Introducing Routing and Switching in the Enterprise
CCNA Discovery Learning Guide
Part I: Concepts

Introducing Routing and Switching in the Enterprise, CCNA Discovery Learning Guide is the official supplemental textbook for the Introducing Routing and Switching in the Enterprise course in the Cisco® Networking Academy® CCNA® Discovery curriculum version 4. The course, the third of four in the new curriculum, familiarizes you with the equipment applications and protocols installed in enterprise networks, with a focus on switched networks, IP Telephony requirements, and security. It also introduces advanced routing protocols such as Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF) Protocol. Hands-on exercises include configuration, installation, and troubleshooting.

The Learning Guide, written and edited by instructors, is designed as a portable desk reference to use anytime, anywhere to reinforce the material from the course and organize your time.

The features in Part I of the Learning Guide help you focus on important concepts to succeed in this course:

- **Chapter Objectives**—Review core concepts by answering the focus questions listed at the beginning of each chapter.
- **Key terms**—Refer to the lists of networking vocabulary introduced and highlighted in context in each chapter. The Glossary defines each key term.
- **Summary of Activities and Labs**—Maximize your study time with this complete list of all associated exercises at the end of each chapter.
- **Check Your Understanding**—Evaluate your readiness with the end-of-chapter questions that match the style of questions you see in the online course quizzes. The answer key explains each answer.
- **Challenge Questions and Activities**—Apply a deeper understanding of the concepts with these challenging end-of-chapter questions and activities. The answer key explains each answer.

Companion CD-ROM

- Interactive Activities
- Packet Tracer Activity files
- IT Career Information
- Taking Notes
- Lifelong Learning

How To

- Look for this icon to study the steps you need to learn to perform certain tasks.

- **Interactive Activities**—Reinforce your understanding of topics with more than 60 different exercises from the online course identified through-out the book with this icon. The files for these activities are on the accompanying CD-ROM.

- **Packet Tracer Activities**—Explore and visualize networking concepts using Packet Tracer exercises interspersed throughout some chapters. The files for these activities are on the accompanying CD-ROM. Packet Tracer v4.1 software developed by Cisco is available separately.

This book is part of the two-book set. Not to be sold separately.

ciscopress.com

This book is part of the Cisco Networking Academy Series from Cisco Press. Books in this series support and complement the Cisco Networking Academy curriculum.
Designing and Supporting Computer Networks
CCNA Discovery Learning Guide

Part I: Concepts
Kenneth D. Stewart III and Aubrey Adams
Copyright © 2008 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing April 2008

Library of Congress Cataloging-in-Publication Data
Stewart, Kenneth (Kenneth D.)
Designing and supporting computer networks / Kenneth Stewart, E. Aubrey Adams.
p. cm. -- (CCNA discovery learning guide)
TK5105.5.S747 2008
004.6--dc22
2008012080

This book is part of a two-book set. Not to be sold separately.

Warning and Disclaimer
This book is designed to provide information about the Designing and Supporting Computer Networks Discovery course. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco Systems, Inc.

This book is part of the Cisco Networking Academy® series from Cisco Press. The products in this series support and complement the Cisco Networking Academy curriculum. If you are using this book outside the Networking Academy, then you are not preparing with a Cisco trained and authorized Networking Academy provider.

For more information on the Cisco Networking Academy or to locate a Networking Academy, please visit www.cisco.com/edu.
Introduction

The following Introduction pertains to the Learning Guide as a whole.

Cisco Networking Academy is a comprehensive e-learning program that delivers information technology skills to students around the world. The CCNA Discovery curriculum consists of four courses that provide a comprehensive overview of networking, from fundamentals to advanced applications and services. The goal of the Designing and Supporting Computer Networks course is to assist you in developing the skills necessary to design small enterprise LANs and WANs. The course provides an introduction to collecting customer requirements, translating those requirements into equipment and protocol needs, and creating a network topology that addresses the needs of the customer. It will also familiarize you with how to create and implement a design proposal for a customer. This course prepares you with the skills required for entry-level presales support and entry-level network design jobs.

Designing and Supporting Computer Networks, CCNA Discovery Learning Guide is the official supplemental textbook for the fourth course in v4.x of the Cisco Networking Academy CCNA Discovery online curriculum. As a textbook, this book provides a ready reference to explain the same networking concepts, technologies, protocols, and devices as the online curriculum. In addition, it contains all the interactive activities, Packet Tracer activities, and hands-on labs from the online curriculum.

This book emphasizes key topics, terms, and activities and provides many alternative explanations and examples as compared with the course. You can use the online curriculum as directed by your instructor and then also use this Learning Guide’s study tools to help solidify your understanding of all the topics. In addition, the book includes the following:

- Additional key Glossary terms
- Additional Check Your Understanding and Challenge questions
- Interactive activities and Packet Tracer activities (and all supplemental documents associated with them) on the CD-ROM

Goal of This Book

First and foremost, by providing a fresh, complementary perspective of the online content, this book helps you learn all the required materials of the fourth course in the Networking Academy CCNA Discovery curriculum. As a secondary goal, individuals who do not always have Internet access can use this text as a mobile replacement for the online curriculum. In those cases, you can read the appropriate sections of this book, as directed by your instructor, and learn the topics that appear in the online curriculum.

Audience for This Book

This book’s main audience is anyone taking the fourth CCNA Discovery course of the Networking Academy curriculum. Many Networking Academies use this textbook as a required tool in the course, and other Networking Academies recommend the Learning Guides as an additional source of study and practice material.
Book Features
The educational features of this book focus on supporting topic coverage, readability, and practice of the course material to facilitate your full understanding of the course material.

Topic Coverage
The following features give you a thorough overview of the topics covered in each chapter so that you can make constructive use of your study time:

- **Objectives**: Listed at the beginning of each chapter, the objectives reference the core concepts covered in the chapter. The objectives match the objectives stated in the corresponding chapters of the online curriculum; however, the question format in the Learning Guide encourages you to think about finding the answers as you read the chapter.

- **“How-to” feature**: When this book covers a set of steps that you need to perform for certain tasks, the text lists the steps as a how-to list. When you are studying, the icon helps you easily refer to this feature as you skim through the book.

- **Notes, tips, cautions, and warnings**: These are short sidebars that point out interesting facts, timesaving methods, and important safety issues.

- **Chapter summaries**: At the end of each chapter is a summary of the chapter’s key concepts. It provides a synopsis of the chapter and serves as a study aid.

Readability
The authors have compiled, edited, and in some cases rewritten the material so that it has a more conversational tone that follows a consistent and accessible reading level. In addition, the following features have been updated to assist your understanding of the networking vocabulary:

- **Key terms**: Each chapter begins with a list of key terms, along with a page-number reference from inside the chapter. The terms are listed in the order in which they are explained in the chapter. This handy reference allows you to find a term, flip to the page where the term appears, and see the term used in context. The Glossary defines all the key terms.

- **Glossary**: This book contains an all-new Glossary with more than 230 computer and networking terms.

Practice
Practice makes perfect. This new Learning Guide offers you ample opportunities to put what you learn into practice. You will find the following features valuable and effective in reinforcing the instruction that you receive:

- **Check Your Understanding questions and answer key**: Updated review questions are presented at the end of each chapter as a self-assessment tool. These questions match the style of questions that you see in the online course. Appendix A, “Check Your Understanding and Challenge Questions Answer Key,” provides an answer key to all the questions and includes an explanation of each answer.

- **(New) Challenge questions and activities**: Additional, and more challenging, review questions and activities are presented at the end of chapters. These questions are purposefully designed to be similar to the more complex styles of questions you might see on the CCNA exam. This section might also include activities to help prepare you for the exams. Appendix A provides the answers.
Packet Tracer activities: Interspersed throughout the chapters, you’ll find many activities to work with the Cisco Packet Tracer tool. Packet Tracer enables you to create networks, visualize how packets flow in the network, and use basic testing tools to determine whether the network would work. When you see this icon, you can use Packet Tracer with the listed file to perform a task suggested in this book. The activity files, and any files associated with the Packet Tracer activities, are available on this book’s CD-ROM; Packet Tracer software, however, is available through the Academy Connection website. Ask your instructor for access to Packet Tracer.

Interactive activities: These activities provide an interactive learning experience to reinforce the material presented in the chapter.

Labs: This book contains all the hands-on labs from the curriculum. Part I includes references to the hands-on labs, as denoted by the lab icon, and Part II contains each lab in full. You may perform each lab as you see each lab referenced in the chapter or wait until you have completed the chapter.

A Word About Packet Tracer Software and Activities

Packet Tracer is a self-paced, visual, interactive teaching and learning tool developed by Cisco. Lab activities are an important part of networking education. However, lab equipment can be a scarce resource. Packet Tracer provides a visual simulation of equipment and network processes to offset the challenge of limited equipment. Students can spend as much time as they like completing standard lab exercises through Packet Tracer, and have the option to work from home. Although Packet Tracer is not a substitute for real equipment, it allows students to practice using a command-line interface. This “e-doing” capability is a fundamental component of learning how to configure routers and switches from the command line.

Packet Tracer 4.1 is available only to Cisco Networking Academies through the Academy Connection website. Ask your instructor for access to Packet Tracer.

How This Book Is Organized

This book covers the major topics in the same sequence as the online curriculum for the CCNA Discovery Designing and Supporting Computer Networks course. The online curriculum has ten chapters for this course, so this book has ten chapters with the same names and numbers as the online course chapters.

To make it easier to use this book as a companion to the course, the major topic headings in each chapter match, with just a few exceptions, the major sections of the online course chapters. However, the Learning Guide presents many topics in slightly different order inside each major heading where necessary. In addition, the book occasionally uses different examples than the course. As a result, students get more detailed explanations, a second set of examples, and different sequences of individual topics, all to aid the learning process. This new design, based on research into the needs of the Networking Academies, helps typical students lock in their understanding of all the course topics.
Chapters and Topics

Part I of this book has ten chapters, as follows:

- **Chapter 1, “Introducing Network Design Concepts,”** discusses how network designers ensure communications networks can adjust and scale to the demands for new services. Topics include a network design overview, the benefits of a hierarchical network design, and network design methodologies.

- **Chapter 2, “Gathering Network Requirements,”** introduces the StadiumCompany and FilmCompany case studies. The StadiumCompany design project is used in the main text, media, and Packet Tracer activities. The FilmCompany design project is completed in the hands-on labs. Students are introduced to the six phases of the Cisco lifecycle, the proper way to respond to a Request For Proposal or Request For Quote, and the roles of a network partner team. How constraints and trade-offs affect the network design is also covered.

- **Chapter 3, “Characterizing the Existing Network,”** emphasizes how characterizing the network to identify strengths and weaknesses assists in the network design process and how to select the appropriate hardware and software to meet client needs. How to conduct a wireless site survey and the creation of a network Design Requirements document are used to solidify the students’ understanding of the material in this chapter.

- **Chapter 4, “Identifying Application Impacts on Network Design,”** describes how the network designer determines the success criteria for a project. Students learn how the characteristics of various applications affect the design of a network. Students also learn how the network requirements of various common applications, such as voice and video, impact the network. Students are also introduced to quality of service mechanisms and how to diagram the application traffic flows to determine bandwidth requirements of a network design.

- **Chapter 5, “Creating the Network Design,”** introduces how to properly analyze the business goals and technical requirements to create an efficient network design. Students learn how to design the application, distribution, and core layer for a campus design; how to design for the WAN connectivity module with remote worker support; and how to design a wireless topology while incorporating security features.

- **Chapter 6, “Using IP Addressing in the Network Design,”** describes how a network designer selects the appropriate hierarchical IP addressing scheme to meet the physical and logical network requirements. Students also learn to choose a routing protocol and design a route summarization strategy. Additional topics include how to create a logical naming structure for network devices, what IPv6 is, methods to implement IPv6 on a network, and how to implement IPv6 on a Cisco device.

- **Chapter 7, “Prototyping the Campus Network,”** has the student identify the purpose of creating proof-of-concept test. Students also learn how to create a test plan to perform simulated or prototype tests of a network upgrade, and how to identify risks and weaknesses in the design based on the proof-of-concept test conclusions.

- **Chapter 8, “Prototyping the WAN,”** discusses the components and technologies used for WAN connectivity. The components and configuration of Frame Relay connections are covered with regard to configuring a VPN client. Students are also introduced to a proof-of-concept test used to check WAN and remote worker connectivity.
Chapter 9, “Preparing the Proposal,” is a summary activity in which students use what they have learned about designing a network to create a bill of materials, plan an implementation schedule, support contracts, and present a network upgrade proposal as a culminating activity.

Chapter 10, “Putting It All Together,” guides students through the resources available to help their career search, including books, websites, classes, and consultants. Students write résumés, find job openings, and practice interviewing as they prepare to enter the workforce.

This book also includes the following:

- **Appendix A, “Check Your Understanding and Challenge Questions Answer Key,”** provides the answers to the Check Your Understanding questions that you find at the end of each chapter. It also includes answers for the Challenge questions and activities that conclude most chapters.

- **Appendix B, “StadiumCompany Story,”** provides the case study of the fictional StadiumCompany, which needs to upgrade its existing computer network to provide state-of-the-art services. You encounter the StadiumCompany design project in the main text of the chapters and in the interactive activities and Packet Tracer activities.

- **Appendix C, “FilmCompany Story,”** provides the case study of the fictional FilmCompany, which is performing contracted services for the StadiumCompany. The FilmCompany needs network upgrades similar to the StadiumCompany, and you encounter the FilmCompany design project primarily in the hands-on labs found in Part II.

- The **Glossary** provides a compiled list of all the key terms that appear throughout this book plus additional computer and networking terms.

Part II of this book includes the labs that correspond to each chapter. In addition, Part II provides the two case studies and an additional appendix, **Appendix C, “Lab Equipment Interfaces and Initial Configuration Restoration,”** which provides a reference for router interface designations and instructions for restoring routers and switches to their default configurations.

