Network Operations Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 38-10 2017

Outside Plant Status Monitoring
SCTE-HMS-RF-AMPLIFIER-MIB
Management Information Base (MIB) Definition
NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability, best practices and ultimately the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents, and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at http://www.scte.org.

All Rights Reserved
© Society of Cable Telecommunications Engineers, Inc. 2017
140 Philips Road
Exton, PA 19341
CONTENTS

SCOPE ... 4
COPYRIGHT .. 4
NORMATIVE REFERENCE ... 4
INFORMATIVE REFERENCE .. 4
TERMS AND DEFINITIONS ... 4
REQUIREMENTS .. 4
SCOPE
This document is identical to SCTE 38-10 2009 except for informative components which may have been updated such as the title page, NOTICE text, headers and footers. No normative changes have been made to this document.

This document defines information about HFC RF Amplifiers.

COPYRIGHT
The MIB definition found in this document may be incorporated directly in products without further permission from the copyright owner, SCTE.

NORMATIVE REFERENCE
IETF RFC 1155
SCTE 37
SCTE 38

INFORMATIVE REFERENCE
None

TERMS AND DEFINITIONS
This document defines the following terms:

Management Information Base (MIB) – the specification of information in a manner that allows standard access through a network management protocol.

REQUIREMENTS
This section defines the mandatory syntax of the SCTE-HMS-RF-AMPLIFIER-MIB. It follows the IETF Simple Network Management Protocol (SNMP) for defining managed objects.

The syntax is given below.
SCTE-HMS-RFAMPLIFIER-MIB DEFINITIONS ::= BEGIN

IMPORTS
 OBJECT-TYPE
 FROM RFC-1212
 DisplayString
 FROM RFC1213-MIB
 rfAmplifierIdent
 FROM SCTE-HMS-ROOTS
;

rfAmpAdminGroup OBJECT IDENTIFIER ::= { rfAmplifierIdent 1 }
rfAmpVendorOID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS optional
DESCRIPTION
"This object provides a means for a vendor to point to a vendor
specific extension of this MIB."
::= { rfAmpAdminGroup 1 }

rfAmpDeviceId OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The content of this field is vendor specific. The intent is to
provide manufacturer and/or product specific ASCII text information
that will propagate to the manager's console verbatim."
::= { rfAmpAdminGroup 2 }

rfAmpNumberRFActives OBJECT-TYPE
SYNTAX INTEGER (1..16)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Number of RF actives for this rfAmplifier.
There must be a least one RF Active per rfAmplifier.

Note also that it is not necessary to monitor the RF active; this
table would show 1 for this object, but all of the objects in the
table may not be supported." := { rfAmplifierIdent 2 }

rfAmpRFActiveTable OBJECT-TYPE
SYNTAX SEQUENCE OF RFampRFActiveEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Table containing information about each RF Active."
:= { rfAmplifierIdent 3 }

rfAmpRFActiveEntry OBJECT-TYPE
SYNTAX RFampRFActiveEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"List of information about each RF Active."
INDEX { rfAmpRFActiveIndex }
:= { rfAmpRFActiveTable 1 }

RFampRFActiveEntry ::= SEQUENCE
{
 rfAmpRFActiveIndex
 INTEGER,
 rfAmpRFActiveControlType
 DisplayString,
 rfAmpRFActiveOutputLevel
 INTEGER,
 rfAmpRFActiveCurrent
 INTEGER,
 rfAmpRFActiveControlLevel
 INTEGER
}

rfAmpRFActiveIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index into rfAmpRFActiveTable."
::= { rfAmpRFActiveEntry 1 }

rfAmpRFActiveControlType OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..10))
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the control type of this rfAmplifier. Possibilities include,
but are not limited to:
none - No control type inherent to this unit.
alc - automatic level control
asc - automatic slope control
agc - automatic gain control
alsc - automatic level slope control"
::= { rfAmpRFActiveEntry 2 }

