AMERICAN NATIONAL STANDARD

ANSI/SCTE 38-11 2017

HMS Headend Management Information Base (MIB)
SCTE-HMS-HEADENDIDENT-MIB
NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability, best practices and ultimately the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents, and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at http://www.scte.org.

All Rights Reserved
© Society of Cable Telecommunications Engineers, Inc. 2017
140 Philips Road
Exton, PA 19341
CONTENTS

SCOPE .. 4
COPYRIGHT .. 4
NORMATIVE REFERENCE.. 4
INFORMATIVE REFERENCE.. 4
TERMS AND DEFINITIONS ... 4
REQUIREMENTS .. 4
SCOPE
This document is identical to SCTE 38-11 2008 except for informative components which may have been updated such as the title page, NOTICE text, headers and footers. No normative changes have been made to this document.

This document provides the branch object identifiers for each of the MIBs within the SCTE HMS HEADENDIDENT Tree.

COPYRIGHT
The MIB definition found in this document may be incorporated directly in products without further permission from the copyright owner, SCTE.

NORMATIVE REFERENCE
IETF RFC 2578 SNMPv2-SMI
IETF RFC 2579 SNMPv2-TC
IETF RFC 2580 SNMPv2-CONF
SCTE 36 2007 SCTE-ROOT Management Information Base (MIB) Definitions
SCTE 37 2008 Hybrid Fiber/Coax Outside Plant Status Monitoring SCTE-HMS-ROOTS Management Information Base (MIB) Definition

INFORMATIVE REFERENCE
None

TERMS AND DEFINITIONS
This document defines the following terms:

Management Information Base (MIB) – the specification of information in a manner that allows standard access through a network management protocol.

REQUIREMENTS
This section defines the mandatory syntax of the SCTE-HMS-HEADENDIDENT-MIB. It follows the IETF Simple Network Management Protocol (SNMP) for defining managed objects.

The syntax is given below.
SCTE-HMS-HEADENDIDENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 Integer32, Unsigned32, OBJECT-IDENTITY, MODULE-IDENTITY
 FROM SNMPv2-SMI
 DisplayString, TEXTUAL-CONVENTION
 FROM SNMPv2-TC
 insidePlantIdent
 FROM SCTE-HMS-ROOTS; -- see ANSI_SCTE 37 (formerly HMS072)

headEndIdentMib MODULE-IDENTITY
LAST-UPDATED "200801161300Z"
ORGANIZATION "SCTE HMS Working Group"
CONTACT-INFO
 " SCTE HMS Subcommittee, Chairman
mailto:standards@scte.org"

DESCRIPTION
"The MIB module is for representing optical equipment
present in the headend (or indoor) and is supported by
a SNMP agent. This module defines the root OID (under
the scteHmsTree) for the indoor optic device MIBs such
as Optical transmitters, receivers, amplifiers etc.
This module also defines textual conventions that are
common across indoor devices."

REVISION "200801161300Z"
DESCRIPTION
"Changed due to Comment Resolution Meeting."

REVISION "200710030000Z" -- Oct 03, 2007
DESCRIPTION
"added heDigital and heManagedServer to the mib tree."

::= { insidePlantIdent 0 }

-- Registration subtree

heOptics OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Defines the base OID for the inside plant optical
equipment
(see SCTE 83-1, formerly HMS108) including, but not limited
to,
 optical transmitters (see SCTE 85-1, formerly HMS112),
optical receivers (see SCTE 85-2, formerly HMS113),
optical amplifiers (see SCTE 85-3, formerly HMS118),
optical switches etc."
::= { insidePlantIdent 1 }

heBaseIdent OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Defines the base OID for the common part of the inside
plant
equipment (see SCTE 84-1; formerly HMS111) including, but not limited to, power supplies (see SCTE 84-2; formerly HMS116), fans (see SCTE 84-3; formerly HMS117), etc."
 ::= { insidePlantIdent 2 }

heCommon OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the modelling of all indoor equipment (see SCTE 84-1; formerly HMS111)."
 ::= { heBaseIdent 1 }

hePowerSupply OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the modelling of indoor Power Supply (see SCTE 84-2; formerly HMS116)."
 ::= { heBaseIdent 2 }

heFans OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the modelling of indoor Fans (see SCTE 84-3; formerly HMS117)."
 ::= { heBaseIdent 3 }