About the CD-ROM

The CD-ROM included with this book provides many useful tools and information to support your education:

- **Packet Tracer activity files:** These are files to work through the Packet Tracer activities referenced throughout the book, as indicated by the Packet Tracer activity icon. Some Packet Tracer activities also have PDF files associated with them, particularly for the activities in Chapters 7 and 8. These PDF files are also included on the CD-ROM.

- **Interactive activities:** The CD-ROM contains the interactive activities referenced throughout the book.

Network design portfolio documents: To help you create a network design portfolio as you work through the labs in Part II of this book, the CD provides the following files:

- Example Test Plan (in Microsoft Word format)
- Prototype Network Installation Checklist (in PDF format)
- LAN Design Test Plan (in PDF and Microsoft Word format)
- Server Farm Design Test Plan (in PDF and Microsoft Word format)
- WAN Design Test Plan (in PDF and Microsoft Word format)
- VPN Design Test Plan (in PDF and Microsoft Word format)
Taking Notes: This section includes a TXT file of the chapter objectives to serve as a general outline of the key topics of which you need to take note. The practice of taking clear, consistent notes is an important skill for not only learning and studying the material, but for on-the-job success, too. Also included in this section is “A Guide to Using a Networker’s Journal” PDF booklet providing important insight into the value of the practice of using a journal, how to organize a professional journal, and some best practices on what, and what not, to take note of in your journal.

IT Career Information: This section includes a Student Guide to applying the toolkit approach to your career development. Learn more about entering the world of information technology as a career by reading two informational chapters excerpted from The IT Career Builder’s Toolkit: “The Job Search” and “The Interview.”

Lifelong Learning in Networking: As you embark on a technology career, you will notice that it is ever changing and evolving. This career path provides new and exciting opportunities to learn new technologies and their applications. Cisco Press is one of the key resources to plug into on your quest for knowledge. This section of the CD-ROM provides an orientation to the information available to you and tips on how to tap into these resources for lifelong learning.
CHAPTER 2

Gathering Network Requirements

Objectives

Upon completion of this chapter, you should be able to answer the following questions:

■ What occurs during the six phases of the PPDIOO model?
■ What is the proper way to respond to a Request for Proposal or Request for Quote?
■ What are the roles of a network partner team?
■ How are business goals prioritized to determine technical requirements for a network upgrade project?
■ How do constraints affect the design of a network?

Key Terms

This chapter uses the following key terms. You can find the definitions in the Glossary.

business case page 50
availability page 51
reliability page 51
security page 51
scalability page 51
manageability page 51
PPDIOO page 51

Request For Proposal (RFP) page 53
Request For Quote (RFQ) page 53
system-level acceptance testing page 55
network baseline page 56
Network Management System (NMS) page 70
Simple Network Management Protocol version 3 (SNMPv3) page 70
Management Information Base (MIB) page 72
In this chapter you are introduced to StadiumCompany, a sports facility management company that manages a stadium located outside of a major city. StadiumCompany needs to upgrade its existing computer network to provide state-of-the-art services. To do this, StadiumCompany management outlines a three-phase project. In the first phase, StadiumCompany is contracting with NetworkingCompany, a local Cisco business partner, to prepare a network design requirements document. In the second phase, the stadium management plans to issue a contract for the detail network design. After the design is completed, the final phase will be the installation and implementation of the network upgrade.

StadiumCompany is also in the process of negotiating a contract with FilmCompany, a film production company located in the nearby major city. FilmCompany will be responsible for producing, filming, and delivering high-quality video for download from the stadium website. StadiumCompany management is also requiring FilmCompany to produce live video displays during the sporting events and concerts held at the stadium.

Follow the progress of NetworkingCompany as it helps both StadiumCompany and FilmCompany plan and design their network upgrades.

The StadiumCompany story demonstrates concepts in the main text, media, and PacketTracer (PT) activities. The FilmCompany story provides context for the corresponding student practice in the hands-on labs.

As you job-shadow the NetworkingCompany team, you will learn the skills needed to plan and design the StadiumCompany network upgrades. Your new design skills enable you to support the NetworkingCompany team plan and design similar upgrades for the smaller FilmCompany network.

The design portfolio you create during this work assignment will enable you to develop and present your network upgrade proposal to the FilmCompany management team.

In general, the StadiumCompany design project is used in the main text, media, and PT activities. The FilmCompany design project is completed in the hands-on labs. The StadiumCompany story (see Appendix B) and the FilmCompany story (see Appendix C) are located in the appendixes and on the accompanying CD-ROM.

Introducing Cisco Lifecycle Services

The world of networking is evolving. Networking is no longer just about connecting computers. Networking has become intelligent and plays a vital role in helping to improve business performance. Businesses are eager to expand their networks. Taking advantage of advances in technology, companies can add new services and increase productivity.

Cisco Lifecycle Services is designed to support evolving networks. Cisco Lifecycle Services is a six-phase approach. Each phase defines the activities required to successfully deploy and operate Cisco technologies. It also details how to optimize performance throughout the lifecycle of a network.

The six phases of the Cisco Lifecycle Services are as follows:

- **The Prepare phase**: The Prepare phase involves establishing the organizational requirements, developing a network strategy, and proposing a high-level conceptual architecture identifying technologies that can best support the architecture. The Prepare phase can establish a financial justification for network strategy by assessing the business case for the proposed architecture.

- **The Plan phase**: The Plan phase involves identifying initial network requirements based on goals, facilities, user needs, and so on. This phase involves characterizing sites and assessing any existing networks. It also includes performing a gap analysis to determine whether the existing system infrastructure, sites, and operational environment are able to support the proposed system.
A project plan is useful to help manage the tasks, responsibilities, critical milestones, and resources required to implement changes to the network. The project plan should align with the scope, cost, and resource parameters established in the original business requirements.

- **The Design phase**: The initial requirements that were derived in the Plan phase drive the activities of the network design specialists. The network design specification is a comprehensive, detailed design that meets current business and technical requirements. It incorporates specifications to support **availability**, **reliability**, **security**, **scalability**, and **manageability**. The design specification is the basis for the implementation activities.

- **The Implement phase**: After the design has been approved, implementation (and verification) begins. The network is built, or additional components are incorporated, according to the design specifications. The goal is to integrate devices without disrupting the existing network or creating points of vulnerability.

- **The Operate phase**: Operation is the final test of the appropriateness of the design. The Operate phase involves maintaining network health through day-to-day operations, including maintaining high availability and reducing expenses. The fault detection, correction, and performance monitoring that occur in daily operations provide initial data for the Optimize phase.

- **The Optimize phase**: The Optimize phase involves proactive management of the network. The goal of proactive management is to identify and resolve issues before they affect the organization. Reactive fault detection and correction (troubleshooting) is needed when proactive management cannot predict and mitigate failures. In the PPDIOO process, the Optimize phase may prompt a recommendation for network redesign. Redesign may be necessary if too many network problems and errors arise, if performance does not meet expectations, or if new applications are identified to support organizational and technical requirements.

This process is often referred to as **PPDIOO**, based on the first letters of each of the six phases.

Case Study: Sports Stadium Network

The management organization of a stadium is working with the NetworkingCompany to renovate and update the stadium network. Over the years, the stadium network has grown. However, little thought was given to overall business goals and infrastructure design. Some new projects went forward. But the network administrators did not have a realistic understanding of the bandwidth, traffic prioritization, and other requirements needed to support such an advanced and business-critical network. The stadium management now wants to add new high-tech features, but the existing network is not capable of supporting them.

NetworkingCompany representatives meet with the stadium management to discuss the process they intend to use to design the new network. Although the Design phase is only one of the phases in the network lifecycle, all of the PPDIOO phases impact the design decisions.

In the Prepare and Plan phases, the network designer and stadium staff identify the business goals and technical requirements of the stadium organization as well as any design constraints. The requirements gathering that occurs during these phases influences the decisions made during the Design phase.

The Implement phase begins after the approval of the design. It includes the initial integration of the new design into the existing network.

During the Operate and Optimize phases, the stadium personnel analyze and monitor the network performance.
The Network Lifecycle Prepare Phase

During the Prepare phase, the stadium management and NetworkingCompany staff define the following business goals:

- Improve customer experience
- Reduce costs
- Add additional services
- Support company expansion

These goals provide a foundation for a business case. The business case is used to justify the financial investment required to implement the technology change. The company considers possible business constraints, including budget, personnel, company policies, and schedule limitations.

The five business case components are as follows:

1. **Purpose of the Project**
 - How the project meets company business goals
 - Main benefits and risks
 - Success measurements

2. **Cost/Benefit Analysis**
 - Options to meet business goals
 - Nonfinancial benefits

3. **Sourcing Options**
 - Sources required for services (outside vendors, network installation companies)
 - Purchasing procedures

4. **Budgeting**
 - Affordability and funding sources (internal and external) for whole project at once or over a period of time

5. **Project Management**
 - Project plan and roles
 - Timeline
 - Major risks and plan to minimize impact
 - Emergency plans if project not accomplished
 - Skills and personnel requirements

After the business case is accepted, the NetworkingCompany staff assists in the development of the high-level technology strategy and solution.

This strategy identifies the following:

- Advanced technologies that support the new network solution
- Current and planned network applications and services, and their priorities based on business goals
- People, processes, and tools required to support the operations and management of the technology solution
The Prepare phase is typically done before a company issues a Request For Proposal (RFP) or Request For Quote (RFQ). RFPs and RFQs describe the requirements for the new network. They include information about the process that the company uses to purchase and install networking technologies.

The Network Lifecycle Plan Phase

During the Plan phase, the network designer performs a comprehensive site and operations assessment. This assessment evaluates the current network, operations, and network management infrastructure.

The NetworkingCompany staff identifies all physical, environmental, and electrical modifications. They assess the ability of the current operations and network management infrastructure to support the new technology solution. All changes to infrastructure, personnel, processes, and tools must be completed before the implementation of the new technology solution. Sample assessment areas are as follows:

- **Environmental**
 - Potential electrical issues
 - Space issues in racks/wiring closets
 - UPS or backup power issues
 - AC issues with additional equipment
 - Adequate cabling infrastructure
- **Personnel**
 - Adequate number of staff for maintaining planned upgrade
 - Technical knowledge level of staff adequate or staff needs training

Custom applications that add to the feature and functionality requirements for the new network are also identified in this phase. The NetworkingCompany staff creates a document that contains all of the design requirements.

The Project Plan

In this phase, the NetworkingCompany staff and stadium management create a plan to help manage the project. The project plan includes the following:

- Tasks
- Timelines and critical milestones
- Risks and constraints
- Responsibilities
- Resources required

The plan needs to be within the scope, cost, and resource limits established in the original business goals. Both the stadium management and the NetworkingCompany assign individuals to manage the project.

Lab 2-1: Creating a Project Plan (2.1.3)

In this lab, you will identify the business goals and constraints for the FilmCompany. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.
The Network Lifecycle Design Phase

In the Design phase, the NetworkingCompany staff uses the initial requirements determined during the Plan phase to direct its work. Figure 2-1 shows the initial topology identified during the Plan phase.

Figure 2-1 Physical Connections

The design requirements document supports the specifications identified in the Prepare and Plan phases for the following:
- Availability
- Scalability
- Security
- Manageability

The design must be flexible enough to allow for changes or additions as new goals or needs emerge. The technology must be integrated into the current operations and network management infrastructure.
Planning the Installation
At the end of the Design phase, the network designer creates plans that guide the installation and ensure that the end result is what the customer requested. Plans include the following:
- Configuring and testing connectivity
- Implementing the proposed system
- Demonstrating the functionality of the network
- Migrating network applications
- Validating network operation
- Training end users and support personnel

During the Design phase of the stadium network upgrade, the design of the network is completed. Any new equipment and technologies are specified and tested. A review of the proposed design confirms that the business goals are met. A final proposal is generated to continue with the implementation of the network upgrade.

Interactive Activity 2-1: Identify the Aspects of the PPDIOO Network Lifecycle Phases (2.1.4)
In this interactive activity, you match the characteristics of the hierarchical model and the Cisco Enterprise Architecture to their correct location. Use file ia-214 on the CD-ROM that accompanies this book to perform this interactive activity.

The Network Lifecycle Implement Phase
The Implement phase begins after the NetworkingCompany completes the design and the customer approves it. The network is built according to the approved design specification. The Implement phase verifies the success or failure of the network design.

Testing the New Network
Testing all or part of a new network solution in a controlled environment helps to identify and resolve any implementation issues before the actual installation.

After the issues have been resolved, the NetworkingCompany staff installs the new solution and integrates it into the existing network. When the installation is complete, additional testing is done.

System-level acceptance testing checks that the new network meets the business goals and design requirements. The results of this test are recorded and become part of the documentation provided to the customer. Any training required for the stadium staff needs to be completed during this phase.

Interactive Activity 2-2: Matching Terms to Definitions (2.1.5)
In this interactive activity, you match the terms to the appropriate definition. Use file ia-215 on the CD-ROM that accompanies this book to perform this interactive activity.
The Network Lifecycle Operate Phase

The Operate and Optimize phases are ongoing. They represent the day-to-day operations of a network. The stadium staff monitors the network and establishes a network baseline through the use of software such as Cisco Internetwork Performance Monitor. This monitoring helps the company achieve maximum scalability, availability, security, and manageability.

After the new network is installed, stadium personnel manage the network to ensure that it is performing to the design specifications outlined in the Prepare and Plan phases.

Defining Policies and Procedures

Policies and procedures are needed to handle network issues, such as the following:

- Security incidents
- Configuration changes
- Equipment purchases

Updating these policies and procedures after an upgrade reduces downtime, operating costs, and change-related issues. If there are no policies and procedures in place, it is important to create them.

Lab 2-2: Observing Traffic Using Cisco Network Assistant (2.1.6)

In this lab, you will use Cisco Network Assistant to observe traffic. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

The Network Lifecycle Optimize Phase

Optimizing the network is a continuous process. Its purpose is to improve network performance and reliability by identifying and resolving potential network problems before they happen. The Cisco Security Device Manager (SDM) is an example of one utility used for keeping the network optimized. Optimizing the network ensures that the business goals and requirements of the company are maintained.

