping probabilities to force the sessions to have
target latencies of much less than 100 msec. This problem is exacerbated if many
sessions are sharing the queue that is being managed. Modifications to the LRED
solution are currently under study in an attempt to extend its operating point to target
latencies that are much less than 100 msec.

Combining SFQ with Hashing/Serial Searching & LRED

In the CableLabs paper, the authors described a combination of SFQ and CoDel that
offered the benefits of SFQ performance (when no hash collisions occurred) and relied
on the CoDel scheme to improve on the reduced performance levels that occur in the
event of a hash collision. In this paper the Type B (CoDel) mechanism does not
distinguish between low and high latency sessions and is required to introduce large
levels of latency control in order to manage latency-sensitive sessions in the event of a
hash collision.

In this section we will describe a similar approach using SFQ w/ Hashing/Serial Search
in combination with LRED that has very attractive properties. The advantages of this
approach derive from the ability to avoid ever dropping packets from latency-sensitive
sessions (due to their short sojourn times) and the ability to use very low levels of LRED
drops (sufficient only to avoid overflowing a large physical buffer). Since hash collisions
are extremely rare LRED need not keep the latency of non-latency-sensitive session
extremely low.

The motivation for adding LRED to the SFQ w/ Hashing/Serial Search mechanism is
focused on a fairly minor defect in the unmodified SFQ approach. In the approach as
presented in Figure 5 a very small drop rate results from infrequent overflows of the
total physical buffer. These drops occur very infrequently but do not discriminate
between FTP and gamer sessions. TCP recovery mechanisms, however, are much
less effective for short packet burst (such as those typical of latency-sensitive sessions)
– and these are the very latencies we are trying to shorten. The addition of LRED to
this approach allows us to introduce just enough LRED drops to insure that drops never

occur due to buffer overflow – and, therefore, latency-sensitive packets are never
dropped because their small latency is well below MINth.

Figure 14(a & b) shows the results of a simulation series identical to the one shown in
Figure 2 with the exception that the buffer uses both SFQ with Hashing/Serial
Searching (described in the previous section) and LRED with the following parameters:
MINth = 700 msec, MAXth = 1400 msec, Pmin = 1%, and Pmax = 5%. Notice that
resulting FTP packet latency peaks at a value that is marginally larger than 500 msec
while the gamer session latency is around 50 msec (very near the uncongested RTT
minimum).

Figure 14(a & b) Latency & Throughput (SFQ with Hashing/Serial Searching & LRED)

Figure 15 and Figure 16 show that all latency-sensitive packets (not just their average
value) fall in a very narrow distribution between 50 and 100 msec. Both of these
examples use a Tmax of 5 Mbps and a physical buffer size able to hold 960 msec of
data at that rate. In both cases the Baseline (in green) curve shows the latency
common to both traffic types in the baseline (Type A) example shown in Figure 2.

We can see from these two figures that the LRED value of MINth can be varied
smoothly between 700 and 200 msec without affecting the gamer latency – only the
FTP latency is affected.

Figure 15 Latency CDF (SFQ with Hashing/Serial Searching + LRED 700)

Figure 16 Latency CDF (SFQ with Hashing/Serial Searching + LRED 200)

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Packet Latency (sec)

Packet Latency CDF: SFQ+LRED 700

Gamer FTP Baseline

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Packet Latency (sec)

Packet Latency CDF: SFQ+LRED 200

Gamer FTP Baseline

Considerations For All Bufferbloat Mitigation
Schemes

While performing the aforementioned analyses, there were several potential issues that
were identified by the authors. It seemed prudent to outline some of those issues within this
paper.

In general, the flow of Internet traffic through a network involves interaction between multiple
devices and multiple internet protocols. A minor change in the behavior of any one device
may cause an unintended change elsewhere. This change can be a technical change
(whereby instabilities can occur) or can be a social change (whereby certain types of service
implementation are favored over others).

The following is a list of some of the identified issues.

