Networking for Home and Small Businesses
CCNA Discovery Learning Guide

Allan Reid · Jim Lorenz

Copyright © 2008 Cisco Systems, Inc.
Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America
First Printing December 2007
Library of Congress Cataloging-in-Publication data is on file.

Warning and Disclaimer

This book is designed to provide information about the Cisco Networking for Home and Small Businesses CCNA Discovery course. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco Systems, Inc.

This book is part of the Cisco Networking Academy® series from Cisco Press. The products in this series support and complement the Cisco Networking Academy curriculum. If you are using this book outside the Networking Academy, then you are not preparing with a Cisco trained and authorized Networking Academy provider.

For more information on the Cisco Networking Academy or to locate a Networking Academy, please visit www.cisco.com/edu.
Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside the United States please contact: International Sales international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through e-mail at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.
About the Authors

Allan Reid is the curriculum lead and a CCNA/CCNP instructor at the Centennial College CATC in Toronto, Canada. Allan is a professor in the Information and Communications Engineering Technology department and an instructor and program supervisor for the School of Continuing Education at Centennial College. He has developed and taught networking courses for both private and public organizations and has been instrumental in the development and implementation of numerous certificate, diploma, and degree programs in networking. Allan is also a curriculum developer for the Cisco Networking Academy. Outside of his academic responsibilities, he has been active in the computer and networking fields for more than 25 years and is currently a principal in a company specializing in the design, management, and security of network solutions for small and medium-sized companies. Allan authored the first edition of WAN Technologies CCNA 4 Companion Guide (Cisco Press, ISBN: 1-58713-172-2) and Using a Networker’s Journal, which is a supplement to A Networker’s Journal (Cisco Press, ISBN: 1-58713-158-7). Most recently, Allan co-authored the CCNA Discovery online academy courses “Networking for Home and Small Businesses” and “Introducing Routing and Switching in the Enterprise” with Jim Lorenz.

Jim Lorenz is an instructor and curriculum developer for the Cisco Networking Academy. Jim co-authored several Cisco Press titles including Fundamentals of UNIX Companion Guide, Second Edition (ISBN 1-58713-140-4), Fundamentals of UNIX Lab Companion, Second Edition (ISBN 1-58713-139-0), and the third editions of the CCNA Lab Companions. He has more than 20 years’ experience in information systems ranging from programming and database administration to network design and project management. Jim has developed and taught computer and networking courses for both public and private institutions. As the Cisco Academy Manager at Chandler-Gilbert Community College in Arizona, he was instrumental in starting the Information Technology Institute (ITI) and developed a number of certificates and degree programs. Most recently, Jim co-authored the CCNA Discovery online academy courses “Networking for Home and Small Businesses” and “Introducing Routing and Switching in the Enterprise” with Allan Reid.
About the Technical Reviewers

Nolan Fretz is currently a college professor in network and telecommunications engineering technology at Okanagan College in Kelowna, British Columbia. He has almost 20 years of experience in implementing and maintaining IP networks and has been sharing his experiences by educating students in computer networking for the past nine years. He holds a master’s degree in information technology.

Charles Hannon is an assistant professor of network design and administration at Southwestern Illinois College. He has been a Cisco Certified Academy Instructor (CCAI) since 1998. Charles has a master of arts in education from Maryville University, St. Louis, Missouri, currently holds a valid CCNA certification, and has eight years’ experience in Management of Information Systems. Charles’ priority is to empower students to become successful and compassionate lifelong learners.

Bill Shurbert is a professor of information technology at New Hampshire Technical Institute, in Concord, New Hampshire. Bill holds a bachelor’s degree in technical management from Southern New Hampshire University. He enjoys teaching Cisco CCNA, Wireless, and IT Essentials classes. In his off time, you can find Bill and Joanne, his wife of 25+ years, sailing the waters of Lake Winnipesaukee.

Matt Swinford, associate professor of network design and administration at Southwestern Illinois College, has been an active Cisco Certified Academy Instructor (CCAI) since 1999. Matt is dedicated to fostering a learning environment that produces certified students and quality IT professionals. Matt has a masters of business administration from Southern Illinois University at Edwardsville, Edwardsville, Illinois and currently holds valid CCNP, A+, and Microsoft Certifications.

Michael Duane Taylor is department head of computer information sciences at the Raleigh Campus of ECPI College of Technology. He has more than seven years’ experience teaching introductory networking and CCNA-level curriculum and was awarded the Instructor of the Year Award. Previously, Michael was a lab supervisor with Global Knowledge working with router hardware configuration and repair. He holds a bachelor’s degree in business administration from the University of North Carolina at Chapel Hill and a masters of science in industrial technology/computer network management from East Carolina University. His certifications include CCNA, CCNP-router, and MCSE.
Acknowledgments

From Allan and Jim:

We want to thank Mary Beth Ray, Dayna Isley, and Drew Cupp with Cisco Press for their help and guidance in putting this book together. We also want to thank the technical editors, Mike Taylor, Bill Shurbert, Nolan Fretz, Charlie Hannon, and Matt Swinford. Their attention to detail and suggestions made a significant contribution to the accuracy and clarity of the content.

We would also like to acknowledge the entire CCNA Discovery development team from Cisco Systems, especially Carole Knieriem and Amy Gerrie for their input, support, and cooperation in the development of the book.
Dedications

This book is dedicated to my children: Andrew, Philip, Amanda, Christopher, and Shaun. You are my inspiration, and you make it all worthwhile. Thank you for your patience and support.

— Allan Reid

To the three most important people in my life: my wife Mary, and my daughters, Jessica and Natasha. Thanks for your patience and support.

— Jim Lorenz
Contents

Introduction xxvi

Part I Concepts

Chapter 1 Personal Computer Hardware 3

Objectives 3

Key Terms 3

Personal Computers and Applications 5

- How and Where Computers Are Used 5
- Types of Computer Applications 6

Types of Computers 7

- Classes of Computers 7
- Servers, Desktops, and Workstations 8
 - Servers 8
 - Desktops 9
 - Workstations 9
- Portable Devices 10
 - Laptops 10
 - Tablet PC 11
 - Pocket PC 11
 - PDA 11
 - Game Device 12
 - Cell Phone 12

Binary Representation of Data 12

- Representing Information Digitally 12
- Measuring Storage Capacity 13
- Measuring Speed, Resolution, and Frequency 14
 - File Transfer Time 15
 - Computer Screen Resolution 15
 - Analog Frequencies 16

Computer Components and Peripherals 16

- Computer Systems 16
- Motherboard, CPU, and RAM 17
 - Motherboard 17
 - Central Processing Unit (CPU) 18
 - Random-Access Memory (RAM) 19
- Adapter Cards 20
 - Video Cards 21
 - Sound Cards 21
 - Network Interface Cards (NICs) 21
 - Modems 22
 - Controller Cards 22
Chapter 2 Operating Systems 41
Objectives 41
Key Terms 41
Choosing the Operating System 42
Purpose of an Operating System 42
Operating System Requirements 46
Operating System Selection 48
Installing the Operating System 50
OS Installation Methods 50
Preparing for OS Installation 50
Configuring a Computer for the Network 52
Computer Naming 53
Network Name and Address Planning 54
Maintaining the Operating System 54
Why and When to Apply Patches 55
Applying OS Patches 55
Application Patches and Updates 56
Summary 58
Activities and Labs 58
Check Your Understanding 59

Chapter 3 Connecting to the Network 61
Objectives 61
Key Terms 61
Contents xi

Introduction to Networking 63
What Is a Network? 63
Benefits of Networking 65
Basic Network Components 65
Computer Roles in a Network 67
Peer-to-Peer Networks 69
Network Topologies 71

Principles of Communication 73
Source, Channel, and Destination 73
Rules of Communication 74
Message Encoding 76
Message Formatting 77
Message Size 79
Message Timing 80
Access Method 80
Flow Control 80
Response Timeout 81
Message Patterns 81
Unicast 81
Multicast 82
Broadcast 82

Communicating on a Wired Local Network 84
Importance of Protocols 84
Standardization of Protocols 85
Physical Addressing 87
Ethernet Communication 88
Hierarchical Design of Ethernet Networks 90
Logical Addressing 91
Access, Distribution, and Core Layers and Devices 92

Building the Access Layer of an Ethernet Network 94
Access Layer 94
Function of Hubs 95
Function of Switches 96
Broadcast Messaging 99
MAC and IP Addresses 101
Address Resolution Protocol (ARP) 101

Building the Distribution Layer of a Network 103
Distribution Layer 103
Function of Routers 105
Default Gateway 107
Tables Maintained by Routers 108
Local-Area Network (LAN) 112
Adding Hosts to Local and Remote Networks 114
Plan and Connect a Local Network 115
Plan and Document an Ethernet Network 115
Prototypes 116
Multi-function Device 117
Connecting the Linksys Router 119
Sharing Resources 121