Common network problems that could be discovered in the Optimize phase include the following:

- Feature incompatibilities
- Insufficient link capacity
- Device performance problems when multiple features are enabled
- Scalability of protocols

As business goals change, the technology strategy and operations may not adapt. At some point, a redesign may be required and the PPDIOO cycle starts again.

Interactive Activity 2-3: Match the Appropriate Action to the Lifecycle Phase (2.1.7)

In this interactive activity, you determine if an action is part of the Prepare, Plan, Design, Implement, Operate, or Optimize phase of the network lifecycle. Use file ia-217 on the CD-ROM that accompanies this book to perform this interactive activity.
Explaining the Sales Process

The documentation generated each time a project is designed must be complete and accurate. To this end, the network designer must understand the process from start to finish on how to create a response document and submit it for client approval. The response document begins with a customer’s RFP or RFQ.

Respond to a Customer Request for a Proposal or Quote

When a business or organization decides to upgrade or replace their existing network, they usually generate a Request for Proposal (RFP) or a Request for Quote (RFQ). In the PPDIOO model, this occurs at the end of the Prepare phase. RFPs and RFQs include specifications that define the format and content of the expected responses from the potential contractors. It is critical for contractors to follow the instructions contained within the document as accurately as possible. Not following the directions or missing sections of the request could mean that the project is awarded to another contractor.

In addition to the response format and content, RFPs and RFQs contain schedules that must be followed. The company that sent out the RFP may reject a late response.

Each section of the response document should be as detailed as possible. Unless otherwise indicated, the section numbers of the response document should correspond with the section numbers of the request. The response should be written with the target audience in mind. Technical terms and concepts need to be explained where necessary.

To ensure that the response document is easy to read, a table of contents is used to organize the material. An introductory letter is included to introduce the material.

Response Document

The response document comprises the following elements:

- **Cover Letter**: Document prepared on the company letterhead that includes the following:
 - All relevant contact information for the company, including the following:
 - Name of main contact person for the project and other appropriate staff
 - Phone numbers and fax numbers for company and personnel listed
 - A brief, concise summary of the proposed project

- **Executive Summary**: Section that includes the following:
 - Definition of the problem or requirements of the customer
 - Recommended solution and its value or benefit to the customer
 - Reason why your company is the right one to do the job

- **Proposed Solution**: Section that includes, but is not limited to, the following:
 - Detailed descriptions of solution
 - Project management team and timeline (with explicit tasks and dates if possible)
 - Cutover or turnover schedule
 - Onsite or remote support details relating to type of support and time period available
 - Warranty or defective parts information identifying the following:
 - What items are covered
Length of coverage
Procedure for repair or replacement
Timeline for response
Repair commitment for problems identified
- Description of what is considered a major or minor problem
- Emergency installations or responses if a disaster happens
- Responsibilities of company relating to any interaction required relating to ISP or service level agreement with the ISP
- Environmental or facility upgrade requirements and who is responsible
- Any terms and conditions for damage by company, equipment or personnel to customer’s site

Proposed Cost: Section with budget details that may include, but are not limited to, the following:
- Software and application components
- Hardware components and interfaces
- Licensing required
- Fees or permit costs
- Training charges
- Warranty, maintenance, and support costs
- Labor cost per hour or flat fees related to staff working on project
- Travel expenses if applicable
- Telecommunication service provider charges for changes and upgrades
- Specific tools or equipment required to complete the job
- Removal or disposal costs if applicable
- Costs related to equipment rental such as forklifts needed for implementation
- Electrician charges
- Methods of payments including leasing options if appropriate
- Final payment method after acceptance

Signature Page: Section of proposal that is signed by customer representative with authority to accept the project.

Appendixes: Section with additional information supporting proposal, which may include the following:
- Detailed lists of equipment and services
- Diagrams and forms related to equipment and services list
- Background company information, which may include items such as the following:
 - Size of the company as it relates to total number of employees and revenues earned
 - Services and products the company provides
Reference list of previous customers for projects similar to the current RFP

Brief biographies of employees that will be working on the project including their education and certifications

The insurance and liability coverage of the company relating to projects

Identification of outside vendors if the company plans to use subcontractors as part of the service and product structure

Attend a Prebid Meeting

Prior to the deadline for submitting RFP responses, the customer may schedule an informational meeting. This meeting may be referred to as a prebid meeting or presubmittal conference. The purpose of the meeting is to provide the following:

- An opportunity to review the project scope with the customer
- Additional information and documentation identified but not included in the original RFP
- Clarification of formatting and project timeline details not included in the original RFP

The meeting enables the contractor to get an estimate of the number of other companies that are interested in submitting a bid on the project. If a prebid meeting is not scheduled, the information or documentation can be requested by contacting the appropriate personnel identified in the RFP.

Explain the Request for a Proposal

Businesses usually send a copy of the RFP to contractors. Occasionally the RFPs may be posted on the business website. Responses to an RFP help the customer compare services, products, pricing, and support offered by the different contractors.

Typically an RFP for a network project includes the following:

- Business goals for the project
- Anticipated project scope
- Information on the existing network and applications
- Requirements for the new network
- Business, technical, or environmental constraints
- Preliminary schedule with milestones and deliverables
- Legal contractual terms and conditions

Figure 2-2 illustrates the formatting requirements for an RFP. When responding to an RFP, it is important that every item listed on the RFP is answered. The company that sent out the RFP may reject an incomplete proposal.
Explain the Request for Quote

Businesses use an RFQ instead of an RFP when the technical specifications of the project are already known. If a business has a skilled networking support staff, the staff can write an RFQ to obtain the costs for the necessary services and equipment. An RFQ is usually much simpler to respond to than an RFP, because the costs associated with an RFQ can easily be obtained or estimated.

An RFQ can vary in content but will generally have three main parts. Like an RFP, the RFQ response may have formatting requirements. Proposal deadlines may be strictly enforced.

The main parts of an RFQ are as follows:

- **Organizational Overview**: This section of an RFQ contains background information on the company issuing the RFQ. It provides some insight into what type of business the RFQ is for.

- **Required Deliverables**: This section of an RFQ describes what the end product of the project must be—for example, the company issuing the RFQ is looking for a company to install an 1841 router or similar device. The deliverables section would include the device type and the scripting that may be required (VLANs and so on).

- **Assumptions/Agreements**: This section describes the terms of the project, such as project budget, submission date, the types of support the company will provide to the contractor, the process used to approve services and materials, and so on. By submitting a response to an RFQ, the contractor or designer agrees to the terms in this section.

The same guidelines used to respond to an RFP should be followed when responding to an RFQ. Follow all directions precisely and submit the response before the deadline to ensure that it is considered.
Interactive Activity 2-4: Identify Sections and Components in an RFQ (2.2.4)

In this interactive activity, you drag the characteristics on the right to the matching part of an RFQ. Use file ia-224 on the CD-ROM that accompanies this book to perform this interactive activity.

Explain the Role of the Account Manager

When the NetworkingCompany receives the RFP from the StadiumCompany, the task of responding to it is assigned to an account manager. NetworkingCompany account managers are responsible for maintaining a continuing relationship between the company and its customers. This relationship begins when an account manager first contacts a potential customer. It continues throughout all phases of the PPDIOO network lifecycle. Business customers rely on the knowledge and expertise of their account manager to help them determine network requirements. Gaining and keeping a customer's trust is critical to an account manager's success. The account manager assigned to the stadium account is responsible for ensuring a good business relationship between the StadiumCompany and the NetworkingCompany.

Communications Channel

The account manager serves as the primary NetworkingCompany contact for stadium management personnel. A good account manager needs excellent interpersonal skills and a thorough knowledge of the customer's business. The account manager communicates with the stadium management through face-to-face meetings, phone calls, e-mail, or a combination of more than one method, depending on the customer's preferences.

Account Manager Responsibilities

In some companies, account managers are responsible for contacting all customers and potential customers within a geographic area or territory. Other companies assign account managers to accounts based on the customer's type of business. Although specific duties may vary from position to position, most account managers are responsible for the following:

■ Meeting their assigned sales and revenue goals
■ Communicating information about new products or technologies to customers and potential customers
■ Directing local sales, service, and support teams
■ Planning and budgeting for sales and support projects
■ Responding to customer requests for proposals, demonstrations, quotations, and information
■ Negotiating and maintaining sales or service contracts

At the NetworkingCompany, account managers are required to take sales and customer management training, in addition to demonstrating basic networking skills.

Explain the Role of the Presales Systems Engineer

The NetworkingCompany employs both presales and postsales technical staff to assist the account manager in providing support for their customers.

Presales systems engineers (sometimes called presales technical support engineers) help the account manager and the customer to determine the need for upgrades or additions to the customer's network. Account managers rely on the technical expertise of the presales systems engineers to ensure that any
new equipment and services are appropriate for the customer’s network needs. In the Plan and Design phases of the PPDIOO lifecycle, presales systems engineers provide assistance to determine the technical requirements and feasibility of proposed network changes. These engineers, as well as network technicians who work with them, are responsible for the following:

- Evaluating the customer’s current network
- Determining if a network upgrade or addition can meet the technical requirements
- Ensuring that the proposed changes can be integrated into the existing customer network
- Testing and evaluating proposed solutions

The presales systems engineer assists the network designer in identifying problems with the existing network or possible problems that changes to the network may cause. Early identification and problem resolution is pivotal to a successful network upgrade or installation. The presales systems engineer plays a vital role in creating an accurate response document to an RFP.

Training requirements for presales systems engineers include network design courses, as well as network technology courses. Many presales systems engineers are required to obtain network design certifications. An example of such certification is the Cisco Certified Design Associate (CCDA).

Explain the Role of the Network Designer

A network designer needs a thorough understanding of the capabilities of all types of networking technologies and equipment. These skills enable the designer to provide customers with a network design that meets the customer requirements for scalability, availability, security, and manageability. The designer is involved in the Plan and Design phases of the PPDIOO network lifecycle. In some smaller companies, a presales systems engineer may also perform the role of network designer. In larger companies, there may be a team of network designers working on a single project. In this course, a single network designer will be used.

A good network designer takes the time to learn about the customer’s business, in addition to the customer’s network requirements. This helps the designer anticipate changes that might occur as the business grows and succeeds. A designer is responsible for the following:

- Analyzing customer goals and constraints in order to determine the technical requirements for the new design
- Evaluating the current installed network
- Selecting the technologies and equipment capabilities to meet the defined network requirements
- Diagramming the placement and interconnection of various network devices and services
- Designing and supervising proof-of-concept testing
- Assisting the account manager in preparing presentations to the customer

At the NetworkingCompany, the design staff is made up of highly skilled network professionals. The network designer must stay up to date about technologies, as well as new design-recommended practices. The designer is required to obtain network design certifications, in addition to technical networking professional certifications.

The designer assigned to the stadium upgrade is a Cisco Certified Design Professional (CCDP). By obtaining this advanced certification, the designer has demonstrated the competencies necessary to design a complex network for the stadium company.
Explain the Role of the Postsales Field Engineer

During the Implementation, Operation, and Optimize phases of the PPDIOO network lifecycle, the postsales field engineer (sometimes called the postsales technical support engineer) takes over the technical support responsibility from the presales staff. It is usually a postsales field engineer who is responsible for the smooth installation of new network equipment. Postsales field engineers work with the customers to ensure that the network upgrade functions as designed.

Responsibilities of the postsales field engineer include the following:

- Provide installation assistance and acceptance testing.
- Support and organize troubleshooting of components or systems.
- Resolve technical problems the customer may encounter.
- Provide customer training and assistance with managing and configuring devices.

The postsales field engineer helps develop recommended changes to the network design throughout the PPDIOO lifecycle.

Training requirements for postsales field engineers include basic and advanced networking technology courses. Some technologies, like IP voice, require the postsales field engineer to take additional advanced training courses. A Cisco Certified Network Associate (CCNA) certification is considered a minimum requirement for most postsales field engineer positions.

Interactive Activity 2-5: Identify the Appropriate Activity Area (2.2.8)

In this interactive activity, you drag the appropriate position to match its activity. Use file ia-228 on the CD-ROM that accompanies this book to perform this interactive activity.

Preparing for the Design Process

The network designer must work effectively with the client to ensure the successful deployment of a proposed design. Interaction between designer and client is instrumental in creating a design that meets the needs of the client and users of the network. After the users are identified, the network designer can tailor the design to ensure that it meets the business goals of the organization as a whole.

Working with the Customer

In designing the new network for the stadium, the NetworkingCompany interacts with personnel from the stadium offices. When the network designer and staff meet with the stadium personnel, it is important that they behave in a professional manner.

The Importance of Interpersonal Skills

Good interpersonal skills are critical when interacting with customers. A calm and courteous manner instills confidence in customers. The customer believes that the NetworkingCompany designer and staff can perform the necessary tasks.
The following skills are essential when working with clients:

- Listening and accurately summarizing information
- Corresponding with clients in a style, format, and level of detail appropriate for the intended audience
- Presenting well-organized technical material in a logical fashion

The ability to develop a good rapport with a client is crucial. Establishing a trusted business relationship eliminates many potential problems and contributes enormously to the success of the project for both companies. The following is a checklist of good interpersonal skills:

- Positive attitude
- Good communication skills
- Courteous
- Flexible
- Trustworthy
- Teamwork-oriented
- Self-directed
- Disciplined
- Motivated

Defining the Customer

To create a comprehensive plan, the network designer needs to understand how the network users interact with the network resources and services. The designer gathers information about all internal and external access to the existing network infrastructure. Without full knowledge of who has access to the network, the designer may overlook some user requirements. As a result, the designer may present a design that is incomplete. Failure to submit an adequate design generates delays and increased costs.

Identifying Relevant Information

When gathering information on the infrastructure, the designer works with stadium personnel to identify all user groups. The customer’s organizational chart is one of many components the designer must acquire. It is important to look beyond the organizational chart to determine all the end users and stakeholders who access the customer network.