LEDBAT

The LEDBAT algorithm, which is widely used to throttle bitTorrent traffic, is designed to
reduce the data transmission rate whenever latency is detected. A Bufferbloat avoidance
algorithm will significantly reduce the latency, As a result, Bufferbloat mitigation can result in
congestion not being detected by LEDBAT algorithms, and this may lead to the undesirable
condition where this class of traffic may take a larger share of the available service flow
capacity.

Session Bloat

We have found the effectiveness of all types of Bufferbloat mitigation to be very sensitive to
the number of concurrent sessions flowing through a buffer. This property might well be
expected since the only fundamental type of flow control that is available is packet dropping
which relies on a response from TCP. Any single dropped packet can affect only one of a
set a concurrent flows – all other flows are not aware of this drop. We might expect a
service flow with 50 concurrent sessions to require ~50 times as many dropped packets to
achieve a same degree of latency control.

The performance of any Bufferbloat mitigation mechanism should be evaluated against a
large number of concurrent sessions since this condition cannot be avoided in the field and
is intentionally increased by services such as BitTorrent and web browsing.

If a Bufferbloat mitigation algorithm eliminates or significantly reduces the latency on a
session at the expense of its overall session throughput then it might encourage services to
create even more parallel sessions like BitTorrent and web browsers do today. This could
further aggravate the condition for all buffers in a network.

Low Bandwidth Service Flows

We have found Bufferbloat mitigation on low bandwidth flows (e.g., 1 Mbps and below) to be
more difficult (especially with a large number of concurrent sessions). It might be advisable
to closely study the behavior of an avoidance mechanism on SFs with low Tmax values
before it is adopted and deployed.

Large bursts

A large data burst arriving at a buffer already straining to limit latency can disturb its
equilibrium and sometimes trigger undesirable transient behavior. Acceptance testing for a
potential Bufferbloat solution should include data burst stress testing.

Most Bufferbloat avoidance schemes detect latency due to a buildup of packets in a queue
but a large burst can then arrive on top of that. Although latency is reduced to a minimum
acceptable level for the application which is generating the burst, it may not be an
acceptable level for other applications sharing the same service-flow. For example, the
resultant bursty latency may still be excessive for a gaming application which shares the
same service-flow. Therefore, some Bufferbloat improvement schemes may work well for
sessions where latency does not matter but may be insufficient for applications like gaming
where latency really matters.

Short-lived flows

The majority of schemes which aim to control the SF bitrate by dropping packets work well
for a small number of long-lived sessions. However, real Internet traffic is composed of a lot
of short random bursts for web page downloads and short periodic bursts for adaptive bit
rate (ABR) video. Careful attention should be paid to any operational overhead imposed by
the frequent creation and deletion of these short-lived sessions.

A mechanism, like SFQ, that attempts to identify and separate these flows must be able to
create and delete these session queues with very little overhead.

Sudden rate changes

A sudden drop in bitrate (for example, from the DOCSIS peak-rate to the max-sustained-
rate) may frequently occur in the normal course of CMTS traffic policing. This will cause a
buildup in latency in the SF queue as packets continue to arrive at a high rate but leave the
queue at a much lower rate. A Bufferbloat avoidance scheme will attempt to counteract this
increase in latency but may take several seconds to reach a new equilibrium point. This
could lead to instability in all TCP flows which would not have occurred in the absence of
Bufferbloat mitigation. As a result, we should be alert to possible incompatibilities between
standard DOCSIS QoS algorithms and Bufferbloat algorithms,

All of the above areas may require new research to be carried out in the future.

Conclusions
This paper has attempted to extend the analysis work on DOCSIS Bufferbloat
management techniques that was originally started by CableLabs. In particular, the
paper studied four different types of Bufferbloat management techniques. One of the
techniques was a low-complexity technique known as Saturated Tail-Dropping. A
second technique was a medium-complexity technique known as Latency-based RED.
A third technique was a high-complexity technique known as SFQ with Hashing/Serial
Searching. Finally, a combined technique using both SFQ with Hashing/Serial
Searching and Latency-based RED was also studied.

In general, the authors would recommend that an MSO or vendor who can support the
added complexity should first consider SFQ with Hashing/Serial Searching coupled with
Latency-based RED. This solution probably provides the best performance of all
solutions studied within the paper, as it separates each of the sessions within a service
flow into different queues and produces near optimal performance on latency-sensitive
sessions.