Summary 122
Activities and Labs 123
Check Your Understanding 124
Challenge Questions and Activities 127

Chapter 4 Connecting to the Internet Through an ISP 129
Objectives 129
Key Terms 129
The Internet and How We Connect To It 130
 Explain What the Internet Is 130
 Internet Service Providers (ISP) 131
 The ISP’s Relationship with the Internet 132
 Options for Connecting to the ISP 133
 ISP Levels of Service 135

Sending Information Across the Internet 138
 Importance of the Internet Protocol (IP) 138
 How ISPs Handle Packets 139
 Forwarding Packets Across the Internet 141

Networking Devices in a NOC 142
 Internet Cloud 142
 Devices in Internet Cloud 142
 Physical and Environmental Requirements 145

Cables and Connectors 146
 Common Network Cables 147
 Twisted-Pair Cables 148
 Coaxial Cable 151
 Fiber-Optic Cables 152
 Multimode Fiber 153
 Single-Mode Fiber 154

Working with Twisted-Pair Cabling 154
 Cabling Standards 154
 UTP Cables 155
 Unlike Devices 157
 Like Devices 157
 UTP Cable Termination 158
 Terminating UTP at Patch Panels and Wall Jacks 159
Chapter 5
Network Addressing 171

Objectives 171

Key Terms 171

IP Addresses and Subnet Masks 172

Purpose of an IP Address 172
IP Address Structure 172
Parts of an IP Address 174
How IP Addresses and Subnet Masks Interact 175

Types of IP Addresses 177

IP Address Classes and Default Subnet Masks 177
Public and Private IP Addresses 179
Unicast, Broadcast, and Multicast Addresses 180

 Unicast 181
 Broadcast 181
 Multicast 182

How IP Addresses Are Obtained 184

Static and Dynamic Address Assignment 184

 Static 184
 Dynamic 184

DHCP Servers 185
Configuring DHCP 186

Address Management 188

Network Boundaries and Address Space 188
Address Assignment 189
Network Address Translation 190

Summary 195

Activities and Labs 195

Check Your Understanding 196

Challenge Questions and Activities 199

Chapter 6
Network Services 201

Objectives 201

Key Terms 201
Clients/Servers and Their Interaction 202
 Client/Server Relationship 202
 Role of Protocols in Client/Server Communication 204
 Application Protocol 204
 Transport Protocol 205
 Internetwork Protocol 205
 Network Access Protocols 206
 TCP and UDP Transport Protocols 206
 Using TCP 206
 Using UDP 208
 TCP/IP Port Numbers 208
 Destination Port 208
 Source Port 208

Application Protocols and Services 209
 Domain Name Service 209
 Web Clients and Servers 211
 FTP Clients and Servers 212
 E-mail Clients and Servers 213
 IM Clients and Servers 215
 Voice Clients and Servers 216
 Port Numbers 217

Layered Model and Protocols 218
 Protocol Interaction 218
 Protocol Operation of Sending and Receiving a Message 219
 Open System Interconnection Model 221

Summary 225

Activities and Labs 226
Check Your Understanding 227
Challenge Questions and Activities 229

Chapter 7 Wireless Technologies 231

Objectives 231

Key Terms 231

Wireless Technology 233
 Wireless Technologies and Devices 233
 Infrared 233
 Radio Frequency (RF) 234
 Benefits and Limitations of Wireless Technology 235
 Types of Wireless Networks and Their Boundaries 236
 WPAN 236
 WLAN 236
 WWAN 236

Wireless LANs 237
 Wireless LAN Standards 237
 Wireless LAN Components 238
WLANs and the SSID 240
 Ad-hoc 240
 Infrastructure Mode 240
Wireless Channels 242
Configuring the Access Point 244
 Wireless Mode 244
 SSID 245
 Wireless Channel 246
Configuring the Wireless Client 246
 Integrated Wireless Utility Software 246
 Standalone Wireless Utility Software 247

Security Considerations on a Wireless LAN 248
 Why People Attack WLANs 248
MAC Address Filtering 250
Authentication on a WLAN 251
 Open Authentication 251
 Pre-shared keys (PSK) 251
 Extensible Authentication Protocol (EAP) 252
Encryption on a WLAN 253
 Wired Equivalency Protocol (WEP) 253
 Wi-Fi Protected Access (WPA) 254
Traffic Filtering on a WAN 254

Configuring an Integrated AP and Wireless Client 255
 Planning the WLAN 255
 Wireless Standards 255
 Installation of Wireless Devices 256
Installing and Securing the AP 257
Backing Up and Restoring Configuration Files 257
Updating the Firmware 258

Summary 260
Activities and Labs 261
Check Your Understanding 262
Challenge Questions and Activities 263

Chapter 8 Basic Security 265
Objectives 265
Key Terms 265
Networking Threats 266
 Risks of Networking Intrusion 266
 Sources of Network Intrusion 267
 External Threats 267
 Internal Threats 267
 Social Engineering and Phishing 268
 Pretexting 268
 Phishing 269
 Vishing 269
Methods of Attack 269
Viruses, Worms, and Trojan Horses 270
Viruses 270
Worms 270
Trojan Horses 271
Denial of Service and Brute Force Attacks 271
Denial of Service Attack 271
Distributed Denial of Service Attack 272
Brute-Force Attack 272
Spyware, Tracking Cookies, Adware, and Pop-Ups 273
Spyware 273
Tracking Cookies 274
Adware 274
Pop-Ups and Pop-Unders 275
Spam 275

Security Policy 276
Common Security Measures 276
Updates and Patches 278
Anti-virus Software 278
Anti-spam 280
Anti-spyware 282

Using Firewalls 283
What Is a Firewall? 283
Using a Firewall 284
Single-Firewall Configuration 285
Two-Firewall Configuration 286
Home Networking Device Firewalls 286
Vulnerability Analysis 287
Best Practices 288

Summary 290
Activities and Labs 291
Check Your Understanding 291
Challenge Questions and Activities 294

Chapter 9 Troubleshooting Your Network 295
Objectives 295
Key Terms 295
Troubleshooting Process 296
Gathering Information 297
Approaches to Troubleshooting 298
Top-Down 298
Bottom-Up 298
Divide-and-Conquer 300
Trial-and-Error 301
Substitution 301
Part II Labs

Chapter 1 Labs: Personal Computer Hardware 343

Lab 1-1: Determining Data Storage Capacity (1.3.2.2) 343
Task 1: Identify the Amount of RAM in a Computer 343
Task 2: Determine the Size of the Hard Disk Drive 344
Task 3: Determine the Free Space and Used Space on the Hard Drive 345
Task 4: Check for Other Storage Devices 346
Task 5: Reflection 347

Lab 1-2: Determining the Screen Resolution of a Computer (1.3.3.4) 348
Task 1: Determine the Current Screen Resolution 348
Task 2: Determine the Maximum Resolution for the Highest Color Quality 349
Task 3: Calculate the Pixels for Current and Maximum Resolution Settings 349
Task 4: Identify the Type of Graphics Card Installed 350
Task 5: Identify the Type of Monitor and Available Refresh Rates 350

Lab 1-3: Installing a Printer and Verifying Its Operation (1.5.3.4) 352
Task 1: Add a Printer 352
Task 2: Verify the Printer Installation 355
Task 3: Download and Install an Updated Printer Driver 356
Task 4: Verify the New Driver Installation 360
Chapter 2 Labs: Operating Systems 361

Lab 2-1: Examining Operating System and Application Versions (2.3.3.2) 361
 Task 1: Determine the Windows XP Version and Revision Number 361
 Task 2: Configure Windows XP for Updates 362
 Task 3: Determine an Application Version 363
 Task 4: Reflection 363

Challenge Lab 2-2: Evaluating an OS Upgrade 363
 Task 1: Locate Minimum Requirements for Windows Vista 364
 Task 2: Determine the Hardware Information for the Computer Using winmsd.exe 365
 Task 3: Determine CPU Type and Amount of RAM Using System Properties 365
 Task 4: Determine Hard Disk Capacity and Amount of Free Disk Space Using My Computer Properties 365
 Task 5: Check for Other Drives (Floppy, CD-ROM, DVD) 366
 Task 6: Verify the Monitor and Graphics Capabilities 366
 Task 7: Download and Run Windows Vista Upgrade Advisor 366
 Task 8: Reflection 367