The stadium management identifies the following potential end users:

- Branch and field office staff
- Remote workers
- Sales and support personnel working offsite
- Vendors, suppliers, and partners
- Board members
- Consultants and contractors
- Customers
Adding User Access
The designer also needs to assess the impact of adding new user groups to the network. Some end-user groups that currently do not have network access may need access to new stadium network resources in the future. Figure 2-3 illustrates the different users that may need access to the stadium network.

The designer works with stadium management to identify the following:

■ New user groups
■ The type of access required
■ Where access is allowed
■ The overall impact on security

Including this information in the Plan and Prepare phases helps to ensure an accurate and successful new design.

Figure 2-3 Stadium Customers

Lab 2-3: Creating a Network Organization Structure (2.3.2)
In this lab, you will create a network organization structure of the FilmCompany. Include all stakeholders in the structure—internal network users, IT organizations, external customers, suppliers, and partners. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

Identifying Business Goals and Priorities
The goal of every business is to be successful. Before beginning any network project, business managers analyze the feasibility of the project based on how it contributes to business success. They must consider the following:

■ **Profitability**: Can the project reduce costs or help the business avoid costs in the future?

■ **Business growth and market share**: Can the project help the business grow more efficiently or create competitive advantages?

■ **Customer satisfaction**: Can the project improve the customer experience and increase customer loyalty?
This feasibility analysis enables the business managers to put together a list of high-level goals for the network project. The network designer notes these goals and records any issues or concerns that are mentioned.

Prioritizing Goals

In consultation with the stadium management, the designer prioritizes the business goals. The priorities are based on which goals present the best opportunities to contribute to the success of the business. For example, the relative importance of each goal can be rated as a percentage of the overall total of 100.

After the NetworkingCompany obtains the list of the prioritized business goals as illustrated in Figure 2-4, the Plan phase begins.

Figure 2-4 Prioritizing Business Goals

<table>
<thead>
<tr>
<th>Prioritizing Business Goals</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide better atmosphere and safety for people attending events.</td>
<td>30%</td>
</tr>
<tr>
<td>Reduce costs by consolidating the separate voice, video and data networks.</td>
<td>25%</td>
</tr>
<tr>
<td>Provide better customer service by improving the access to the web site for viewing of schedules, purchasing and printing of tickets, and purchasing of merchandise.</td>
<td>25%</td>
</tr>
<tr>
<td>Support the growth of the stadium company as it expands and adds new types of entertainment, new partners and vendors.</td>
<td>20%</td>
</tr>
</tbody>
</table>

| Total | 100% |

Lab 2-4: Prioritizing Business Goals (2.3.3)

In this lab, you will ensure that the information gathered is accurate and create a checklist of the business goals of the FilmCompany. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

Identifying Technical Requirements and Constraints

Network designers prioritize the business goals of an organization in an effort to ensure success of the network they design. The next element of the network design includes the technical requirements and the constraints that may require a change in the design. The designer must be able to adapt the design in a manner that meets both the business goals and the technical requirements of the client.

Defining Technical Requirements

After obtaining the prioritized business goals, the network designer determines the network functionality needed to meet each goal. The designer lists the business goals that must be met by the new design and then decides what is required technically to implement each change. Figure 2-5 illustrates an example of common business goals.
A business goal that must be met by the new design:
Reduce costs by consolidating the separate voice, video, and data networks.

Changes in network functionality that are necessary for the business to meet the goal:
- Improve scalability
- Provide high availability and Quality of Service
- Increase security
- Simplify management

Technical requirements to implement each change:
- Create hierarchical network for scalability and reliability.
- Mark and classify traffic to provide QoS.
- Create redundant paths to ensure availability.
- Add stateful firewalls and intrusion prevention.
- Filter traffic at appropriate locations.
- Create a management network and install management software.

Determining the technical requirements enables the designer to establish the scope of the project. These requirements drive the selection of technologies, equipment, and management software.

Technical requirements include, but are not limited to, the following:
- Improving network scalability
- Increasing network availability and performance
- Enhancing network security
- Simplifying network management and support

The network designer maintains this list and can modify it if changes to the proposed design are identified during the design process.

The network designer works with the customer to create a prioritized list of technical requirements, such as the one for the Stadium case study diagrammed in Table 2-1. This project list defines the project scope.
Table 2-1 Stadium Technical Requirements

<table>
<thead>
<tr>
<th>Prioritizing Technical Requirements</th>
<th>Criteria</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase availability and performance</td>
<td>Support 24x7 network availability for web-enabled applications</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Support 24x7 network availability for security applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support 24x7 network availability for the telephone system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve transaction-processing time to less than 3 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide high-quality voice and streaming video</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guarantee quality of service</td>
<td></td>
</tr>
<tr>
<td>Improve security</td>
<td>Improve security with the addition of filtering, firewalls, and IDS</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Centralize servers and management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide wireless security</td>
<td></td>
</tr>
<tr>
<td>Improve network scalability</td>
<td>Support 50% growth of the proposed network in number of users and sites within the next two years</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Support 75% growth of the proposed network in wireless coverage area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support 75% growth of the proposed network in e-commerce traffic</td>
<td></td>
</tr>
<tr>
<td>Simplify network management</td>
<td>Maintain the new network with existing personnel</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Provide reporting and management tools</td>
<td></td>
</tr>
</tbody>
</table>

This information provides direction for the following decisions:

- Selecting network equipment
- Choosing protocols
- Designing network services

When discussing technical requirements with the customer, the designer considers the technical level of the audience. The customer may not clearly understand technical terms and jargon. Such terms should either be avoided or tailored to the level of detail and complexity that the customer can understand.

The StadiumCompany case study (see Appendix B) contains a more detailed description of the technical requirements for the Stadium network design.

Lab 2-5: Establishing Technical Requirements (2.4.1)

In this lab, you will use the FilmCompany business goals to create and prioritize the technical requirements for the network. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.
Identifying Constraints

Every company wants to have the most advanced and efficient network available. In reality, various business constraints affect network design. Common constraints include the following:

- **Budget**: Limited resources may require some compromises in design due to the costs of equipment, software, or other components.
- **Company policies**: The design must take into account the customer’s existing policies regarding protocols, standards, vendors, and applications.
- **Scheduling**: The project time frame should be aligned with the customer schedules.
- **Personnel**: The availability of trained personnel at the implementation and operation phases might be a design consideration.

Constraints can and do affect network design and should be identified early in the PPDIOO lifecycle process. The relative importance of the constraints varies from project to project. Budget constraints are not always the main consideration for a large project.

For the stadium network project, the stadium management does not want the implementation to be scheduled during their sports season.

Lab 2-6: Identifying Organizational Constraints (2.4.2)

In this lab, you will identify the constraints for the FilmCompany network design. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

Identifying Manageability Design Considerations

The creation of a network design requires that the network be manageable. The network designer must consider the business goals and technical requirements in the design of the network to ensure that it meets the client’s needs. Upon identification of these requirements, the designer must ensure that even with trade-offs, the network is easy to manage and maintain. The approach used is extremely important as maintenance and monitoring become a daily occurrence in a production environment.

Using the Top-Down or Bottom-Up Approach

There are two common approaches for network design:

- **Top-Down**: The top-down approach adapts the network infrastructure to the needs of the organization. Top-down design clarifies the design goals and initiates the design from the perspective of the required applications and network solutions, such as IP telephony, content networking, and video conferencing. The PPDIOO methodology uses the top-down approach.
- **Bottom-Up**: A common approach—but one that is not recommended—is the bottom-up design. In this approach, the network designer selects network devices and technologies based on previous experience rather than from an understanding of the organization. Because this approach does not include information on the business goals, the proposed network design may not be able to support the required applications.

Table 2-2 compares these two design approaches.
Table 2-2 Comparison of Two Design Approaches

<table>
<thead>
<tr>
<th></th>
<th>Top-Down Approach</th>
<th>Bottom-Up Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Incorporates organizational</td>
<td>Allows a quick response to a design</td>
</tr>
<tr>
<td></td>
<td>requirements</td>
<td>request</td>
</tr>
<tr>
<td></td>
<td>Gives the big picture to</td>
<td>Facilitates design based on previous</td>
</tr>
<tr>
<td></td>
<td>organization and designer</td>
<td>experience</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Requires more time up front before</td>
<td>Implements solution with little or no</td>
</tr>
<tr>
<td></td>
<td>creating network design</td>
<td>notion of actual organizational</td>
</tr>
<tr>
<td></td>
<td>Is not an approach that is familiar</td>
<td>requirements</td>
</tr>
<tr>
<td></td>
<td>to many network designers</td>
<td>May result in inappropriate network</td>
</tr>
</tbody>
</table>

Monitoring Network Operations

After implementation, it is important to ensure that the network design specifications are met. The stadium network personnel monitor and manage the performance of the network. Network management includes the following functions:

- Managing configuration changes to the network
- Identifying network faults
- Monitoring performance levels
- Providing security and accounting management for individual and group usage of the network

A typical network management architecture consists of the following elements:

- **Network Management System (NMS):** A system that uses an application to monitor and control managed network devices, such as CiscoWorks
- **Network Management Protocol:** A protocol that facilitates the exchange of information between network devices and the NMS, such as the Simple Network Management Protocol version 3 (SNMPv3)
- **Managed Devices:** Network devices that are managed by an NMS, such as a router or switch
- **Management Agents:** Software on managed devices that collect and store network management information
- **Management Information:** Data collected by the NMS

Figure 2-6 illustrates locations where network monitoring operations may occur.
CiscoWorks LAN Management Solution (LMS) (see Figure 2-7) is a suite of powerful management tools that simplify the configuration, administration, monitoring, and troubleshooting of Cisco networks. It integrates these capabilities into a best-in-class solution that provides the following benefits:

- Improves the accuracy and efficiency of the network operations staff
- Increases the overall availability of the network by simplifying configuration and quickly identifying and fixing network problems
- Maximizes network security through integration with access control services and audit of network-level changes
Lab 2-7: Monitoring Network Performance (2.5.2)

In this lab, you will use a software program to monitor network performance. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

Using Tools for Network Monitoring

SNMP is the most common network management protocol to use. The protocol enables network administrators to gather data about the network and corresponding devices. SNMP management system software is available in tools such as CiscoWorks. SNMP management agent software is often embedded in operating systems on servers, routers, and switches.

As illustrated in Figure 2-8, SNMP has four main components:

- **Management station**: A computer, with the SNMP management application loaded, which is used by the administrator to monitor and configure the network.
- **Management agents**: Software installed on network devices managed by SNMP.
- **Management Information Base (MIB)**: A standardized database that a device keeps about itself concerning network performance parameters.
- **Network management protocol**: The communication protocol used between the management station and the management agents.
As part of a network management system, SNMP tools can respond to network errors or failures in several ways. Generally, when a network fault occurs, or when predefined thresholds are met, the SNMP tools can react by sending any of the following:

- An alert on the network
- A message to a pager
- An e-mail to an administrator

Because stadium management may want to offer service level agreements to their vendors, they need to purchase network management software.

Lab 2-8: Investigating Network Monitoring Software (2.5.3)

In this lab, you will investigate the capabilities and reports available in network monitoring software. Refer to the hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.
Summary

Cisco Lifecycle Services is a six-phase approach to deploying and operating Cisco technologies.

The six phases of the network lifecycle are as follows:

- Prepare
- Plan
- Design
- Implement
- Operate
- Optimize

In the Prepare phase, the business goals of the project are identified and a business case is created to justify the installation of the network upgrade.

During the Plan phase, the network designer performs a comprehensive site and operations assessment of the current network.

A project plan is created that includes the tasks, timelines, risks, responsibilities, and the resources required to complete the network design project.

In the Design phase, the designer creates a flexible design that can integrate new technologies into the current operations and existing network infrastructure.

During the Implement phase, the network is built according to the approved design specifications and tested to ensure that it meets the business goals and requirements.

The Operate and Optimize phases of the network lifecycle are ongoing and represent the day-to-day operations of the network.

Optimizing a network is a continuous process that identifies and resolves potential weaknesses before they become problems for network operations.

Requests for Proposal (RFP) and Requests for Quote (RFQ) solicit proposals from networking contractors to provide design services, equipment, installation, and support. RFPs and RFQs provide information as to a company’s business goals and requirements for new technologies and outline the process to follow to submit a proposal.

Following the required format and schedule is critical to submitting a successful proposal to provide network services.

A team of individuals from the networking contractor responds to the customer’s request. This team includes an account manager, system engineers, network designers, and postsale field engineers.

Account managers serve as the primary point of contact between their customers and the networking contractor.

Presales system engineers are responsible for assisting the account manager to determine the need for upgrades or additions to the current network. They assist the network designers to ensure that the new equipment and services can integrate into the existing network.

Network designers provide customers with a network design that meets the customer requirements for scalability, availability, security, and manageability.

Postsales field engineers are responsible for the smooth installation of the network upgrade and ensure that the network functions as designed.
All members of the networking contractor staff must demonstrate effective interpersonal skills to instill confidence in their abilities to provide the necessary network services.

Factors that limit the ability of the business to incorporate new technology include the amount of the budget, policies, schedules, and the availability of qualified personnel.

Constraints can and do affect the network design and need to be considered early in the design process. Top-down network design strategies have the best chance to succeed because the designers take into account the business goals of the customer before selecting technology solutions.

Bottom-up design strategies start with the selection of equipment and technologies, and then determine how to incorporate them into the network.

A primary technical requirement for any network is the availability of qualified support personnel. To simplify ongoing network operations, network monitoring and management software should be part of network design.

Interactive Activity 2-6: Business Goals/Constraints Practice Scenario (2.6.2)
In this critical thinking interactive activity, you will answer a series of questions about business goals and constraints based on the provided scenario. Use file ia-262 on the CD-ROM that accompanies this book to perform this interactive activity.