If a slightly simpler approach is required, then the MSO or vendor should consider SFQ
with Hashing/Serial Searching. This approach still separates each of the sessions within
a SF into different queues and produces excellent performance.

If an even simpler approach is required, then the MSO or vendor should consider
Latency-based WRED. This solution uses packet sojourn times to determine when
random packet drops should be triggered to throttle TCP bandwidths and reduce queue
depths. In general, this solution does a fairly good job at limiting latency for all of the
sessions sharing a service flow buffer, but it does experience more packet loss and
more TCP throughput reduction than the previous solutions.

If the simplest approach is required, then the MSO or vendor should consider a
Saturated Tail-Dropping solution. These solutions only drop packets to throttle TCP
bandwidths whenever the shared buffer is entirely filled. The challenging part of this
solution is to choose an appropriate buffer depth. The authors propose using a buffer
depth that is slightly larger than the BDP values for the traffic with the longest expected
RTT. The analysis in the paper showed that a session whose RTT is much longer than
the anticipated RTT may excessively overflow the buffer size and experience large
packet loss and much lower TCP throughputs.

The end goal of Bufferbloat Mitigation is to achieve low-latency for gaming sessions
even in the presence of bursty, high-bandwidth TCP traffic that is sharing the same SF.
So far, the only available schemes which achieves this goal consistently are the SFQ-
based (Type A) schemes. However, the CoDel and PIE and LRED schemes can also
achieve it for a high percentage of the time. Unfortunately, implementation practicalities

(ex: hardware or processing limitations in some CMs or CMTSs) may limit the
application of SFQ within some devices, so continued research must continue on
alternative schemes in order to achieve the end goal of a simple Bufferbloat Mitigation
scheme which imposes negligible latency, with acceptable packet loss and close-to-the-
target TCP throughput level.

Bibliography
[Floy] Sally Floyd and Van Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” http://www.icir.org/floyd/papers/early.pdf, Retrieved
electronically.

[Gett] Jim Gettys, “Bufferbloat: Dark Buffers in the
Internet,” http://queue.acm.org/detail.cfm?id=2071893, Retrieved electronically.

[Kuro] Jim Kurose and Keith Ross, “Computer Networking: A Top-down Approach
Featuring the Internet, Sixth Edition,” Addison-Wesley, 2013, ISBN 978-0-13-285620-1.

[Nich] K. Nichols and V. Jacobson, “Controlled Delay Active Queue Management draft-
nichols-twvwg-code-01,” http://tools.ietf.org/html/draft-nichols-tsvwg-codel-01, Retrieved
electronically.

[Pan] Rong Pan et. al., “QoE: Easy as PIE,” 2013 NCTA Cable Show Spring Technical
Forum, NCTA.

[Whi1] Greg White, “DOCSIS Best Practices and Guidelines for Cable Modem Buffer
Control, CM-GL-Buffer-V01-110915,” CableLabs, 2011.

[Whi2] Greg White and Dan Rice, “Active Queue Management Algorithms for DOCSIS
3.0,” CableLabs, 2013.

Abbreviations and Acronyms
ABR Available Bit Rate
BDP Bandwidth Delay Product
CDF Cumulative Distribution Function
CM Cable Modem
CMTS Cable Modem Termination System
CoDel Controlled Delay
DOCSIS Data over Cable Service Interface Specification
DRAM Dynamic Random Access Memory
ECN Explicit Congestion Notification
FIFO First in First Out
FTP File Transfer Protocol
IP Internet Protocol
LEDBAT Low Extra Delay Background Transport
LRED Latency-Based Random Early Detection
Mbps Megabits per second
MSO Multiple System Operator
PIE Proportional Integral Enhanced
QoS Quality of Service
RED Random Early Detection
RTT Round-trip Time
SF Service Flow
SFQ Stochastic Flow Queuing
TCP Transmission Control Protocol
Tmax Maximum Sustained Traffic Rate
UDP User Datagram Protocol
VoIP Voice over Internet Protocol
WRED Weighted Random Early Detection