Chapter 3 Labs: Connecting to the Network 369

Lab 3-1: Building a Peer-to-Peer Network (3.1.5.3) 369
 Task 1: Diagram the Network 369
 Task 2: Document the PCs 370
 Task 3: Connect the Ethernet Cable 371
 Task 4: Verify Physical Connectivity 371
 Task 5: Configure IP Settings 371
 Task 6: Verify IP Connectivity Between the Two PCs 372
 Task 7: Verify Connectivity Using My Network Places 373
 Task 8: (Optional) Re-enable the Firewall 373

Lab 3-2: Determine the MAC Address of a Host (3.3.3.2) 373
 Task 1: Open a Windows Command Prompt Window 374
 Task 2: Use the ipconfig /all Command 374
 Task 3: Locate the MAC (Physical) Address(es) in the Output from the ipconfig /all Command 375
 Task 4: Reflection 375

Lab 3-3: Determine the IP Address of a Computer (3.3.6.2) 376
 Task 1: Determine the IP Address of the Computer 376

Lab 3-4: IP Addresses and Network Communication (3.5.2.2) 378
 Task 1: Connect the PCs to Create a Peer-to-Peer Network 378
 Task 2: Verify Physical Connectivity 378
 Task 3: Configure IP Settings for the Two PCs 379
 Task 4: Verify IP Connectivity Between the Two PCs 379
 Task 5: Change IP Address for PC2 380
Task 6: Test Network Connectivity Between the Two PCs 381
Task 7: Change IP Address for PC1 381
Task 8: Test Network Connectivity Between the Two PCs 382
Task 9: (Optional) Re-enable the Firewall 382

Lab 3-5: Connect and Configure Hosts (3.6.4.3) 383
Task 1: Identify Ethernet Ports 383
Task 2: Connect the Cable Between the PC and the Router 384
Task 3: Assign the PCs an IP Address and Default Gateway 384
Task 4: Verify the IP Address Configuration 385
Task 5: Test Connectivity Between the Two PCs 386
Task 6: Configure the NetBIOS Name 386
Task 7: Verify Configuration 387
Task 8: (Optional) Re-enable the Firewall 388
Task 9: Return IP Address and NetBIOS Name to Original Values 388
Task 10: Reflection 389

Lab 3-6: Sharing Resources (3.6.5.3) 390
Task 1: Share a Folder 390
Task 2: Map Network Drives to Provide Quick and Easy Access to Shared Folders 392
Task 3: Verify Work 393
Task 4: Reflection 393

Chapter 4 Labs: Connecting to the Internet Through an ISP 395

Lab 4-1: Tracing Internet Connectivity (4.2.3.3) 395
Task 1: (Optional) Download and Install a Free Program 395
Task 2: Locate Websites 396
Task 3: (Optional) Use Downloaded Visual Trace Route Tool 396
Task 4: Use the tracert Command 397
Task 5: Use the pathping Command 398
Task 6: (Optional) Use the whois Function 398
Task 7: Reflection 399

Lab 4-2: Building Straight-Through and Crossover UTP Cables (4.5.3.2) 400
Part A: Build and Test an Ethernet Straight-Through Patch Cable 401
 Task A1: Obtain and Prepare the Cable 401
 Task A2: Prepare and Insert the Wires 401
 Task A3: Inspect, Crimp, and Reinspect 402
 Task A4: Terminate the Other Cable End 403
 Task A5: Test the Cable 403
Part B: Build and Test an Ethernet Crossover Cable 403
 Task B1: Obtain and Prepare the Cable 403
 Task B2: Prepare and Insert the T568A Wires 403
 Task B3: Inspect, Crimp, and Reinspect 404
 Task B4: Terminate the T568B Cable End 404
 Task B5: Test the Cable 404
 Task B6: Reflection 405
Lab 4-3: Terminating UTP Cables (4.5.4.4) 406

Task 1: Strip the Sheath 406
Task 2: Position Wires in Data Jack 406
Task 3: Punch Down the Data Jack 407
Task 4: Punch Down the Patch Panel 407
Task 5: Test the Data Jack and Patch Panel Terminations with a Basic Cable Tester (Optional) 408
Task 6: Reflection (Optional) 408

Lab 4-4: Testing UTP Cables (4.5.5.4) 409

Task 1: Set Up the Fluke 620 LAN CableMeter 410
Task 2: Test Cabling Procedure 410
Task 3: Use the Wire Map Meter Function 411
Task 4: Use the Length Meter Function 412
Task 5: Test Data Jack and Patch Panel Terminations for Wire Map, Length, and Miswire (Optional) 412
Task 6: Set Up and Test a Cable Using the Fluke MicroScanner 412
Task 7: Reflection 413

Chapter 5 Labs: Network Addressing 415

Lab 5-1: Using the Windows Calculator with Network Addresses (5.1.4.3) 415

Task 1: Access Windows Calculator and Determine Mode of Operation 416
Task 2: Convert Between Number Systems 416
Task 3: Convert Host IP Addresses 418
Task 4: Convert Host IP Subnet Masks 418
Task 5: Convert Broadcast Addresses 419
Task 6: Convert IP and MAC Addresses for a Host 420
Task 7: Manipulate Powers of 2 to Determine the Number of Hosts on a Network 421
Task 8: (Optional) Determine the Network Number and Number of Hosts Based on Subnet Mask 421
Task 9: Reflection 422

Challenge Lab 5-2: Exploring IP Address Functions on an Multi-function Device 423

Task 1: View Current IP Settings 423
Task 2: Configure TCP/IP Settings for DHCP 424
Task 3: Connect PCs to the Multi-function Device 424
Task 4: Verify the Physical Connection 424
Task 5: Access the Command Prompt on a Client PC 424
Task 6: Access the Multi-function Device Configuration Through a Web Browser 425
Task 7: Examine the Multi-function Device Configuration 425
Task 8: Connect the Multi-function Device to the Internet 425
Task 9: Verify Connectivity Using the ping Command 426
Task 10: Verify Connectivity Using the tracert Command 427
Task 11: Verify Internet Connectivity 427
Task 12: Determine the Network Boundaries 428
Task 13: Restore All Original Network Connections 428
Task 14: Reflection 428

Chapter 6 Labs: Network Services 429

Lab 6-1: Observing DNS Name Resolution (6.2.1.3) 429
Task 1: Observe DNS Conversion 429
Task 2: Verify DNS Operation Using the nslookup Command 430
Task 3: Identify Mail Servers Using the nslookup Command 431
Task 4: Reflection 432

Lab 6-2: Exploring FTP (6.2.3.3) 433
Task 1: Examine FTP from the Command Prompt 433
Task 2: Use a GUI FTP Client or Web Browser 434
Task 3: (Optional) Use Both an FTP Server and Client 435

Lab 6-3: Configuring an E-mail Client (6.2.4.4) 436
Task 1: Open Microsoft Outlook 436
Task 2: Set Up an E-mail Account 436
Task 3: Enter POP3 E-mail Account Information 436
Task 4: (Optional) Add Another Account or Change an Account 437
Task 5: Reflection 437

Chapter 7 Labs: Wireless Technology 439

Lab 7-1: Configuring a Wireless Access Point (7.2.5.3) 439
Task 1: Verify Connectivity Between the Computer and the Multi-function Device 439
Task 2: Log In to the Multi-function Device and Configure the Wireless Network 440
Task 3: Reflection 441

Lab 7-2: Configuring a Wireless Client (7.2.6.4) 442
Task 1: Install the Wireless NIC Driver 442
Task 2: Connect the Wireless NIC 443
Task 3: Attach to the Wireless Network 443
Task 4: Determine the NIC Driver Version 445
Task 5: Determine If the NIC Driver Is the Most Current 445
Task 6: Verify Connectivity 446
Task 7: Reflection 446

Lab 7-3: Configuring Wireless Security (7.3.5.2) 448
Task 1: Plan the Security for Your Home Network 448
Task 2: Connect a Computer to the Multi-function Device and Log In to the Web-Based Utility 449
Task 3: Change the Linksys Device Password 450
Task 4: Configure the Wireless Security Settings 451
Task 5: Configure Encryption and Authentication 452
Task 6: Configure MAC Address Filtering 454
Task 7: Reflection 455

Challenge Lab 7-4: Planning the Home or Small Business WLAN 456
Task 1: Plan the WLAN 456
Task 2: Use Internet for Research 458
Task 3: Document Your Findings 459
Task 4: Reflection 459