Chapter Activities and Labs Summary

Interactive Activities on the CD:
Activity 2-1: Identify the Aspects of the PPDIOO Network Lifecycle Phases (2.1.4)
Activity 2-2: Matching Terms to Definitions (2.1.5)
Activity 2-3: Match the Appropriate Action to the Lifecycle Phase (2.1.7)
Activity 2-4: Identify Sections and Components in an RFQ (2.2.4)
Activity 2-5: Identify the Appropriate Activity Area (2.2.8)
Activity 2-6: Business Goals/Constraints Practice Scenario (2.6.2)

Hands-on Labs in Part II of this book:
Lab 2-1: Creating a Project Plan (2.1.3)
Lab 2-2: Observing Traffic Using Cisco Network Assistant (2.1.6)
Lab 2-3: Creating a Network Organization Structure (2.3.2)
Lab 2-4: Prioritizing Business Goals (2.3.3)
Lab 2-5: Establishing Technical Requirements (2.4.1)
Lab 2-6: Identifying Organizational Constraints (2.4.2)
Lab 2-7: Monitoring Network Performance (2.5.2)
Lab 2-8: Investigating Network Monitoring Software (2.5.3)
Check Your Understanding

Complete all the review questions listed here to check your understanding of the topics and concepts in this chapter. Answers are listed in Appendix A, “Check Your Understanding and Challenge Questions Answer Key.”

1. Cisco Lifecycle Services consists of how many phases?
 A. 4
 B. 5
 C. 6
 D. 7

2. During what phase of the PPDIOO is the network built according to the design specifications?
 A. Prepare
 B. Plan
 C. Design
 D. Implement

3. During the Implement phase, what is the practice of verifying that a network meets the business goals and design requirements of a business called?
 A. System verification testing
 B. System-level acceptance testing
 C. Security system testing
 D. None of the above

4. When monitoring network performance over a certain period of time to create a point of reference for future network evaluations, you are creating what?
 A. Network baseline
 B. Network data path
 C. Network security policy
 D. Network operating procedure

5. What are common network problems that could be discovered in the Optimize phase? (Select all that apply.)
 A. Feature incompatibilities
 B. Insufficient link capacity
 C. Device performance problems
 D. Scalability of protocols

6. Which page of a response to an RFP includes insurance and liability coverage of the company that will be designing the network?
 A. Cover letter
 B. Executive summary
 C. Appendixes
 D. Proposed cost
7. What are the main parts to an RFQ?
A. Organizational overview
B. Required deliverables
C. Assumptions and agreements
D. All of the above

8. On a network design team, which member communicates with the customer through face-to-face meetings, phone calls, e-mail, or a combination of more than one method?
A. Presales systems engineer
B. Account manager
C. Network designer
D. Postsales field engineer

9. Business managers analyze the feasibility of a project based on how it contributes to business success. They do this by rating the business goals as what percentage of the overall total?
A. 100%
B. 80%
C. 75%
D. None of the above

10. What are examples of common constraints that affect network design?

Challenge Question and Activities

These questions are more challenging and require you to bring together knowledge from various parts of the chapter. Answer all questions in this part. Answers are listed in Appendix A.

The XYZ Insurance Company has 350 agent offices around the United States. Each agent office has a Frame Relay link to corporate headquarters. Because of corporate policy, the bandwidth of the agent links is determined by and paid for by the agents working in the offices. The agents use the network connection primarily to access various database systems at headquarters and also for e-mail and Internet access.

XYZ has budgeted $5 million to upgrade their outdated network infrastructure at headquarters to a fully redundant Gigabit and Fast Ethernet LAN. The management believes the upgrade will reduce long-term network costs and improve the scalability, availability, security, and manageability of the LAN infrastructure. The company is starting a recruiting effort that it hopes will result in the addition of 200 new agent offices in the next three years. The company needs higher capacity to meet the potential demand of the new agents. The project must be completed in three months because of the anticipated demands of a new e-commerce system, which will increase revenue, and a new customer service system, which will improve customer satisfaction.

The existing LAN equipment is from another vendor, although the WAN infrastructure is a complete Cisco solution. The company wants the LAN to be a complete Cisco solution as well, in part because they hope to save costs of operating the LAN with a single vendor solution. The company outsources its IT staff. The Cisco WAN is managed remotely. The IT staff who work onsite have limited training.
in Cisco networking. The company’s website is also outsourced. Even though the management is outsourced, the servers are located at headquarters and connect directly to the LAN because of XYZ company’s policy, which is that all company data must be physically stored in company facilities. The insurance database systems use Oracle on Unix servers with custom-developed client software. The e-mail system is based on Eudora e-mail client software.

1. Which business goals of XYZ Insurance apply to this network design project? (Choose two.)
 A. Increased customer satisfaction from the new customer service system
 B. Equipment vendor selection
 C. Increased performance from Gigabit Ethernet
 D. Increased scalability of database systems
 E. Reduced costs from managing the LAN

2. Which of the following items are business constraints imposed by the XYZ Insurance company on this new network design project? (Choose two.)
 A. A high-performance LAN
 B. Existing non-Cisco LAN
 C. Outsourced IT staff
 D. The Eudora e-mail system
 E. $5 million budget

3. Which of the following are technical requirements of XYZ Insurance with regards to this network design project? (Choose two.)
 A. Increased usage of the Oracle databases
 B. Increased availability and performance of the new network
 C. A simplified, manageable network design
 D. Increased profitability due to reduced costs
 E. Increased customer satisfaction

4. Which constraint imposed by XYZ Insurance on this network design project affects the ability of the design to meet the technical requirements?
 A. Reliability of the Eudora e-mail system
 B. $5 million budget
 C. Experience of the IT staff
 D. Three months completion date
 E. Transition from outdated infrastructure to Gigabit Ethernet
NUMERICS

2960 switches, 159
3DES (Triple DES), 259

A

accept-lifetime command, 192
access
 employee, 37
 multi-access WANs, 250
 open guest, 37
 remote, WANs, 40
 remote-access VPNs, 259
 users, adding, 65
 WPA, 37
access control lists. See ACLs
access layer, 3
 design, 22, 25-30
 topologies, designing, 158-160
access points. See APs
account managers, role of, 61
ACLs (access control lists), 120
 implementing, 175
 testing, 231
 traffic, filtering at distribution layers, 19-21
Active Directory Services, 126
Adaptive Security Appliances (ASA) devices, 260
adding
 hashes to messages, 260
 modules. See also scalability, 6
 user access, 65
 services, 6
 WAN connections, 164-165
 wireless network coverage, 168
addressing
 blocks
 assigning, 195-197
 determining, 189-190
 IP. See also IP addressing
 formatting, 200-202
 implementing on Cisco devices, 202-204
 migrating, 202
 prefix and summarization, 187
 reserved, 202
 schemes, 182-183
administrative distance, 240, 252
AES (Advanced Encryption Standard), 259
agents
 call, 133
 management, 70
aggregate links, 11
agreements, SMARTnet, 280-281
AH (Authentication Header), 261
algorithms
 data integrity, 260
 encryption, 260
alternate paths, 228
analysis, 55. See also planning
 existing networks, 7
 requirements, 150-158
 traffic, 116
analyzers, protocol, 216
antennas, types of, 99
appliances, security, 173-174
applications
 documentation, 106, 139
 external traffic diagrams, 143-144
 internal traffic diagrams, 140-141
 remote site traffic diagrams, 142-143
 traffic flow, 139-140
 existing, 279
 NBAR, 116
 networks, 114
 characterization, 115-116
 hardware, 117-118
 Microsoft domain services, 125-127
 performance, 114
 QoS, 27, 127-131
 traffic flow, 116-117
 types, 118-127
SAS (Software Application Support) services, 282
 servers, 133
 support, defining, 165-166
 transaction-processing, 119-121
 WAN connectivity, 239
applying
 ACLs, 20-21
 Feature Navigator, 91-92
 integrated services, 174
 show version command, 89-90
 top-down or bottom-up approach, 69
 VLSM, 185
 wireless site surveys, 100-101
approval, customer, 272-273
APs (access points)
 wireless, locating, 170-171
 wireless site surveys, 98
architecture
 Cisco Enterprise Network Architectures, 5-6, 85
 hierarchical network design, 3, 5-6
 logical diagrams, 82-84
 network design methodologies, 6-7, 9
arp, 216
ASA (Adaptive Security Appliances) devices, 260
 assembling existing proposal information, 270-271
 assessment of business case, 50
assigning address blocks, 195-197
ATM (Asynchronous Transfer Mode) networks, 40
atomic transactions, 119
attacks, 32, 173. See also security
auditing networks, 116
authentication, 192
Authentication Header (AH), 261
autogeneration of QoS policies, 130
automatic summarization, disabling, 185
AutoQoS, 130
availability, 51, 183
2960 switches, 159
access layers, 24
applications, 114
Distribution layer, 160
documenting, 105
Frame Relay connections, 244
networks, 3
requirements for, 153-155
server farms, 33, 227, 230
wireless networks, 170

backbones
networks, 9
background of FilmCompany, 310-311
backups
links
 configuring, 252-253
 WANs, 42-43
paths, 228
backward-explicit congestion notification (FECN), 248
bandwidth
commands, 240
cost of, 39
file transfers, 123
limitations of, 224
baselines
networks, 56
server farms, 227
BECN (backward-explicit congestion notification), 248
behavioral questions, 290
benefits
 of prototyping, 214
 of SMARTnet agreements, 280
best practices, WLAN access, 37-38
bill-of-materials (BOM), creating, 276-279
bits, DE, 247
blocks
addresses
 assigning, 195-197
 determining, 189-190
switches, 17, 160
BOM (bill-of-materials), creating, 276-279
boot process, 93
bottlenecks, 217
bottom-up approach, 69
BPDU (bridge protocol data unit), 228
branch workers, 39-43
bridge protocol data unit. See BPDU
building prototype networks, 212-213
business applications, 279
business case, 50
business goals, 7
 analyzing, 150-152
 defining technical requirements, 66-69
 documenting, 104-106
 identifying, 65-66
business growth, 65
cables
 applications, 118
crossover, 240
V.35, serial connectivity simulation, 241-242
call agents, 133
campus networks
 Cisco Enterprise Architectures, 5
campus network prototypes, 211-213
 creating test plans, 213
 identifying design weaknesses, 217-218
 redundancy and resiliency, 216
 validating devices, 215-216
 verifying goals and requirements, 214-215
careers, 289-291. See also interviews
case studies, Cisco Lifecycle Services, 51
catalogs, 119
CCNP (Cisco Certified Networking Professional), 289
 preparing for exams, 291
cell-switched networks, 40
centralized servers, 30
classifier communications, 61
characterization of applications, 115-116
CIDR (Classless InterDomain Routing), 185
 and summarization, 186-187
cipher strings, 259
Cisco Catalyst 2960 switches, upgrading, 279
Cisco Certified Networking Professional (CCNP), 289
 preparing for exams, 291
Cisco devices, implementing IPv6 on, 202-204
Cisco EasyVPN, 258
Cisco Enterprise Network Architectures, 5-6, 85
Cisco Focused Technical Support Services, 281-282
Cisco IOS
commands, 215
file-naming conventions, 90
Cisco Lifecycle Services, 50-51
case studies. See case studies
Design phase, 54-55
Implement phase, 55
Operate phase, 56
Optimize phase, 56
Plan phase, 53
Prepare phase, 52
project plans, 53
Cisco Networking Academy, 289, 291
Cisco SDM interfaces, 258
Cisco switch clustering, 159
Cisco Unified Communications Manager, 122
class of service (CoS), 131
classful subnets, 184-185
classification
QoS, 130-131
traffic, 28
Classless InterDomain Routing. See CIDR
clear frame-relay-inarp command, 252
client-to-client application communication, 115
client-to-distributed server application communication, 115
client-to-enterprise edge application communication, 115
client-to-server farm application communication, 115
clients
e-mail, 124
interaction, 7
network designer, interaction with, 63-66
clock rate command, 241
closets, wiring, 23, 29, 189-190
clusters of devices, 152
co-located servers, 151
commands
accept-lifetime, 192
bandwidth, 240
clear frame-relay-inarp, 252
clock rate, 241
copy, 92
copy flash tftp, 92
copy tftp flash, 92-93
debug, 215
debug frame-relay-lmi, 254-255
dir flash, 93
ip name-server, 203
ip subnet-zero, 196
ipv6 address, 203
ipv6 hostname, 203
ipv6 rip name enable, 204
ipv6 rip RTO enable, 204
ipv6 rip tag enable, 204
ipv6 router rip, 204
ipv6 unicast-routing, 202
maximum-paths, 191
network, 204
no access-list, 20
send-lifetime, 192
show, 81, 214, 215, 250
show cdp neighbors, 214
show cdp neighbors detail, 82, 151
show frame-relay lmi, 251, 254
show frame-relay map, 251
show frame-relay pvc, 253
show frame-relay pvc [interface interface] [dlci], 251
show interfaces serial, 253-254
show interfaces serial, 250
show ip arp, 214
show ipv6 rip, 204
show ipv6 route rip, 204
show tech-support, 81
show version, 89-90
variance, 192
communications
channels, 61
client-to-client, 115
client-to-distributed server, 115
client-to-enterprise edge, 115
client-to-server farm, 115
interpersonal skills, 63-64
complete network replacements, 274
components
bill-of-materials, creating, 276-279
hot-swappable, 13
VPNs, 259-260
concentrators, VPN, 259
concessions
registers, 114
vendors, StadiumCompany network upgrade, 306
configuration
backup links, 252-253
clock rate, 241
Etherchannels, 153
fixed, 159
Frame Relay, 249, 252
interfaces, 240
keys, managing, 192-193
networks
access layer, 22, 25-30
analyzing requirements, 150-158
convergence, 14
core layer, 9-11, 14
design, 2
distribution layer, 14-22
hierarchical, 3, 5-6
methodologies (design), 6-7, 9
overview of design, 2-3
primary links, 253-256
proposals, 283-284
PVRSt+, 228
QoS, 130-131
RIPng, 204-205
WANs, 163-168
wireless networks, 34-38
congestion, control, 248
connections
DLCI, 247
dsl, 95
e1, 244
fiber, limitations of, 224
Frame Relay, 165, 244
ISPs, troubleshooting, 223
monitoring, 248
physical, 87
prototype VPN for remote workers, 261-262
PVC, 250
remote
lab environment simulations, 240-242
prototypes, 239
testing, 239
remote sites, determining, 163-165
RSTP, troubleshooting, 228, 230
security, 174
serial, simulating, 241-242
T1, 244
testing, 214
VPNs. See VPNs
WAN, adding, 164-165