rfAmpRFActiveOutputLevel OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the forward Path output RF level of a pilot signal on the
rfAmplifier.
Units 0.1 dBmV.
This item requires an entry in the properties MIB."
::= { rfAmpRFActiveEntry 3 }

rfAmpRFActiveCurrent OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the RF active current. Units milliAmps. This item requires an entry in the properties MIB."
::= { rfAmpRFActiveEntry 4 }

rfAmpRFActiveControlLevel OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the control level (as indicated by rfAmpRFActiveControlType) for this RF active.
Units 0.1VDC.
This item has an entry in the properties MIB."
::= { rfAmpRFActiveEntry 5 }

-- ***********
-- * RF ports
-- ***********

rfAmpNumberRFPort OBJECT-TYPE
SYNTAX INTEGER (0..16)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Number of entries in the RF port table.
A zero entry means the table does not exist and the functional area is not present in the device."
::= { rfAmplifierIdent 4 }

rfAmpRFPortMasterAttenuationControl OBJECT-TYPE
SYNTAX INTEGER { low(1), high(2), pad(3) }
ACCESS read-write
STATUS optional
DESCRIPTION
"Reports and Controls the state of a reverse path attenuation switch that affects ALL ports.
low - No attenuation on the reverse path.
high - Typically high amount of attenuation on the reverse path. This value may not be available for all switches.
pad - Typically a small amount of attenuation on the reverse path. This value may not be available for all switches.

Note that the values for the object rfAmpRFPortReverseAttenuationControl do NOT change when this object is accessed.

::= { rfAmplifierIdent 5 }

rfAmpRFPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF RFAmpRFPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Table containing information about the RF ports."
 ::= { rfAmplifierIdent 6 }

rfAmpRFPortEntry OBJECT-TYPE
SYNTAX RFAmpRFPortEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"List of information about each RF port."
INDEX { rfAmpRFPortIndex }
 ::= { rfAmpRFPortTable 1 }

RFAmpRFPortEntry ::= SEQUENCE
 {
 rfAmpRFPortIndex INTEGER,
 rfAmpRFPortControlType DisplayString,
 rfAmpRFPortControlLevel INTEGER,
 rfAmpRFPortOutputRFLevel
rfAmpRFPortIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index into the rfAmpRFPortTable. This index is application specific. It can be either the nth port, or a port number.
For example; a node may have 4 ports, numbered 1, 3, 4, 6. Thus, the indexes could be .1, .3, .4, .6, OR .1, .2, .3, .4.
In the latter case, the port name is critical."
::= { rfAmpRFPortEntry 1 }

rfAmpRFPortControlType OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..10))
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the control type of this rfAmplifier. Possibilities include, but are not limited to:
none - No control type inherent to this unit.
alc - automatic level control
asc - automatic slope control
agc - automatic gain control
alsc - automatic level slope control"
::= { rfAmpRFPortEntry 2 }
rfAmpRFPortControlLevel OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the control level (as indicated by rfAmpRFPortControlType)
for this RF port.
Units 0.1VDC. This item has an entry in the properties MIB."
::= { rfAmpRFPortEntry 3 }

rfAmpRFPortOutputRFLevel OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the RF Path output RF level of a pilot signal on the
rfAmplifier port.
Units 0.1 dBmV.
This item requires an entry in the properties MIB.