Chapter 8 Labs: Basic Security 461
Lab 8-1: Configuring Access Policies and DMZ Settings (8.4.2.4) 461
Part A: Configuring Access Policies 462
 Task 1: Build the Network and Configure the Hosts 462
 Task 2: Log In to the User Interface 463
 Task 3: View Multi-function Device Firewall Settings 463
 Task 4: Set Up Internet Access Restrictions Based on IP Address 464
 Task 5: Set Up an Internet Access Policy Based on an Application 465
Part B: Configuring a DMZ on the Multi-function Device 466
 Task 1: Set Up a Simple DMZ 466
 Task 2: Set Up a Host with Single Port Forwarding 467
 Task 3: Restore the Multi-function Device to Its Default Settings 468
Lab 8-2: Performing a Vulnerability Analysis (8.4.3.2) 469
 Task 1: Download and Install MBSA 470
 Task 2: Build the Network and Configure the Hosts 470
 Task 3: Run MBSA on a Host 471
 Task 4: Select a Computer to Scan 471
 Task 5: View Security Update Scan Results 471
 Task 6: View Windows Scan Results in the Security Report 472
 Task 7: View Desktop Application Scan Results in the Security Report 472
 Task 8: Scan a Server, If Available 472
 Task 9: Uninstall MBSA Using Control Panel Add/Remove Programs 473
 Task 10: Reflection 473

Chapter 9 Labs: Troubleshooting Your Network 475
Lab 9-1: Troubleshooting Using Network Utilities (9.2.7.2) 475
 Task 1: Build the Network and Configure the Hosts 476
 Task 2: Record the Baseline IP Address Information for Computers and Wireless Router 476
 Task 3: Scenario 1—Diagnose Web Server Access 478
 Task 4: Scenario 2—Diagnose Web Server Access 479
 Task 5: Scenario 3—Diagnose FTP Server Access 480
 Task 6: Scenario 4—Diagnose FTP Server Access 480
 Task 7: Scenario 5—Diagnose Telnet Server Access Problem 481
Icons Used in This Book

Multilayer Switch Modem Bridge Hub Mainframe Workstation

Workgroup Switch ISDN Switch Handheld Network Cloud Printer Laptop

File Server Router Firewall Gateway IP Phone Integrated Router

Wireless Access Point Router/Switch Processor Wireless Bridge Wireless Media LAN Media WAN Media

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italics** indicate arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate optional elements.

- Braces ({ }) indicate a required choice.

- Braces within brackets ([{ }]) indicate a required choice within an optional element.
Introduction

Cisco Networking Academy is a comprehensive e-learning program that delivers information technology skills to students around the world. The Cisco CCNA Discovery curriculum consists of four courses that provide a comprehensive overview of networking, from fundamentals to advanced applications and services. The curriculum emphasizes real-world practical application, while providing opportunities for you to gain the skills and hands-on experience needed to design, install, operate, and maintain networks in small to medium-sized businesses, as well as enterprise and service provider environments. The Networking for Home and Small Businesses course is the first course in the curriculum.

Networking for Home and Small Businesses, CCNA Discovery Learning Guide is the official supplemental textbook for the first course in v4.x of the CCNA Discovery online curriculum of the Networking Academy. As a textbook, this book provides a ready reference to explain the same networking concepts, technologies, protocols, and devices as the online curriculum. In addition, it contains all the interactive activities, Packet Tracer activities, and hands-on labs from the online curriculum as well as bonus labs.

This book emphasizes key topics, terms, and activities and provides many alternative explanations and examples as compared with the course. You can use the online curriculum as directed by your instructor and then also use this *Learning Guide’s* study tools to help solidify your understanding of all the topics. In addition, the book includes

- Expanded coverage of CCENT/CCNA exam material
- Additional key glossary terms
- Bonus labs
- Additional Check Your Understanding and Challenge questions
- Interactive activities and Packet Tracer activities on the CD-ROM

Goal of This Book

First and foremost, by providing a fresh, complementary perspective of the online content, this book helps you learn all the required materials of the first course in the Networking Academy CCNA Discovery curriculum. As a secondary goal, individuals who do not always have Internet access can use this text as a mobile replacement for the online curriculum. In those cases, you can read the appropriate sections of this book, as directed by your instructor, and learn the topics that appear in the online curriculum. Another secondary goal of this book is to serve as your offline study material to help prepare you for the CCENT and CCNA exams.

Audience for This Book

This book’s main audience is anyone taking the first CCNA Discovery course of the Networking Academy curriculum. Many Networking Academies use this textbook as a required tool in the course, while other Networking Academies recommend the *Learning Guides* as an additional source of study and practice materials.
Book Features
The educational features of this book focus on supporting topic coverage, readability, and practice of the course material to facilitate your full understanding of the course material.

Topic Coverage
The following features give you a thorough overview of the topics covered in each chapter so that you can make constructive use of your study time:

- **Objectives**: Listed at the beginning of each chapter, the objectives reference the core concepts covered in the chapter. The objectives match the objectives stated in the corresponding chapters of the online curriculum; however, the question format in the Learning Guide encourages you to think about finding the answers as you read the chapter.

- **“How-to” feature**: When this book covers a set of steps that you need to perform for certain tasks, the text lists the steps as a how-to list. When you are studying, the icon helps you easily refer to this feature as you skim through the book.

- **Notes, tips, cautions, and warnings**: These are short sidebars that point out interesting facts, timesaving methods, and important safety issues.

- **Chapter summaries**: At the end of each chapter is a summary of the chapter’s key concepts. It provides a synopsis of the chapter and serves as a study aid.

Readability
The authors have compiled, edited, and in some cases rewritten the material so that it has a more conversational tone that follows a consistent and accessible reading level. In addition, the following features have been updated to assist your understanding of the networking vocabulary:

- **Key terms**: Each chapter begins with a list of key terms, along with a page-number reference from inside the chapter. The terms are listed in the order in which they are explained in the chapter. This handy reference allows you to find a term, flip to the page where the term appears, and see the term used in context. The Glossary defines all the key terms.

- **Glossary**: This book contains an all-new Glossary with more than 350 computer and networking terms.

Practice
Practice makes perfect. This new Learning Guide offers you ample opportunities to put what you learn to practice. You will find the following features valuable and effective in reinforcing the instruction that you receive:

- **Check Your Understanding questions and answer key**: Updated review questions are presented at the end of each chapter as a self-assessment tool. These questions match the style of questions that you see in the online course. Appendix A, “Check Your Understanding and Challenge Questions Answer Key,” provides an answer key to all the questions and includes an explanation of each answer.

- **(NEW) Challenge questions and activities**: Additional, and more challenging, review questions and activities are presented at the end of chapters. These questions are purposefully designed to be similar to the more complex styles of questions you might see on the CCNA exam. This section might also include activities to help prepare you for the exams. Appendix A provides the answers.
Packet Tracer activities: Interspersed throughout the chapters you’ll find many activities to work with the Cisco Packet Tracer tool. Packet Tracer allows you to create networks, visualize how packets flow in the network, and use basic testing tools to determine whether the network would work. When you see this icon, you can use Packet Tracer with the listed file to perform a task suggested in this book. The activity files are available on this book’s CD-ROM; Packet Tracer software, however, is available through the Academy Connection website. Ask your instructor for access to Packet Tracer.

Interactive activities: These activities provide an interactive learning experience to reinforce the material presented in the chapter.

Labs: This book contains all the hands-on labs from the curriculum plus additional challenge labs for further practice. Part I includes references to the hands-on labs, as denoted by the lab icon, and Part II of the book contains each lab in full. You may perform each lab as you see each lab referenced in the chapter or wait until you have completed the chapter.

A Word About Packet Tracer Software and Activities

Packet Tracer is a self-paced, visual, interactive teaching and learning tool developed by Cisco. Lab activities are an important part of networking education. However, lab equipment can be a scarce resource. Packet Tracer provides a visual simulation of equipment and network processes to offset the challenge of limited equipment. Students can spend as much time as they like completing standard lab exercises through Packet Tracer, and have the option to work from home. Although Packet Tracer is not a substitute for real equipment, it allows students to practice using a command-line interface. This “e-doing” capability is a fundamental component of learning how to configure routers and switches from the command line.

Packet Tracer v4.x is available only to Cisco Networking Academies through the Academy Connection website. Ask your instructor for access to Packet Tracer.

A Word About the Discovery Server CD

The CCNA Discovery series of courses is designed to provide a hands-on learning approach to networking. Many of the CCNA Discovery labs are based on Internet services. Because it is not always possible to allow students access to these services on a live network, the Discovery Server has been developed to provide them.

The Discovery Server CD is a bootable CD developed by Cisco that transforms a regular PC into a Linux server running several preconfigured services for use with the CCNA Discovery labs. The Discovery Server is available from the Academy Connection website only. Your instructor can download the CD files from the Instructor Tools section of the Academy Connection website, burn a CD, and show you how to make use of the Server. Hands-on labs that make use of the Discovery Server are identified within the labs themselves.