cost
of bandwidth, 39
estimates, 270
network simulation software, 239

counters, Invalid, 254

distribution layer, 160
core layer
design, 9–11, 13-14
topologies, designing, 161

cos (class of service), 131
cost
of bandwidth, 39
estimates, 270
network simulation software, 239

counters, Invalid, 254

coversage options, wireless networks, 168
CPE (customer premises equipment) routers, 244
CQ (custom queuing), 128
CRM (customer relationship management) software, 279
crossover cables, 240
cryptography, 260

current network environment, 270-271
custom queueing (CQ), 128
customer premises equipment (CPE) routers, 244
customer relationship management (CRM) software, 279
customer-caused delays, 275
customers. See also clients
approval, 272-273
defining, 64-65
queries, 119
satisfaction, 65
working with, 63-64
customization of VPN endpoints, 166-167

data centers, 30, 87
Data Encryption Standard (DES), 259
data integrity algorithms, 260
data rates, guaranteed, 247
data-link connection identifier (DLCI), 247
databases
MIB, 72
updating, 119
DCE functions, 241
DE (discard eligible) bits, 247
debug commands, 215
debug frame-relay lmi command, 254-255
debugging, LMI, 254-255
decentralized servers, 30
decryption, 259
defense, 174
defining
application support, 165-166
customers, 64-65
policies and procedures, 56
technical requirements, 66-69
traffic patterns, 165-166
delay, 155
customer-caused, 275
DELETED status, 255
delivery
services, 289
transactions, 119
demarcation points
deterministic networks, 5
demilitarized zones (DMZs), 33
denial-of-service (DoS) attacks, 32, 173
deployment
Cisco Lifecycle Services, 50-56
switch blocks, 17
DES (Data Encryption Standard), 259
description of wiring closets, 189-190
design
documentation, 175-176
enterprise edge, 39-40
FilmCompany, 314
IP addressing, 182

 applying VLSM, 185
 CIDR and summarization, 186-187
 classful subnets and summarization, 184-185
 hierarchical routing and addressing schemes, 182-183
 IPv4 and IPv6, 199-205
naming schemes, 187-198

logical LAN IP addressing schemes, 187-188
naming schemes, 197-198

networks
 access layer, 22-30, 158-160
 analyzing requirements, 150-158
 campus network prototypes, 212-218
 convergence, 14
 core layer, 9-11, 14, 161
distribution layer, 14-22, 160-161
documenting, 102-106
eXisting network characterization, 107-108
goals, 3
hierarchical, 3, 5-6
implementing, 272
logical, 36, 162
managing, 69-71, 73
methodologies, 6-7, 9
overview of, 2-3
physical, 36

placing security functions and appliances, 173-174
security, 173

selecting LAN topologies, 158-162
topologies, 7-9
trade-offs, 157-158
wireless, 168-173
WLANs, 172-173
process, preparing, 63-66
proof-of-concept, 212
proposals, assembling existing information, 270-271
remote worker support, 163-168

stadium networks, implementing, 272-273
VPNs, customizing endpoints, 166-167
WANs, 163-168
wireless networks, 34-38

Design phase, 51-55
designated paths, 228
designating routing strategies, 191-193
detection of threats, 174
deterministic networks, 5
development of implementation plans, 272-273

 maintenance, 276
 selecting installation methods, 273-275
devices
 ASA, 260
 clusters, 152
 DTE, 241
information, obtaining information about, 81-82
IPv6, implementing on, 202-204
LAN prototypes, validating, 222

naming, 197
QoS, 131
SDM, 56
security, 30
server farms, 228-230
show version command, 89-90
StadiumCompany network upgrade, 304
validating, 215-216
VPNs, 259-260
WANs, 245-248

DH (Diffie-Hellman) key agreements, 260
diagrams

 external traffic, 143-144
 internal traffic, 140-141
 networks
 creating, 80-82
 logical architecture, 82-84
 modular block, 85-86
 remote sites, 142-143

diameter, network, 156

Differentiated Services Code Point (DSCP), 131
Diffie-Hellman (DH) key agreements, 260
digital subscriber line (DSL), 95
digits, hexadecimal, 199
dir flash command, 93
disabling
 automatic summarization, 185
 ports, 229
discard eligible (DE) bits, 247
discontiguous networks, 184
distribution

 route summarization and, 193-194
 video, 156
distribution layer, 3
 design, 14-22
topologies, designing, 160-161

DLCI (data-link connection identifier), 247
DMZs (demilitarized zones), 33
DNS (Domain Name System), 8
DNS Services, 126
documentation

 applications, 139
 external traffic diagrams, 143-144
 internal traffic diagrams, 140-141
 remote site traffic diagrams, 142-143
 traffic flow, 139-140
 bill-of-materials, creating, 276-279
design, updating, 175-176
existing networks, 80
 creating diagrams, 80-82
 logical architecture diagrams, 82-84
 modular block diagrams, 85-86
 strengths and weaknesses of, 86-88
 network design, 102-106
 existing network characterization, 107-108

proposals, creating, 283-284
response, 57-58
sale process, 57-63
Domain Name Service. See DNS
domains
large failure, 217
Microsoft network applications, 125-127
DoS (denial-of-service) attacks, 32, 173
downloading Cisco IOS software, 92-93
downtime
planning, 276
reducing, 18-19
DRAM (dynamic random-access memory), 92
DSCP (Differentiated Services Code Point), 131
DSL (digital subscriber line), 95
dual stack migration, 202
durability of transactions, 120
dynamic ACLs, 20. See also ACLs
dynamic channel assignment, 170
dynamic random-access memory (DRAM), 92

e-commerce, availability for, 154
e-mail
file transfers, 123-124
overview of, 123
E1 connections, 244
edge
Cisco Enterprise Architecture, 5
enterprise design, 39-40
networks
security, 28-29
services at, 27
EIGRP (Enhanced Interior Gateway Routing Protocol), 11, 222
load balancing, 191
emergency services, 114
employee access, 37
Encapsulating Security Payload (ESP), 261
encryption, 120, 259. See also security
algorithms, 260
endpoints
video, 133
VPNs, customizing, 166-167
Enhanced Interior Gateway Routing Protocol. See EIGRP
enterprise architectures, 5-6
enterprise edge design, 39-40
environments, current network, 270-271
equipment inventory lists, 89
ESP (Encapsulating Security Payload), 261
estimates
costs, 270
timelines and resources, 275
Etherchannels, configuring, 153
exams, preparing for, 291
executive summary, 270-271
existing applications, 279
existing equipment, limitations of, 159
existing facilities, StadiumCompany network upgrade, 304
existing networks
analyzing, 7
characterization, 107-108
documentation, 80
creating diagrams, 80-82
logical architecture diagrams, 82-84
modular block diagrams, 85-86
strengths and weaknesses of, 86-88
phased installations, 273-274
updating, 88, 90-94
upgrading, 95-96
existing staff capabilities, 217
extending services to remote locations, 163
external names, 197
external traffic, 117
diagrams, 143-144
extranets, 9
faceplates, 96
facilities, StadiumCompany network upgrade, 304
failover, 24, 31
failure, preventing network, 12
failures, 217
farms, server. See server farms
Feature Navigator, applying, 91-92
FECN (forward-explicit congestion notification), 248
fiber connectivity, limitations of, 224
files
naming, 90
sharing, 115
transfers, 123-124
FilmCompany network upgrade story, 309
background, 310-311
design, 314
networks, 313-314
organization, 311-313
filtering traffic at distribution layers, 19-21
finalizing proposals, 283
firewalls, 121. See also security
rule sets, 175
server farms, 230
fixed configurations, 159
flash memory, 92
flat networks. See also networks, 4
flat topologies, 222
flexibility of network simulation software, 239
floating static routes, 252
flow, traffic, 139-140
diagrams, 143-144
internal traffic diagrams, 140-141
remote site diagrams, 142-143
formatting
 IP addresses, 200, 202
 proposals, 283-284
forward-explicit congestion notification (FECN), 248
Frame Relay, 246
 administrative distance configuration, 252
 configuring, 249
 congestion control, 248
 connections, 165, 244
 DLCI, 247
 guaranteed data rates, 247
 interfaces, checking status, 253
 LMI, 248
 local loops, 246
 maps, 249-252
 risk and weaknesses, 256
 troubleshooting, 252-256
 zero CIR, 247
full-meshed topologies, 11-12, 26
functionality
 commands, 216
 Layer 3, 255-256
 network simulation software, 239
 testing, 213-215
functions
 DCE, 241
 security, 173-174
G
gateways, 133
gathering information, 116
generic routing encapsulation (GRE), 259
global unicast addresses, 202
goals
 analyzing, 150-152
 business, 7
 defining technical requirements, 66-69
 documenting, 104-106
 identifying, 65-66
 design, verifying, 214-215
 Frame Relay connections, 244
 LANs prototypes, 219
 of core layers, 10
 projects, 102-103
 server farms, 225-226
 VPNs, 256-257
goals, network design, 3
GRE (generic routing encapsulation), 259
guaranteed data rates, 247
guidelines, naming, 198
H
hardware
 applications, 117-118
 bill-of-materials (BoM), creating, 276-279
 Cisco Focused Technical Support Services, 281-282
 existing, 89
 queues, 128
 replacement times, 280
 SAS (Software Application Support) services, 282
 show version command, 89-90
 SMARTnet services, 280-281
 upgrading, 95-96
Hashed Message Authentication Code (HMAC), 260
 hashes, adding to messages, 260
headers
 AH, 261
 IP, 200
hexadecimal digits, 199
hierarchies
 routing, 182-183
 three-layer, simulating, 221-222
 hierarchical network design, 3, 5-6
high availability
 access layers, 24
 server farms, 33
high-capacity switches, 31
high-priority packets, 129
high-speed links, 11
high-speed WAN interface cards (HWICs), 95
HMAC (Hashed Message Authentication Code), 260
HMAC-Message Digest 5 (MD5), 260
HMAC-Secure Hash Algorithm 1 (HMAC-SHA-1), 260
hosts
 per network, 190
 reachability of, 188
Hot Standby Routing Protocol (HSRP), 120
hot-swapping
 components, 13
 options, 96
HSRP (Hot Standby Routing Protocol), 120
HTTP (Hypertext Transfer Protocol), 124-125
hub-and-spoke topology, 26. See also networks; topologies
human error, reducing, 13
HWICs (high-speed WAN interface cards), 95
Hypertext Transfer Protocol. See HTTP
hypothetical questions, 290
I
IDS (intrusion detection system), 85
IKE (Internet Key Exchange), 261
Implement phase, 51
 case study, 55
implementation
 ACLs, 175
 Etherchannels, 153
 planning, 270-273
 maintenance, 276
 selecting installation methods, 273-275
 QoS, 130-131
 security services, 174
in-band, 159
information gathering, 116
management, 70
infrastructure security, 173
voice, real-time streaming, 122
installation Cisco IOS software, 92-93
methods, selecting, 273-275
New Hardware Option (3.3.3), 96
pilot networks, 165, 212-213
planning, 55, 276
Cisco Focused Technical Support Services, 281-282
creating bill-of-materials, 276-279
SAS (Software Application Support) services, 282
SMARTnet services, 280-281
integrated services, applying, 174
integrating existing information, 271
interactive kiosk services, 114
interactive voice response (IVR), 133
interfaces cards, 95
Cisco SDM, 258
configuring, 240
Frame Relay, checking status, 253
LMI, 248
subinterfaces, 250
interference, APs and, 98
Intermediate System-to-Intermediate System (IS-IS) protocol, 21
internal device names, 197
internal traffic, 117
diagrams, 140-141
International Telecommunication Union (ITU-T), 246
Internet bandwidth limitations, 224
Internet Key Exchange (IKE), 261
Internet service provider. See ISP
interpersonal skills, 63-64
interviews with FilmCompany, 311-313
methods, 290-291
question types in, 290
intrusion detection system (IDS), 85
intrusion prevention systems, 157
Invalid counters, 254
inventory, show version command, 89-90
Inverse ARP (Inverse Address Resolution Protocol), 249-252
IOS commands, 215
file naming, 90
IP addressing design, 182
applying VLSM, 185
CIDR and summarization, 186-187
classful subnets and summarization, 184-185