heHMTS OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base of the HMTS (see SCTE 83-3; formerly HMS120)."
 ::= { insidePlantIdent 3 }

heRF OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the inside plant RF equipment (see SCTE 83-4, formerly HMS133) including, but not limited to, RF amplifiers (see SCTE 94-1, formerly HMS131), RF switches (see SCTE 94-2, formerly HMS132) etc."
 ::= { insidePlantIdent 4 }

heDigital OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the inside plant Digital devices including QAM, Encoders, Decoders, MPEG, IP etc"
 ::= { insidePlantIdent 5 }

heManagedServer OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Defines the base OID for the inside plant Managed Servers.
Servers can be any machine that is used to serve data such as a video server, a timing server, a resource server, etc.

::= { insidePlantIdent 6 }

-- Textual Conventions

HeTenthVolt ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-1"
 STATUS current
 DESCRIPTION "This data type represents voltage levels that are normally expressed in volts. Units are in tenths of a volt; for example, -48.1 volts will be represented as -481."
 SYNTAX Integer32

HeTenthdBm ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-1"
 STATUS current
 DESCRIPTION "This data type represents power levels that are normally expressed in dBm. Units are in tenths of a dBm; for example, -5.1 dBm will be represented as -51."
 SYNTAX Integer32

HeTenthdBmV ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-1"
 STATUS current
 DESCRIPTION "This data type represents power levels that are normally expressed in dBmV. Units are in tenths of a dBmV; for example, -5.1 dBmV will be represented as -51."
 SYNTAX Integer32

HeTenthCentigrade ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-1"
 STATUS current
 DESCRIPTION "This data type represents temperature values that are normally expressed in Centigrade. Units are in tenths of a Centigrade; for example, -5.1 Centigrade will be represented as -51."
 SYNTAX Integer32

HeHundredthNanoMeter ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-2"
 STATUS current
 DESCRIPTION "This data type represents wavelength values that are normally expressed in nano meters. Units are in hundredths of a NanoMeter; for example, 1550.56 nm will be represented as 155056."
 SYNTAX Unsigned32
HeTenthdB ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d-1"
STATUS current
DESCRIPTION
"This data type represents power levels
 that are normally expressed in dB. Units
 are in tenths of a dB;
 for example, -5.1 dB will be represented as -51."
SYNTAX Integer32

HeOnOffControl ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An enumerated value that provides a control of a
 particular hardware or software parameter that usually represent
 some sort of switch.

 A SET request with a value off(1) will cause the switch
to be shut off.

 A SET request with a value on(2) will cause the switch
to be turned on.

 A value meaningless(3) will be implemented by the
 variables that represent a switch with write-only access.
 A GET request for the value of the write-only variable
 shall return a value meaningless(3).

 A SET request with a value meaningless(3) for the variable
 with write access shall have no effect and no exception is
 generated.

 A value may be used by the variables with both read-write
 and write-only access.

 The variables with read-only access shall be defined with
 the textual convention HeOnOffStatus."
SYNTAX INTEGER {
 off(1),
 on(2),
 meaningless(3)
}

HeOnOffStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An enumerated value that provides a status of a particular
 hardware or software parameter that usually represent
 some sort of switch.

 A value off(1) indicates the switch is off.

 A value on(2) indicates the switch is on."
SYNTAX INTEGER {
 off(1),
 on(2)
}
HeFaultStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An enumerated value that provides a fault status of
 a particular hardware or software parameter that
 usually represent some sort of condition.

 A value normal(1) indicates the normal condition.

 A value fault(2) indicates the fault condition."
 SYNTAX INTEGER {
 normal(1),
 fault(2)
 }

HeLaserType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Laser type. Some example values are: unisolated FP,
 isolated FP, uncooled DFB, cooled DFB, ITU (up to
 32 colors)."
 SYNTAX DisplayString

HeMilliAmp ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-3"
 STATUS current
 DESCRIPTION
 "This data type represents current levels that are normally
 expressed in amperes. Units are in milliamperes;
 for example, 2.1 Amperes would be expressed as 2100."
 SYNTAX Unsigned32

HeHundredthWatts ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-2"
 STATUS current
 DESCRIPTION
 "This data type represents power values that
 are normally expressed in watts. Units are in
 hundredths of a watt;
 for example, 420 watts will be represented as 42000."
 SYNTAX Unsigned32