Once booted, the server provides many services to clients including
- Domain Name Services
- Web Services
- FTP
How This Book Is Organized

This book covers the major topics in the same sequence as the online curriculum for the CCNA Discovery Networking for Home and Small Businesses course. The online curriculum has 10 chapters for this course, so this book has 10 chapters with the same names and numbers as the online course chapters.

To make it easier to use this book as a companion to the course, the major topic headings in each chapter match, with just a few exceptions, the major sections of the online course chapters. However, the Learning Guide presents many topics in slightly different order inside each major heading. Additionally, the book occasionally uses different examples than the course. As a result, students get more detailed explanations, a second set of examples, and different sequences of individual topics, all to aid the learning process. This new design, based on research into the needs of the Networking Academies, helps typical students lock in their understanding of all the course topics.

Chapters and Topics

Part I of this book has 10 chapters, as follows:

- **Chapter 1, “Personal Computer Hardware,”** discusses different types of personal computers, how they are used, and the difference between local and network applications. This chapter describes how data is represented and manipulated in a computer system. Also covered is the role of the various computer components and peripherals and the proper way to install and test them.

- **Chapter 2, “Operating Systems,”** introduces the OS, its key components, and user interfaces as well as some of the more common operating systems. It provides an overview of the commercial and GPL software licensing schemes. This chapter presents different options for OS installation and describes the process for upgrading and maintaining the OS. It covers the common types of file systems used with PCs and hard disk partitioning. You will also learn the IP parameters that must be configured to prepare a computer to participate on the network.

- **Chapter 3, “Connecting to the Network,”** introduces communications protocols and describes how communication occurs on an Ethernet network. The main components of an information network are explored as are the roles clients and servers play. In this chapter you will build a peer-to-peer computer network and verify it is functioning. Logical and physical topologies are compared and the layered networking model is introduced. You will learn how hubs, switches, and routers function. Also covered are broadcast and collision domains, ARP, default gateways, and prototyping.

- **Chapter 4, “Connecting to the Internet Through an ISP,”** introduces ISP services, options for connecting to the Internet, and components of an ISP Network Operations Center (NOC). This chapter discusses the Internet Protocol (IP) and how information is sent across the Internet.
through an ISP. Other major areas covered by this chapter are the cabling and connectors used for connecting network devices, with focus on Ethernet UTP cables and how they are constructed. You will build Ethernet cables and test them.

- **Chapter 5, “Network Addressing,”** examines the IP address and subnet mask and how they are used on a network. Unicast, multicast, and broadcast IP addresses are introduced as well as the three classes of assignable IP addresses. This chapter covers how IP addresses are obtained, the differences between public and a private addresses, and how network address translation (NAT) functions.

- **Chapter 6, “Network Services,”** builds on the client/server model as it relates to common network services. This chapter describes the TCP and UDP transport protocols, the function of port numbers, and the protocols and applications that use them. Focus is on major Internet services, applications, and protocols including DNS, e-mail, WWW, FTP, and IM. The concept of a protocol stack and how protocols interact on a host when sending and receiving a message are introduced. The purpose of a layered networking model is discussed as are the two major models in use, the Open Systems Interconnect (OSI) and the TCP/IP model.

- **Chapter 7, “Wireless Technologies,”** explores the benefits and limitations of wireless technology and where it is used. This chapter compares the wireless personal-area network (WPAN), wireless local-area network (WLAN), and wireless wide-area network (WWAN). It describes components required to build a WLAN and their functions as well as the current standards for WLANs and how they compare. In this chapter, you will configure parameters on a wireless access point (AP) to allow a wireless client to access network resources. You will also explore techniques available to help secure the WLAN.

- **Chapter 8, “Basic Security,”** introduces networking threats, their characteristics, and different methods of attack. This chapter also describes security procedures and applications that can help prevent attacks and focuses on firewalls, their capabilities, and how a DMZ is structured. You will configure a DMZ and port forwarding with an integrated router device. You will also learn about vulnerability analysis software and how it can help to prevent attacks.

- **Chapter 9, “Troubleshooting Your Network,”** identifies the steps involved in the troubleshooting process and some of the common troubleshooting techniques. Utilities available for troubleshooting connectivity issues are explored. This chapter also covers some of the more common issues with wired and wireless LANs and suggests some possible sources of help when troubleshooting.

- **Chapter 10, “Putting It All Together,”** In this summary activity, you use what you have learned about computer hardware and software, wired and wireless networking components, protocols and applications, and techniques for securing a network to plan and implement a technical solution for a small business.

Part II of this book includes the labs that correspond to each chapter.

This book also includes the following:

- An appendix, “Check Your Understanding and Challenge Questions Answer Key,” provides the answers to the Check Your Understanding questions that you find at the end of each chapter. It also includes answers for the Challenge questions and activities that conclude most chapters.

- The Glossary provides a compiled list of all the key terms that appear throughout this book plus additional computer and networking terms.
About the CD-ROM

The CD-ROM included with this book provides many useful tools and information to support your education:

- **Packet Tracer Activity files**: These are files to work through the Packet Tracer activities that are referenced throughout the book, as indicated by the Packet Tracer activity icon.

- **Interactive Activities**: The CD-ROM contains the interactive activities referenced throughout the book.

- **OSI Model Overview**: The CD-ROM also contains a brief overview of the OSI model for your reference.

- **Taking Notes**: This section includes a .txt file of the chapter objectives to serve as a general outline of the key topics of which you need to take note. The practice of taking clear, consistent notes is an important skill for not only learning and studying the material but for on-the-job success as well. Also included in this section is “A Guide to Using a Networker's Journal”; a PDF booklet providing important insight into the value of the practice of using a journal, how to organize a professional journal, and some best practices on what, and what not, to take note of in your journal.

- **IT Career Information**: This section includes a Student Guide to applying the toolkit approach to your career development. Learn more about entering the world of Information Technology as a career by reading two informational chapters excerpted from *The IT Career Builder's Toolkit*: “Information Technology: A Great Career” and “Breaking into IT.”

- **Lifelong Learning in Networking**: As you embark on a technology career, you will notice that it is ever-changing and evolving. This career path provides new and exciting opportunities to learn new technologies and their applications. Cisco Press is one of the key resources to plug into on your quest for knowledge. This section of the CD-ROM provides an orientation to the information available to you and tips on how to tap into these resources for lifelong learning.
This page intentionally left blank
This page intentionally left blank
Objectives

Upon completion of this chapter, you will able to answer the following questions:

- What is the purpose of an OS?
- What role do the shell and kernel play?
- What is the difference between a CLI and GUI interface?
- What is a network redirector?
- What are some of the common operating systems available?
- What is the difference between commercial and GPL software licensing?
- What are the different options for OS installation?
- What is an OS upgrade and how is it performed?
- What is a file system and what types are used with PCs?
- What IP parameters must be configured to prepare a computer to participate on the network?
- How are operating systems maintained?

Key Terms

This chapter uses the following key terms. You can find the definitions in the Glossary.

- operating system (OS) page 42
- kernel page 43
- shell page 43
- command-line interface (CLI) page 43
- graphical user interface (GUI) page 43
- K Desktop Environment (KDE) page 44
- multitasking page 44
- network client page 45
- network operating system (NOS) page 46
- GNU Public License (GPL) page 46
- UNIX page 46
- Linux page 46
- total cost of ownership (TCO) page 49
- upgrade page 50
- virtual machine page 50
- file system page 51
- File Allocation Table (FAT) 16/32 page 51
- New Technology File System (NTFS) page 51
- ext page 52
- ext3 page 52
- data loss page 52
- network interface card (NIC) page 52
- Internet Protocol (IP) page 52
- IP address page 52
- computer name page 53
- patch page 55
How we interact with our computer, and what applications it can run, affects our ability to communicate with others. Computer operating systems enable us to use application software, store information, and join the network. The operating system is the most important program running on a computer. Without it the other programs and features will not operate. In this chapter you will learn about the most popular operating systems, and how to choose the one that will be right for your computer. Part II of this book includes the corresponding labs for this chapter.

Choosing the Operating System

There are a number of operating systems in use with modern computers. Most client computers purchased in a retail outlet come with the operating system preloaded. If a computer is ordered from an online retail outlet, the purchaser frequently has a choice of which OS is installed. Business environments often need to consider other options depending on the intended function of the computer. They may even build their own computers and install the desired OS.

Purpose of an Operating System

System components and peripherals, by themselves, are nothing more than a collection of electronics and mechanical parts. To get these parts to work together to perform a specific task, a special type of computer program, known as an operating system (OS), is required.

Suppose that a user wants to write a report and print it out on an attached printer. A word processing application is required to accomplish this task. Information is entered from the keyboard, displayed on the monitor, saved on the disk drive, and then finally sent to the printer.