J-K-L
jitter, 155
job searches, 289-291. See also interviews

K
keepalive messages, 248
key management, 192-193
kiosk services, 114

L
L2F (Layer 2 Forwarding) protocol, 259
L2TP (Layer 2 Tunneling Protocol), 259
lab environment simulations, WAN connectivity, 240-242
LAN Management Solution (LMS), 71
LANs (local area network) logical LAN IP addressing schemes, 187-188
logical networks design, 162
protocols, 218
creating test plans, 220-222
identifying goals and requirements, 219
identifying risks and weaknesses, 223-224
IP addressing schemes, 223
selecting routing protocols, 222-223
validating devices, 222
simulation, 228
technologies, validating, 215-216
topologies
 access layer, 158-160
 core layer, 161
 distribution layer, 160-161
 selecting, 158-162
VLANs. See VLANs
wireless controllers, 169
WLANs. See WLANs
LAPs (lightweight access points), 169
large failure domains, 217
Layer 2, 131
Layer 2 Forwarding (L2F) protocol, 259
Layer 2 Tunneling Protocol (L2TP), 259
Layer 3
 functionality, 255-256
 QoS, 131
layers
 access, 3, 22-30, 158-160
 core, 3, 13-14, 161
 design, 9-11
 distribution, 3, 14-22, 160-161
 multilayer security, 11, 33
 three-layer hierarchies, simulating, 221-222
leading questions, 290
lifecycles, Cisco Lifecycle Services, 50-56
lightweight access points (LAPs), 169
limitations
 of bandwidth, 224
 of existing equipment, 159
 of fiber connectivity, 224
 of network simulation software, 239
 scalability, 217
 scope of network failure, 16-18
links
 backup
 configuring, 252-253
 WANs, 42-43
 DLCI, 247
 Frame Relay, 246
 primary, configuring, 253-256
 redundancy, 11, 15, 216
 core layer, 11
lists, hardware, 89
live on-demand video, 138
LMI (Local Management Interface), 248
 debugging, 254-255
 verifying, 254
LMS (LAN Management Solution), 71
load balancing, 11, 31
 EIGRP, 191
 EtherChannel configuration, 153
 testing, 217
 unequal-cost, 192
local loops, 246
Local Management Interface. See LMI
location
 of VPN servers, 263
 of wireless APs, 170-171
 of wiring closets, 189-190
 of VPN servers, 257
logical architecture diagrams, 82-84
logical design, proposal, 270-271
logical LAN IP addressing schemes, 187-188
logical network design, 36
 LANs, 162
 WANs, 167-168
 WLANs, 172-173
loops, local, 246
low latency queuing, 122
low-priority packets, 130
luxury restaurants, StadiumCompany network upgrade, 306
luxury skybox support, StadiumCompany network upgrade, 307
M
maintenance, planning, 276
manageability
 networks, 3
management
 2960 switches, 159
 access layers, 25
 account managers, role of, 61
 applications, 114
 characterization, 115-116
 hardware, 117-118
 performance, 114
 traffic flow, 116-117
 Cisco Lifecycle Services, 51
 convergence, 132
 CRM, 279
 design, 69
 monitoring, 70-73
 top-down approach/bottom-up approach, 69
 Document layer, 161
 documenting, 105
 Frame Relay connections, 244
 keys, 192-193
 LMI, 248
 network designers, role of, 62
 postsales field engineers, role of, 63
 presales systems engineers, role of, 61-62
 project software, 275
 proposals, assembling existing information, 270-271
 SAS (Software Application Support) services, 282
 SDM, 56
 security, monitoring, 154
 server farms, 227
 traffic, 129-130, 248
 VPN servers, 257
 wireless networks, 170
Management Information Base (MIB), 72
manual summarization, 194
mapping
Frame Relay, 249-252
network topologies, 81
market share, 65
marking QoS, 131
maximum-paths command, 191
MCUs (multipoint control units), 133
MDS (Message Digest Algorithm Version 5), 192
measurement
of application performance, 114
baselines, 227
medium-priority packets, 129
meetings, prebid, 59
memory
DRAM, 92
flash, 92
NVRAM, 94
RAM, 92
mesh topologies, 11-12
Message Digest Algorithm Version 5 (MD5), 192
messages
hashes, adding to, 260
keepalive, 248
methods
installation, selecting, 273-275
interviews, 290-291
testing, selecting, 215
methodologies
network design, 6-7, 9
MetroEthernet, 164
MIB (Management Information Base), 72
Microsoft domain services, 125-127
migrating from IPv4 to IPv6, 202
mitigation, 174
mobile workers, 39-43
mobility
IP, 199
wireless networks, 168
modems, serial connectivity simulation, 241
modular block diagrams, 85-86
modular design
Cisco Enterprise Architectures, 5-6
modules
adding. See also scalability, 6
modularity, network, 183
monitoring
connections, 248
networks, 70-71, 73
QoS, 130
security, 154
video, 156
VLANs, 27
MPLS technology, 41
MS Visio, 140
multi-access WAN, 250
multicasting, 199
multilayer security, 33, 230
multilayer switches, 11, 160-161
multipoint control units (MCUs), 133
multipoint subinterfaces, 250-252

N
naming
files, 90
guidelines, 198
IP addressing schemes, 187-198
schemes, designing, 197-198
NAT-PT (Network Address Translation-Protocol Translation), 202
NBAR (Network-Based Application Recognition), 116
NBMA (nonbroadcast multi-access), 250
neighbor authentication, 192
NetFlow, 116
netstat, 216
Network Address Translation-Protocol Translation (NAT-PT), 202
network command, 204
network designers, role of, 62
network interface cards (NICs), 214
Network Management System (NMS), 70
Network-Based Application Recognition (NBAR), 116
networks
applications, 114, 279
carriage, 115-116
hardware, 117-118
Microsoft domain services, 125-127
performance, 114
QoS, 27, 127-131
traffic flow, 116-117
types, 118-127
ATM, 40
auditing, 116
backbones, 9
baselines, 56
campus. See campus networks
Cisco Enterprise Architectures, 5-6
Cisco Lifecycle Services, 50-56
complete replacements, 274
core layer, 9-11
convergence, 13
at access layer, 24
managing, 132
selecting routing protocols, 14
current network, 270-271
design
access layer, 22-30, 158-160
analyzing requirements, 150-158
convergence, 14
core layer, 9-11, 14, 161
distribution layer, 14-22, 160-161
documenting, 102-106
existing network characterization, 107-108
goals, 3
Packet Tracer, 82
packets, file transfers, 123
partial-mesh topologies, 11-12
patterns, traffic, 18
defining, 165-166
PBX (Private Branch Exchange), 135
PCs (personal computers), StadiumCompany network upgrade, 304
Per VLAN Rapid Spanning Tree Plus (PVRST+), 228
performance
applications, 114
network simulation software, 240
network requirements, 155-156
pilot networks, creating, 213
permanent virtual circuits (PVCs), 165, 250
phased installations, 273-274
phases of Cisco Lifecycle Services, 50
phones, StadiumCompany network upgrade, 304
physical connections, 87
physical design proposals, 270-271
physical layout of networks, 188
physical networks, design, 36
physical security, 29. See also security
pilot networks, installing, 165, 212-213
creating test plans, 213
identifying design weaknesses, 217-218
redundancy and resiliency, 216
validating devices, 215-216
verifying goals and requirements, 214-215
ping, 216
placement
security functions and appliances, 173-174
of VPN servers, 263
Plan phase, 50-53
planning
downtime, 276
FilmCompany, 311-313
implementation, 270-273
maintenance, 276
selecting installation methods, 273-275
installation, 55, 276
Cisco Focused Technical Support Services, 281-282
creating bill-of-materials, 276-279
SAS (Software Application Support) services, 282
SMARTnet services, 280-281
IP addressing schemes, 183
LAN prototypes, testing, 220-222
networks, testing, 213
remote worker support, 257-258
server farms, testing, 226-227
StadiumCompany network upgrade, 308
WANs
creating test plans, 242-245
validating devices, 245-248
wireless site surveys, 100
PoE (Power-over-Ethernet), 23, 122
point-of-sale ticket machines, 114
point-to-point subinterfaces, 250
point-to-point T1, 164
Point-to-Point Tunneling Protocol (PPTP), 259
policies
defining, 56
QoS, 127
implementation, 130-131
prioritization, 129-130
traffic queues, 128-129
routing, IP addressing, 189
security, 30, 189
ports. See also connections
disabling, 229
Microsoft domain services, 126
roles, 228
POST (Power-On Self Test), 94
postsales field engineers, role of, 63
power supplies, UPS, 13
Power-On Self Test (POST), 94
Power-over-Ethernet (PoE), 23, 122
power requirements, 159
PPDIOO (Prepare, Plan, Design, Implement, Operate, Optimize), 150, 270
PPTP (Point-to-Point Tunneling Protocol), 259
PQ (priority queuing), 128
prebid meetings, 59
prefixes
addresses and summarization, 187
routing, 202
Prepare phase, 50-52
Prepare, Plan, Design, Implement, Operate, Optimize (PPDIOO), 150, 270
preparing for exams, 291
presales systems engineers, role of, 61-62
presenting proposals, 283-284
press area support, StadiumCompany network upgrade, 307
prevention
network failure, 12
primary links, configuring, 253-256
prioritization
business goals and, 65-66
QoS, 128
traffic, 12, 13
traffic management, 129-130
priority queuing (PQ), 128
Private Branch Exchange (PBX), 135
procedures, defining, 56
processing transactions, 156
profitability, 65
projects
constraints, 150
goals, 102-103
management, 275
planning, 53
sales process, 57-61
scope, 7, 103-104
proof-of-concept, 212
proposals, 57-58
creating, 283-284
existing information, assembling, 270-271
logical design, 270-271
physical design, 270-271
TCO, 276
protocols
analyzers, 216
BPDU, 228
EIGRP, 11, 222
HSRP, 120
HTTP, 124-125
Inverse ARP, 249-252
IPsec, 261
IS-IS, 21
L2F, 259
L2TP, 259
OSPF, 11
RIP v2, 185
routing
at distribution layers, 21-22
validating, 222-223
RSTP, 18, 120, 228, 230
RSTP+, 34
RTCP, 122
RTP, 122
SNMPv3, 70
STP, 11, 18
TFTP, 92
VPN tunnel, 259
prototypes
campus networks, 211-213
creating test plans, 213
identifying design weaknesses, 217-218
redundancy and resiliency, 216
validating devices, 215-216
verifying goals and requirements, 214-215
LANs, 218
creating test plans, 220-222
identifying goals and requirements, 219
identifying risks and weaknesses, 223-224
IP addressing schemes, 223
selecting routing protocols, 222-223
validating devices, 222
remote worker support, 256
connectivity, 261-262
creating test plans, 257-258
identifying risks and weaknesses, 264
placement of VPN servers, 263
validating devices, 259-260
VPN goals and requirements, 256-257
server farms, 224
creating test plans, 226-227
identifying goals and requirements, 225-226
identifying risks and weaknesses, 232
planning security, 230-231
validating devices, 228, 230
WANs, 237-252
creating test plans, 242, 244-245
identifying risks and weaknesses, 256
lab environment simulations, 240-242
remote connections, 239
testing connections, 239
troubleshooting Frame Relay, 252-256
validating devices, 245-248
proxying, 202
PSTN (Public Switched Telephone Network), 136
PVCs (permanent virtual circuits), 165, 250
PVRST+ (Per VLAN Rapid Spanning Tree Plus), 228
Q
QoS (Quality of Service)
applications, 114, 127
implementation, 130-131
prioritization, 129-130
traffic queues, 128-129
AutoQoS, 130
convergence, 132
network applications, 27
WANs, 40
quality of voice, 156
Quality of Service. See QoS
queries, customers, 119
question types (in interviews), 290
queuing
low latency, 122
types of, 128
traffic, 128-129
quotes, 57-58
R
RAM (random-access memory), 92
random-access memory. See RAM
Rapid Spanning Tree Protocol (RSTP), 120
Rapid Spanning Tree Protocol Plus (RSTP+), 34
Rapid Spanning Tree Protocol. See RSTP
reachability
of hosts, 188
testing commands, 216
real-time streaming, voice, 121-122
Real-Time Transport Protocol (RTP), 122
Real-Time Transport Control Protocol (RTCP), 122
Received Signal Strength Indication (RSSI), 172
reduction of network diameter, 156
redundancy
building in, 33
colocated servers, 151
HTTP, 125
in mesh topologies, 12
LAN prototypes, 223
links, 11, 15, 216
core layer, 11
networks, building at distribution layers, 18-19
testing, 216
in transaction processing, 120
WANs, 42-43
wireless networks, 172
reflexive ACLs, 20. See also ACLs
release notes, 93
relevant information, identifying, 64
reliability, 51
for e-commerce, 154
relocation of servers, 226
remote access
voice/video, 138-139
VPNs, 259
WANs, 40
remote connection prototypes, 239
lab environment simulations, 240-242
testing, 239
remote sites
connections, determining, 163-165
diagrams, 142-143
support, StadiumCompany network upgrade, 307
remote worker support, 39-43
connectivity, 261-262
design, 163-168
identifying risks and weaknesses, 264
placement of VPN servers, 263
prototypes, 256
creating test plans, 257-258
VPN goals and requirements, 256-257
validating devices, 259-260
replacement
of complete networks, 274
of hardware, 280
reporting, QoS, 130
Request for Proposal (RFP), 57-59, 270
Request for Quote (RFQ), 57-61
requirements
access layer, 158
availability, 153-155
e-commerce, 154
of server farms, 230
core layer, 161
design, verifying, 214-215
distribution layer, 160
Frame Relay connections, 244
IP telephony, 133, 135-136
LAN prototypes, 219
networks, 2-3, 270-271
analyzing, 150-158
design, documenting, 102-106
for performance, 155-156
identifying, 7
impacting a portion of, 9
power, 159
for scalability, 152-153
for security, 156-157
server farms, 225-226
technical, 7, 66-69
VPNs, 256
reserved addresses, 202
resiliency
testing, 216
wireless networks, 172
resources, estimating, 275
response documents, 57-58
responsibilities, 61, 289
responsiveness of applications, 114
RFP (Request for Proposal), 57-59, 270
RFQ (Request for Quote), 57-61
RIPng, configuring and verifying, 204-205
RIPv2 (Routing Information Protocol version 2), 185
risks
design, identifying, 217-218
LAN prototypes, 223-224
remote worker support, 264
server farms, 232
WANs, 256
Rivest, Shamir, and Adleman (RSA), 259
roles
of account managers, 61
of network designers, 62
of presales systems engineers, 61-62
of ports, 228
of postsales field engineers, 63
root switches, 228
routed topologies, 222
routers
applications, 117
CPE, 244
starting, 94
routes
aggregation, 21-22
information, obtaining information about, 81-82
static, floating, 252
summarization, 21-22, 183, 193-194
routing
CIDR, 185-187
distribution layer, 14
hierarchical, 182-183
HSRP, 120
policies, IP addressing, 189
prefixes, 202
protocols, 11
at distribution layers, 21-22
selecting, 14
validating, 222-223
strategies, designating, 191-193
Routing Information Protocol version 2 (RIPv2), 185
RSA (Rivest, Shamir, and Adleman), 259
RSSI (Received Signal Strength Indication), 172
RSTP (Rapid Spanning Tree Protocol), 18, 120, 228-230
RSTP+ (Rapid Spanning Tree Protocol Plus), 34
RTCP (Real-Time Transport Control Protocol), 122
RTP (Real-Time Transport Protocol), 122
safety, wireless site surveys, 98
sales process, 57-63
sample topologies, testing, 221
SAN (storage-area networks), 32
SAS (Software Application Support) services, 282
satisfaction of customers, 65
scalability, 183
 2960 switches, 159
 Cisco Lifecycle Services, 51
Documenting, 105
Frame Relay connections, 244
limitations of, 217
networks, 3
of network simulation software, 239
requirements for, 152-153
server farms, 226
wireless networks, 170
scheduling downtime and maintenance, 276
schemes
 addressing, 182-183
 IP addressing
 naming, 187-198
 validating, 223
 naming, designing, 197-198
scope
 of network failure, limiting, 16-18
 of projects, 103-104
 of projects, identifying, 7
SDM (Security Device Manager), 56
searching, job searches, 289-291
Secure Shell (SSH), 30
Secure Sockets Layer (SSL), 143
security
 2960 switches, 159
 ACLs, implementing, 175
 Cisco Lifecycle Services, 51
 connections, 174
devices, 30
distribution layer, 161
documenting, 105
employee access, 37
Frame Relay connections, 244
HTTP, 125
IDS, 85
infrastructure, 173
internal attacks, 33
IP, 199
monitoring, 154
multilayer, 33
networks, 3, 173
edge, 28-29
placing functions and appliances, 173-174
troubleshooting, 29-30
physical, 29
policies, 30
 IP addressing, 189
requirements for, 156-157
server farms, 30-34, 227-231
services, 174
transaction processing, 121
VPNs, 257
WANs, 40
wireless networks, 170
wireless site surveys, 98
Security Device Manager (SDM), 56
segment diagrams, creating network, 83
segregation, VLANs, 26-27
selection
 of Cisco IOS versions, 91-92
 of installation methods, 273-275
 of LAN topologies, 158-162
 Access layer, 158-160
 Core layer, 161
 Distribution layer, 160-161
 of pilot or prototype networks, 212-213
 of routing protocols, 14, 191-193, 222-223
 of server farms, validating devices and topologies, 228, 230
 of testing methods, 215
send-lifetime command, 192
serial connectivity, simulating, 241-242
servers
 applications, 133
c.co-located, 151
e-mail, 124
farms, 5
 creating test plans, 226-227
 identifying goals and requirements, 225-226
 identifying risks and weaknesses, 232
 planning security, 230-231
 security, 30-34
 validating devices, 228-230
prototypes, 224
relocation, 226
TFTP, 92
VPNs
 locations, 257
 managing, 257
 placement of, 263
service level agreements (SLAs), 40
service set identifier (SSID), 37
services
 adding, 6
 applications, 114
 characterization, 115-116
 hardware, 117-118
 performance, 114
 traffic flow, 116-117
Cisco Focused Technical Support Services, 281-282
Cisco Lifecycle Services, 50-56
contracts, 280
delivering, 289
domain network applications, 125-127
integrated, applying, 174
network edge, 27
remote locations, extending, 163
SAS (Software Application Support) services, 282
security, 174
SMARTnet, 280-281
sharing files, 115
show cdp neighbors command, 214
show cdp neighbors detail command, 82, 151
show commands, 81, 214-215, 250
show frame-relay lmi command, 251, 254
show frame-relay map command, 251
show frame-relay pvc command, 253
show frame-relay pvc [interface interface] [dlci] command, 251
show interface serial command, 253-254
show interfaces serial command, 250
show ip arp command, 214
show ipv6 rip command, 204
show ipv6 route rip command, 204
show tech-support command, 81
show version command, 89-90
Simple Network Management Protocol version 3 (SNMPv3), 70
simulation, 216
lab environment simulations, 240-242
LANs, 228
serial connectivity, 241-242
three-layer hierarchies, 221-222
WAN connectivity, testing, 239
single points of failure, 217
site-to-site VPNs, 259
skills, interpersonal, 63-64
SLAs (service level agreements), 40
SMARTnet services, 280-281
SNMPv3 (Simple Network Management Protocol version 3), 70
software
Cisco Focused Technical Support Services, 281-282
Cisco IOS, installing, 92-93
CRM, 279
project management, 275
queues, 128
SAS (Software Application Support) services, 282
SMARTnet services, 280-281
telephones, 133
WAN connectivity, testing, 239
Software Application Support (SAS) services, 282
Spanning Tree Protocol (STP), 11, 18
specialized applications, 279
split horizons, 250
split tunnels, 261-262
spoofed, 230
SSH (Secure Shell), 30
SSID (service set identifier), 37
SSL (Secure Sockets Layer), 143
stability, 183
stadium networks
design, implementing, 272-273
installation methods, 274-275
StadiumCompany network upgrade story, 303-304
organization, 304
concession vendors, 306
existing facilities and support, 304
luxury restaurants, 306
luxury skybox support, 307
phones and PCs, 304
press area support, 307
remote site support, 307
Team A, 305
Team B, 306
visiting team support, 306
planning, 308
staff capabilities, existing, 217
standard warranties, 280
star topologies, 26
starting routers, 94
static routes, floating, 252
status, checking Frame Relay interface, 253
storage networking, 8
storage-area networks (SAN), 32
STP (Spanning Tree Protocol), 11, 18
strategies, designating routing, 191-193
streaming video, 138
QoS, 127
strengths of existing networks, 86-88
strings, cipher, 259
subinterfaces, 250
multipoint, 250-252
point-to-point, 250
subnetting
classful, 184-185
with VSLM, 185
summaries, executive, 270-271
summarization
automatic, disabling, 185
CIDR and, 186-187
classful subnets and, 184-185
prefix addresses and, 187
routes, 21-22, 183, 193-194
superpointing, 21-22, 186
support
applications, defining, 165-166
Cisco Focused Technical Support Services, 281-282
StadiumCompany network upgrade, 304
surveys, wireless site, 97
applying, 100-101
physical network considerations, 98-100
planning, 100
visiting customer sites, 97-98
SVCs (switched virtual circuits), 165
switch block deployment, 17
switched virtual circuits (SVCs), 165
switches
2960, 159
applications, 118
blocks, 160
high-capacity, 31
multilayer, 11, 160-161
root, 228
upgrading, 279
system-level acceptance testing, 55