This object shall report alarms using the value of rfAmpRFPortName
in the alarmText object in the hmsAlarmEvent Trap."
::= { rfAmpRFPortEntry 4 }

rfAmpRFPortRFActive OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Returns the RF Active index associated with this RF Port"
::= { rfAmpRFPortEntry 5 }

rfAmpRFPortName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Physical name of Port. Some examples are Port 1 and Port 2.
This name is put into the alarmText object used by hmsAlarmTrap
when alarms are generated by objects in this table."
::= { rfAmpRFPortEntry 6 }

rfAmpRFPortReverseAttenuationControl OBJECT-TYPE
SYNTAX INTEGER { low(1), high(2), pad(3) }
ACCESS read-write
STATUS optional
DESCRIPTION
"Reports and Controls the state of the reverse path
attenuation switch for this port only.
low - No attenuation on the reverse path.
high - Typically high amount of attenuation on the reverse
 path. This value may not be available for all switches.
pad - Typically a small amount of attenuation on the reverse
 path. This value may not be available for all switches."
::= { rfAmpRFPortEntry 7 }

--- ***********
-- * AC Power
--- ***********

rfAmpLinePowerVoltage1 OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the line power voltage from primary feed. Units 1VAC.
This item requires an entry in the properties MIB."
::= { rfAmplifierIdent 8 }

rfAmpLinePowerVoltage2 OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the line power voltage from a secondary feed. Units 1VAC.
This item requires an entry in the properties MIB."
::= { rfAmplifierIdent 9 }

rfAmpLinePowerCurrent OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the total current draw of the rfAmplifier. Units 0.1 Amp.
This item requires an entry in the properties MIB."
::= { rfAmplifierIdent 10 }

-- *****************
-- * Power Supplies
-- *****************

rfAmpNumberDCPowerSupply OBJECT-TYPE
SYNTAX INTEGER (0..16)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Number of entries in the internal DC power supply table
A zero entry means the table does not exist and the functional
area is not present in the device."
::= { rfAmplifierIdent 11 }

rfAmpDCPowerSupplyMode OBJECT-TYPE
SYNTAX INTEGER { loadsharing(1), switchedRedundant(2) }
ACCESS read-only
STATUS optional
DESCRIPTION
"Indicates the mode, either load sharing or redundant (switched),
in which the power supplies operate. This object should not
be supported if the unit can only support one DC power supply."
::= { rfAmplifierIdent 13 }
rfAmpDCPowerTable OBJECT-TYPE
SYNTAX SEQUENCE OF RFAmplifierDCPowerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table containing information about the Regulated Power."
::= { rfAmplifierIdent 14 }

rfAmpDCPowerEntry OBJECT-TYPE
SYNTAX RFAmplifierDCPowerEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of information about the Regulated Power."
INDEX { rfAmpDCPowerIndex }
::= { rfAmpDCPowerTable 1 }

RFAmplifierDCPowerEntry ::= SEQUENCE
{
 rfAmpDCPowerIndex INTEGER,
 rfAmpDCPowerVoltage INTEGER,
 rfAmpDCPowerCurrent INTEGER,
 rfAmpDCPowerName DisplayString
}

rfAmpDCPowerIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index into the rfAmpDCPowerTable."
::= { rfAmpDCPowerEntry 1 }

rfAmpDCPowerVoltage OBJECT-TYPE
SYNTAX INTEGER (-32768..32767)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Returns the regulated power voltage. Units in 0.1 Volts.
This item requires an entry in the properties MIB.

This object shall report alarms using the value of rfAmpDCPowerName in the alarmText object in the hmsAlarmEvent Trap."
::= { rfAmpDCPowerEntry 2 }

rfAmpDCPowerCurrent OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION
"Returns the regulated power current. Units in 0.1 Amps.
This item requires an entry in the properties MIB.

This object shall report alarms using the value of rfAmpDCPowerName in the alarmText object in the hmsAlarmEvent Trap."
::= { rfAmpDCPowerEntry 3 }

rfAmpDCPowerName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Identifies the Physical name of the Power Supply. For example:

24 VDC Supply A

Actual value of this field is vendor specific, at a minimum it shall identify the nominal voltage expected and distinguish the
supplies from one another.

If a single PHYSICAL supply provides multiple voltages, each voltage shall have its own entry in this table, with an appropriate name.

This name is put into the alarmText object in the hmsAlarmEvent Trap when alarms are generated by objects in this table."

::= { rfAmpDCPowerEntry 4 }

END