In order for the word processing program to accomplish all of this, it must work with the OS, which controls input and output functions. The OS uses specialized software programs known as drivers to interact with the various hardware components. Every major electronic component inside the computer or attached to it requires a driver. These drivers might be integrated into the OS or standalone software modules used by the OS. The OS and its drivers are what accepts the information entered from the keyboard, displays it on the monitor, saves it to disk, and sends the document to the printer. As shown in Figure 2-1, the keyboard, mouse, and disk drivers are typically integrated into the OS whereas video and printer drivers are typically external software modules. The entered data is manipulated inside of the computer, stored in RAM, and processed by the CPU. This internal manipulation and processing is also controlled by the OS. All computerized devices, such as servers, desktops, laptops, or handhelds, require an OS in order to function.

Figure 2-1 Computer Components and OS Drivers

![Diagram of computer components and OS drivers](image-url)
The OS acts like a translator between user applications and the hardware. A user interacts with the computer system through an application, such as a word processor, spreadsheet, or computer game. Application programs are designed for a specific purpose, such as word processing, and know nothing of the underlying electronics. For example, the application is not concerned with how information is entered into the application from the keyboard. The operating system is responsible for the communication between the application and the hardware.

When a computer is powered on, it loads the OS, normally from a permanent storage device, such as a hard disk drive, into RAM. The portion of the OS code that interacts directly with the computer hardware is known as the *kernel*. The portion that interfaces with the applications and user is known as the *shell*. The user can interact with the shell using either the *command line interface (CLI)* or *graphical user interface (GUI)*. Figure 2-2 shows the relationship between the OS shell, the kernel, and the computer hardware.

Figure 2-2 OS Shell, Kernel, and Hardware Relationship

![Diagram of OS Shell, Kernel, and Hardware Relationship](image)

When using the CLI, the user interacts directly with the system in a text-based environment by entering commands on the keyboard at a command prompt. The system executes the command, often providing textual output on the monitor. Figure 2-3 shows the Windows CLI interface command prompt screen with a directory of drive C:\ displayed using the `dir` command.

Figure 2-3 Directory of Drive C:\ Using the Windows CLI Command Prompt Window

![Image of Windows CLI Command Prompt with Directory of Drive C:\](image)
The GUI allows the user to interact with the system in an environment that uses graphical images, multimedia, and text. Actions are performed by interacting with the images onscreen. GUI is more user friendly than CLI and requires less knowledge of the command structure to utilize the system. For this reason, many individuals rely on the GUI environments. Most operating systems offer both GUI and CLI. Although the GUI is more user friendly, knowing how to work with the CLI is still useful. The GUI depends on the graphics subsystems of the computer to display the high-resolution, multicolor images. If a problem occurs with the graphics hardware or drivers, the CLI might be the only interface available to the user for troubleshooting. Figure 2-4 shows the Windows Explorer GUI interface screen with a directory of drive C:\ displayed by clicking with the mouse.

Figure 2-4 Directory of Drive C:\ Using the Windows Explorer GUI

Figure 2-5 shows a Linux CLI terminal window for entering commands. The structure of the file system is displayed using the `ls –l` UNIX command, which is similar to the Windows `dir` command. The `ls –l` command lists directories (also called folders) and files, using the –l or “long” option. This option provides additional information for each file and directory. Without the –l option, only the directory and filenames would be displayed. With this listing, the name of the directory (or file) is the last entry in blue.

Figure 2-6 shows a Linux GUI window for displaying and managing directories and files. The structure of the file system is displayed using the `K Desktop Environment (KDE) File Browser` application. KDE File Browser is similar to the Windows Explorer application. Notice that directories are referred to as folders in the GUI screen.

Operating systems have complete control of local hardware resources. They are designed to work with one user at a time. They enable the user to do more than one thing at a time using multiple applications. This capability is known as **multitasking**. The operating system keeps track of which resources are used by which application. A single processor can only manipulate memory to give the impression of multitasking. The CPU is actually giving each application a portion or slice of its processing time. The more applications the system is running, the smaller the time slice for each application. Multiprocessor systems can have multiple independent CPU chips or multiple CPUs on one chip (for example, dual-core). These systems can actually perform multiple tasks simultaneously.
In order to work with resources that are not directly connected to the computer system, a special piece of software called a *redirector* must be added. Redirectors make it possible to reroute a data request from the OS out of the local machine onto the network to a remote resource. The redirector can either be an integral part of the OS or can be installed separately. With a redirector, the local PC can access remote resources as a *network client*. With a redirector installed, the operating system acquires some of the characteristics of a network operating system (NOS). Figure 2-7 shows the use of the OS redirector when a host needs access to a remote resource on the network. The document being retrieved might appear to the user that it is on the local machine. However, the redirector must send the request out the network interface card (NIC) to contact the remote server and actually retrieve the document.
An operating system that is specifically designed for a network is referred to as a network operating system (NOS). A NOS includes features that allow management of network resources like files, printers, LAN users, and security, and is typically installed on a server. Most network resources appear to the end users as if they were on their local machine, when in reality the NOS is providing the resource to the PC. A true NOS offers complex scheduling and user management software that allows a server to share resources between many users and resources. The client OS with a redirector can access the server NOS resources as if they were directly connected.

Operating System Requirements

Many different operating systems are available. The major groupings are listed here with some examples. Most of these are proprietary commercial offerings.

- **Microsoft Windows**: XP, Vista, and 2003 Server
- **UNIX-Based**: IBM AIX, Hewlett Packard HPUX, and Sun Solaris
- **BSD**: Free BSD
- **Linux-Based**: Many varieties
- **Macintosh OS X**
- **Non-UNIX Proprietary**: IBM OS/400, z/OS

Although most of these operating systems require the user to purchase and agree to a commercial license, several operating systems are released under a different type of licensing scheme known as the **GNU Public License (GPL)**.

Commercial licenses usually deny end users the ability to modify the program in any way. Windows XP, Mac OS X, and **UNIX** are all examples of commercial OS software.

In contrast, the GPL allows end users to modify and enhance the code, if they desire, to better suit their environment. Some common operating systems released under the GPL include **Linux** and BSD. Refer to Table 2-1 for a comparison of commercially licensed operating systems and those released under GPL.
Table 2-1 Commercial and GPL License Comparison

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Commercial License</th>
<th>GNU Public License (GPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Restrictive in nature and limits what the user can do with the code.</td>
<td>Ensures everyone has full access to the source code and can participate in enhancement of the product.</td>
</tr>
<tr>
<td>Cost</td>
<td>Often very expensive depending on deployment (for example, a Windows XP license must normally be purchased for every client machine on a network).</td>
<td>Often released free-of-charge (for example, Linux can be freely installed on as many machines as desired). However, the cost of retraining for a GPL product might exceed the discounted cost of a commercial license.</td>
</tr>
<tr>
<td>Development</td>
<td>Very structured development cycle and changes not quickly available.</td>
<td>Development cycle is less structured and changes are more quickly implemented.</td>
</tr>
<tr>
<td>Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td>Structured support available for a fee.</td>
<td>Less of a structured support arrangement, often relying on community (user-based) support. Some companies that distribute GPL products provide fee-based support.</td>
</tr>
</tbody>
</table>

Operating systems require a certain amount of hardware resources. These resources are specified by the manufacturer and include such things as

- Amount of RAM
- Hard disk space required
- Processor type and speed
- Video resolution

Manufacturers often specify both a minimum and recommended level of hardware resources. System performance at the minimum specified hardware configuration is usually poor and only sufficient to support the OS and little other functionality. The recommended configuration is usually the better option and is more likely to support standard additional applications and resources. Adding hardware over that recommended, such as another CPU and more RAM, can further improve system performance, but at a significant cost.

To take advantage of all the features provided by an operating system and installed applications, hardware resources such as sound cards, NICs, modems, microphones, and speakers are generally required. Many of the OS developers test various hardware devices and certify that they are compatible with the operating system. Always confirm that the hardware has been certified to work with the operating system before purchasing and installing it. Table 2-2 shows a sample comparison of the minimum amount of hardware needed and the recommended hardware necessary to get the most out of the OS and applications running on the computer.
Operating System Selection

You need to consider many factors before deciding on which OS to use in a given environment.

The first step in selecting an OS is to ensure that the OS being considered fully supports the requirements of the end user. Does the OS support the applications that will be run? Is the security and functionality sufficient for the needs of the users?

Next, conduct research to make sure that sufficient hardware resources are available to support the OS. This includes such basic items as memory, processors, and disk space, as well as peripheral devices such as scanners, sound cards, NICs, and removable storage.