T

TI connections, 244
TCO (total cost of ownership), 276
Team A organization, StadiumCompany network upgrade, 305
Team B organization, StadiumCompany network upgrade, 306
team offices, VPN requirements, 256
team scout support, 257
technical requirements, 7, 66
 analyzing, 150-152
 core layers, 11
 defining, 66-69
 documenting, 104-106
 IP telephony, 133-136
 technologies, validating LAN, 215-216
telecommunications service provider (TSP), 164, 241
telnet, 216
testing
 ACLs, 231
 campus networks, 212-213
 creating test plans, 213
 identifying design weaknesses, 217-218
 redundancy and resiliency, 216
 validating devices, 215-216
 verifying goals and requirements, 214-215
connections, 214
 functionality, 213-215
 LAN prototypes, 220-222
 identifying weaknesses, 223-224
 IP addressing schemes, 223
 selecting routing protocols, 222-223
 validating devices, 222
load balancing, 217
 methods, selecting, 215
 networks, 55, 91
 POST, 94
 proof-of-concept, 212
 redundancy, 222
 remote worker support, 257-258
 sample topologies, 221
 server farms, 226-227
 WANs
 connectivity, 239-242
 creating test plans, 242-245
 validating devices, 245-248
TFTP (Trivial File Transfer Protocol), 92
threats, detection, 174
three-layer hierarchies, simulating, 221-222
tickets, 119
time, convergence, 14
time-based ACLs, 20-12. See also ACLs
timelines, estimating, 275
tools
 for network monitoring, 72-73
 IP, 216
 NBAR, 116
 network simulation, 216
top-down approach, 7-9, 69
topologies
 distribution layers, 16
 FilmCompany, 313-314
 flat, 222
 full-meshed, 26
 LANs
 access layer, 158-160
 core layer, 161
 distribution layer, 160-161
 selecting, 158-162
 mesh, 11-12
 networks
 access layers, 26
 design, 7-9
 mapping, 81
 routed, 222
 server farms, 228, 230
 star, 26
 testing, 221
 VPNs
 server tests, 264
 validating, 259-260
 WANs, validating, 245-248
 WLANs, 34
ToS (type of service), 131
total cost of ownership (TCO), 276
tracert, 216
trade-offs in network design, 151-158
traditional telephony, 135. See also IP telephony
traffic
 analysis, 116
 classification, 28
 control, 139
 external, 117
 file transfer, 123-124
 filtering at distribution layers, 19-21
 flow, 139-140
 applications, 116-117
 external traffic diagrams, 143-144
 internal traffic diagrams, 140-141
 remote site diagrams, 142-143
 Frame Relay, managing, 248
 internal, 117
 isolating, 133
 management, 129-130
 patterns, 18, 165-166
 prioritization, 12-13
 queues, 128-129
 VLANs, 26-27
traffic. See also networks, 5
transaction-processing applications, 119-121
transactions, processing, 156
transfers, files, 123-124
translation, 202
transmit power control, 170
transmit queue (TxQ), 128
Triple DES (3DES), 259
Trivial File Transfer Protocol (TFTP), 92
Trojan horses, 28
troubleshooting, 217
application performance, 114
Frame Relay, 252-256
ISPs, 223
networks, 12
limiting scope of failure, 16-18
reducing human error, 13
security, 29-30
RSTP, 228, 230
trunks, distribution layer, 15
TSP (telecommunications service provider), 164, 241
tunnels, 121, 259
split, 261-262
transition methods, 202
VPN protocols, 259
TxQ (transmit queue), 128
type of service (ToS), 131
types
of antennas, 99
of Frame Relay connections, 165
of IP addresses, 201
of network applications, 118-127
of networks, 190
of queuing, 128
of VLANs, 190

utilities
IP, 216
NBAR, 116

V
V.35 cables, serial connectivity simulation, 241-242
validation
devices, 215-216, 222
IP addressing schemes, 223
routing protocols, 222-223
security, 230-231
server farms, 228, 230
VPNs, 259-260
Variable Length Subnet Mask. See VLSM
variance command, 192
verification
collections, 214
design goals and requirements, 214-215
LMI, 254
PVRST+, 228
RIPng, 204-205
versions
selecting, 91-92
show version command, 89-90
video, 131
correlation, 131-136
distribution, 156
endpoints, 133
monitoring, 156
QoS, 127
real-time protocols, 122
remote access, 138-139
streaming, 138
videoconference systems, 115
Video on Demand (VoD), 138
viewing PVRST+, 228
virtual LANs. See VLANs
virtual networks, 259
virtual private networks. See VPNs
virtualization, 34
viruses, 28
Visio (MS), 140
visiting team support, StadiumCompany network upgrade, 306
VLANs (virtual LANs), 26
benefits of separate, 134
traffic, 26-27
types of, 190
VLSM (Variable Length Subnet Mask), 185
VoD (Video on Demand), 138
voice, 131
correlation, 131-136
quality, 156
real-time streaming, 121-122
remote access, 138-139
Voice over IP. See VoIP

U
unauthorized access, physical security, 29
unequal-cost, load balancing, 192
unicast addresses, 201-202
unified wireless and wired solutions, 168-170
uninterruptible power supply. See UPS
updating
databases, 119
design documentation, 175-176
existing networks, 88-94
upgrading
eexisting networks, 95-96
networks, 55, 80
overcoming weaknesses, 87-88
testing, 91
switches, 279
UPS (uninterruptible power supply), 13
users
access, adding, 65
documenting, 106
identifying, 64
voice/WAN interface cards (VWICs), 95
VoIP (Voice over IP), 122, 136
VPNs (virtual private networks), 9
 Cisco EasyVPN, 258
 components, 259-260
 concentrators, 259
 endpoints, customizing, 166-167
 goals and requirements, 256-257
 remote-access, 259
 security, 157, 257
 server locations, 257
 servers
 managing, 257
 placement of, 263
 site-to-site, 259
 tunnel protocols, 259
 WAN connectivity prototypes, 242
VWICs (voice/WAN interface cards), 95

wireless networks
 APs, locating, 170-171
 design, 34-38, 168-173
 coverage options and mobility, 168
 unified wireless and wired solutions, 168-170
 resiliency, 172
 wireless site surveys, 97
 applying, 100-101
 customer sites, visiting, 97-98
 physical network considerations, 98-100
 planning, 100
wiring closets, 23, 29
 location and description, 189-190
WLANs (wireless LANs), 34, 172-173
worms, 28
WPA (Wi-Fi Protected Access), 37

zero CIR, 247

W-X-Y-Z

WAN interface cards (WICs), 95
WANs (wide-area networks), 39-43, 82
 bandwidth limitations, 224
 connections, adding, 164-165
 design, 163-168
 multi-access, 250
 prototypes, 237, 242, 249-252
 creating test plans, 242-245
 identifying risks and weaknesses, 256
 lab environment simulations, 240-242
 remote connections, 239
 testing connections, 239
 troubleshooting Frame Relay, 252-256
 validating devices, 245-248
WAPs (wireless access points), 84
warranties, 280
weaknesses
 design, identifying, 217-218
 LAN prototypes, 223-224
 remote worker support, 264
 server farms, 232
 WANs, 256
weaknesses of existing networks, 86-88
WEP (Wired Equivalent Privacy), 37
Wi-Fi Protected Access (WPA), 37
WICs (WAN interface cards), 95
wide-area networks, See WANs
windows, planning maintenance, 276
Wired Equivalent Privacy (WEP), 37
wireless access points, See WAPs
wireless LANs, See WLANs