Another consideration is the level of human resources needed to support the OS. In a business environment, a company might limit support to one or two operating systems and discourage, or even disallow, the installation of any other OS. In the home environment, the ready availability of technical support for an OS might be a determining factor. The following are some of the factors that should be considered when selecting an OS:

- Security
- Support
- Politics
- Cost
- Availability

Interactive Activity 2-1: Software Licensing Scenarios (2.1.2.3)

In this interactive activity, you determine the appropriate type of software licensing for a scenario. Use file ia-2123 on the CD-ROM that accompanies this book to perform this interactive activity.

Table 2-2 Minimum and Recommended OS Requirements

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>512 Megahertz</td>
<td>1 Gigahertz</td>
</tr>
<tr>
<td>RAM</td>
<td>256 Megabytes</td>
<td>1 Gigabyte</td>
</tr>
<tr>
<td>Hard drive</td>
<td>40 Gigabytes</td>
<td>80 Gigabytes</td>
</tr>
<tr>
<td>Graphics card</td>
<td>800 x 600 pixels</td>
<td>1024 x 768 pixels</td>
</tr>
<tr>
<td>Optical drive</td>
<td>CD-ROM</td>
<td>DVD</td>
</tr>
</tbody>
</table>
When implementing an OS, you should consider **total cost of ownership (TCO)** of the OS in the decision-making process. This not only includes the costs of obtaining and installing the OS, but also all costs associated with supporting it.

Another factor that might come into play in the decision-making process is the availability of the operating system. Some countries and/or businesses have made decisions to support a specific type of OS or might have restrictions barring individuals from obtaining certain types of technologies. In this type of environment, considering a particular OS, regardless of its suitability to the task, might not be possible.

The process for selecting an operating system, as shown in Figure 2-8, must take all of these factors into account.

Figure 2-8 Considerations and Requirements for Selecting an Operating System Process

- Resources
- Platform
- Use
Installing the Operating System

Most operating systems are installed on a clean hard drive by the manufacturer of the computer system. However, several other options are available depending on the existing operating system installed and the circumstances and goals of the user.

OS Installation Methods

An OS is installed in a defined section of the hard disk, called a disk partition. Various methods exist for installing an OS. The method selected for installation is based on the system hardware, the OS being installed, and user requirements. Four basic options are available for the installation of a new OS:

- **Clean install**: A clean install is done on a new system or in cases where no upgrade path exists between the current OS and the one being installed. It deletes all data on the partition where the OS is installed and requires application software to be reinstalled. A new computer system requires a clean install. A clean install is also performed when the existing OS installation has become damaged in some way.

- **Upgrade**: If you are staying with the same OS platform, doing an upgrade is often possible. With an upgrade, system configuration settings, applications, and data are preserved. It simply replaces the old OS files with the new OS files.

- **Multiboot**: Installing more than one OS on a computer to create a multiboot system is possible. Each OS is contained within its own partition and can have its own files and configuration settings. On startup, the user is presented with a menu to select the desired OS. Only one OS can run at a time and it has full control of the hardware. As an example of multiboot, it is possible to install Windows XP, Windows Server, and Linux all on the same system. This setup can be useful in a test environment where only one PC is available but there is a need to test several different OS and applications.

- **Virtualization**: Virtualization is a technique that is often deployed on servers. It enables multiple copies of an OS to be run on a single set of hardware, thus creating many virtual machines. Each virtual machine can be treated as a separate computer. This enables a single physical resource to appear to function as multiple logical resources. This type of approach generally demands more physical resources such as CPU processing and RAM because multiple OSs are running on the same machine.

Interactive Activity 2-2: Operating System Installation Scenarios (2.2.1.2)

In this interactive activity, you determine the appropriate operating system installation technique for each scenario. Use file ia-2212 on the CD-ROM that accompanies this book to perform this interactive activity.

Preparing for OS Installation

A pre-installation checklist helps ensure that the installation process is successful:

Step 1. Verify that all hardware is certified to work with the selected OS. Experienced users can monitor tech blogs to see what problems are being experienced on specific machines/motherboards and so on. This can save the installer time and potential problems.
Step 2. Verify that the hardware resources meet or exceed the published minimum requirements.

Step 3. Confirm that the appropriate installation medium is available. Due to the file size of current operating systems, they are usually available on both CD and DVD media.

Step 4. If the OS is to be installed on a system that already contains data:
 a. Use system diagnostic tools and utilities to ensure that the current OS installation is in good condition, free of malicious or damaging files and codes.
 b. Complete a full backup of all important files.

Step 5. If performing a clean install, verify that all application software is available for installation.

Step 6. If connecting the computer to a network at this time, verify that the network configuration information is available.

Step 7. If this is an end-user computer and a different OS is to be installed, verify that the user has adequate training in the use of the new OS.

Before starting the installation, determining the partition structure that best meets user requirements is necessary. Figure 2-9 depicts hard disk partitioning.

Figure 2-9 Hard Disk Partitioning

One of the techniques available to help protect data is to divide the hard drive into multiple partitions. With a clean install, many technicians prefer to create one partition for data and a separate partition for the OS. This technique enables an OS to be upgraded without the risk of losing data. It also simplifies backup and recovery of data files. Applications might be installed on yet another partition. With all data files on a single partition, backing up only that partition is necessary. The OS and applications can be reinstalled in the event of a system failure.

When installing an OS, determining the type of file system to use is also necessary. A file system is the method the OS uses to keep track of the files. Many different file system types exist. Each OS is designed to work with one or more of these file system types and each file system type offers specific advantages:

- **File Allocation Table (FAT) 16/32**: 16- and 32-bit file systems are common with the earlier home versions of Windows OS but do not provide file security. Proprietary.

- **New Technology File System (NTFS)**: Developed with Windows NT. A more robust and secure file system available with some newer home versions of Windows such as XP and Vista, and the professional and server version of other Windows OSs. Provide journaling of file system changes. Proprietary.
- **Ext2 and ext3**: Second and third extended file systems. Used primarily with Linux distributions. The ext2 file system supports large files, long filenames, and file security and also provides high-performance lookups. Ext3 adds journaling capabilities to ext2. Both ext2 and ext3 are open source.

Careful consideration should be made to the type of file systems supported by the selected OS and the benefits of each.

Although tools exist to modify the partitioning structure and file system of a hard drive after installation, they should be avoided if possible. Modifying either the file system or partition structure on a hard drive might result in **data loss**. Careful planning can help preserve the integrity of the data.

Configuring a Computer for the Network

After an OS is installed, the computer can be configured to participate in a network. A network is a group of devices, such as computers, that are connected to each other for the purposes of sharing information and resources. Shared resources can include printers, documents, and Internet access connections.

To physically connect to a network, a computer must have a **network interface card (NIC)**. The NIC is a piece of hardware that allows a computer to connect to the network medium. It might be integrated into the computer motherboard or might be a separately installed card.

In addition to the physical connection, some configuration of the operating system is required for the computer to participate in the network. Most modern networks connect to the Internet and use it to exchange information. Each computer on these networks requires an **Internet Protocol (IP)** address, as well as other information, to identify it. The IP configuration contains three parts, which must be correct for the computer to send and receive information on the network. These three parts are:

- **IP address**: Identifies the computer on the network.
- **Subnet mask**: Identifies the network on which the computer is connected.
- **Default gateway**: Identifies the device that the computer uses to access the Internet or another network.

In Figure 2-10, the PC must have a NIC installed, usually an Ethernet NIC on modern local networks. It is then configured with an IP address and a subnet mask for the local network it is on. The default gateway entered as part of this configuration is the IP address of the router interface on this local network. All packets that are not destined for local hosts will be sent to the default gateway.

Figure 2-10 Configuration Requirements for Connecting to the Network
A computer IP address can be configured manually or assigned automatically by another device, as shown in Figure 2-11.

Figure 2-11 Manual and Dynamic IP Configuration

With manual configuration, the required values are entered into the computer via the keyboard, typically by a network administrator. The IP address entered is referred to as a static address and is permanently assigned to that computer.

Computers can be set up to receive their network configuration dynamically. This feature allows a computer to request an address from a pool of addresses assigned by another device within the network. When the computer is finished with the address it is returned to the pool for assignment to another computer.

Computer Naming

In addition to the IP address, some network operating systems make use of computer names. In this environment each individual system must have a unique name assigned to it.

A *computer name* provides a user-friendly way to identify a computer, making it easier for users to connect to shared resources such as folders and printers on other computers.

The network administrator should determine a logical naming scheme that helps to identify a device’s type and/or its location. For example, the name PRT-CL-Eng-01 could represent the first network-attached color laser printer in the Engineering Department.

These names are manually assigned to each device, although some tools do exist to help automate the naming process. A computer description can also be entered when assigning a name to provide additional information on the location or function of the device. Figure 2-12 shows the use of Windows System Properties to enter a computer name.
Figure 2-12 Using Windows System Properties to Name a Computer

Network Name and Address Planning
As a network grows in size and complexity, ensuring that it is well planned, logically organized, and well documented becomes increasingly important.

Many organizations develop conventions for the naming and addressing of computers. These conventions provide guidelines and rules that network support personnel can use when performing these tasks. Computer names must be unique and should have a consistent format that conveys meaningful information. This method can help to determine device type, function, location, and sequence number based on the device name. IP addresses must also be unique to each device.

The use of logical device naming and addressing conventions that are well documented can greatly simplify the tasks of training and network management and can help with troubleshooting when problems arise. Figure 2-13 illustrates a logical naming scheme that can assist the network administration staff.

Figure 2-13 Computer Naming Conventions

Maintaining the Operating System
As operating systems and applications software continue to evolve, users need to keep their systems up to date to ensure they have the latest features and that their systems operate efficiently and are protected against attacks.
Why and When to Apply Patches

After an OS or application is installed, keeping it up to date with the latest patches is important.

A patch is a piece of program code that can correct a problem or enhance the functionality of an application program or OS. It is usually provided by the manufacturer to repair a known vulnerability or reported problem. In most cases a patched OS results in a healthier, more stable computer, as shown in Figure 2-14.

Figure 2-14 Operating System Patches

Computers should be continually updated with the latest patches unless a good reason exists not to do so. Sometimes patches negatively impact the operation of another system feature. The impact of the patch should be clearly understood before it is applied. The software manufacturer’s website usually provides this information.

Applying OS Patches

Patches to operating systems can be installed in different ways, depending on the OS and the needs of the user. Options for downloading and installing updates include the following:

- **Automatic installation**: The OS can be configured to connect to the manufacturer’s website and then download and install minor updates without any user intervention. Updates can be scheduled to occur during times when the computer is on, but not in use.

- **Prompt for permission**: Some users want to have control over which patches are applied. This choice is often the one for users who understand what impact a patch can have on system performance. The system can be configured to notify the end user when a patch is available. The user must then decide whether to download and install the patch.

- **Manual**: Updates that require major pieces of code to be replaced on a system should be run manually. These major updates are often called service packs and are designed to correct problems with an application or OS, and sometimes to add functionality. These service packs usually require the end user to manually connect to a website, download files, and install the update. They can also be installed from a CD available from the manufacturer.

Figure 2-15 shows the Automatic Updates options in Windows System Properties.
Interactive Activity 2-3: OS Update Options (2.3.2.2)

In this interactive activity, you determine what type of update the scenario is describing. Use file ia-2322 on the CD-ROM that accompanies this book to perform this interactive activity.

Application Patches and Updates

Applications also require patches and updates. Patches are usually released by the manufacturer to repair a detected vulnerability in the application that could lead to undesirable behavior.

Browsers and office software such as word processors and spreadsheet and database applications are common targets for network attacks. These applications require updates to correct the code that might allow the attack to succeed. The manufacturer might also develop updates that can improve product functionality, at no additional cost.

OS and application patches are generally found through the manufacturer’s website. The installation process might request permission to install the update and to verify that any supporting software is present. The installation process might also install any programs that are required to support the update. Web updates can be downloaded to the system from the Internet and installed automatically. Figure 2-16 shows the Internet Explorer Security Warning that is displayed before an update is downloaded and installed.

Figure 2-16 Installing an Update from the Internet
Lab 2-1: Examining Operating System and Application Versions (2.3.3.2)
In this lab you will examine the current version of OS and installed applications and determine whether additional patches or updates are available. Refer to the Hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.

Challenge Lab 2-2: Evaluating an OS Upgrade
In this lab you will evaluate the existing hardware of a Windows XP computer and determine whether it can support an upgrade to Windows Vista. Refer to the Hands-on lab in Part II of this Learning Guide. You may perform this lab now or wait until the end of the chapter.
Summary

An operating system (OS) is the most important software in a PC. It is responsible for making all the hardware components and software applications work together. An OS can be installed by the manufacturer, an end user, or a network administrator.

The OS is comprised of a kernel, a shell, and device drivers. The kernel is the main OS program and interacts directly with the hardware through the use of device drivers. The shell interacts with the applications and the user. The user interacts with the shell through the command-line interface (CLI) or a graphical user interface (GUI).

A network operating system (NOS) is a sophisticated OS that allows a computer to share resources among many users and to treat networked resources as if they are directly connected. A NOS includes features that allow management of network resources such as files, printers, LAN users, and security, and is typically installed on a server.

Performing a pre-installation checklist before installing any new OS is important. An OS is installed in a disk partition, which is a defined section of the hard disk. Decide on partition schemes before installing the OS.

Operating systems use various file systems. The most common file systems are Windows FAT 16/32 and NTFS. For Linux they are ext2 and ext3.

To participate in a network, a computer requires a network interface card (NIC) configured with an IP address, subnet mask, and default gateway. The network should be well planned, logically organized, and well documented using standard addressing and naming conventions.

Keeping OS and application software up to date with the latest revisions, upgrades, or patches is important. A patch is a piece of program code that corrects a problem or enhances the functionality of an OS. An OS can be configured to connect automatically to the manufacturer’s website and download and install minor updates without any user intervention. Service packs are major updates to an OS or software application. Application software can also require patches and updates to repair a detected vulnerability in the application. Applications patches are generally found through the manufacturer’s website.

Part II of this book includes the corresponding labs for this chapter.

Activities and Labs

This summary outlines the activities and labs you can perform to help reinforce important concepts described in this chapter. You can find the activity and Packet Tracer files on the CD-ROM accompanying this book. The complete hands-on labs appear in Part II.

Interactive Activities on the CD-ROM:
Interactive Activity 2-1: Software Licensing Scenarios (2.1.2.3)
Interactive Activity 2-2: Operating System Installation Scenarios (2.2.1.2)
Interactive Activity 2-3: OS Update Options (2.3.2.2)
Labs in Part II of This Book:
Lab 2-1: Examining Operating System and Application Versions (2.3.3.2)
Challenge Lab 2-2: Evaluating an OS Upgrade

Check Your Understanding

Complete all the review questions listed here to test your understanding of the topics and concepts in this chapter. The “Check Your Understanding and Challenge Questions Answer Key” appendix lists the answers.

1. A network technician is installing the Linux OS on a computer. What are the most likely file systems she will select from?

2. A network technician needs to install a new operating system on a computer. In order to preserve the data, application, and configuration settings as well as the partitioning already present, which installation method should be used?
 A. Clean install
 B. Upgrade
 C. Multiboot
 D. Virtualization

3. Allan just purchased a new PC for attachment to an Ethernet local network. What three basic static IP configuration parameters will he need to enter to allow this PC to participate on the network?

4. When developing a naming scheme for a network, which two pieces of information are most beneficial when determining a computer name? (Choose two.)
 A. Device type
 B. Location
 C. Year purchased
 D. Operating system
 E. Software installed

5. What is the term used to describe the software added to an OS that allows a user to access remote network resources as if they were local?

6. What portion of operating system code interacts directly with computer hardware?

7. Which two operating systems issued under the GPL allow end users to modify and enhance code? (Choose two.)
 A. Windows XP
 B. Mac OS X
 C. Linux
 D. BSD
 E. UNIX
8. What three factors need to be considered when choosing an operating system? (Choose three.)
 A. The operating system has limited availability.
 B. The operating system supports end-user requirements.
 C. Sufficient hardware resources are available.
 D. Users can provide training on the new software without help.
 E. Human resources exist to support the product.
 F. The operating system is backward compatible with MS-DOS.

9. Jessica’s home computer is currently running Windows 98. She wants to convert to Windows Vista but wants to keep her data and applications. She checks the Microsoft website and finds that there is no upgrade path from Windows 98 to Vista. What steps should she take to convert to Vista? (Choose all that apply.)
 A. Back up her data
 B. Verify her hardware has enough resources to support Vista
 C. Reinstall her applications
 D. Perform a clean install of Vista

10. A network administrator wants to set up the OS update options on the Windows PCs in his network so that he is made aware of updates when they are available but has the opportunity to check what changes the updates contain before downloading and installing them. Which update option does he need to use?
 A. Prompt for permission
 B. Automatic installation
 C. Manual installation
Index

Numbers
8-bit bytes, 172
8-bit masks, 176
10BASE-T cables, 158
16-bit masks, 177
802.11a standard, 237
802.11b standard, 237
802.11g standard, 237
802.11n standard, 237

A
Accelerated Graphic Port (AGP), 21
acceptable use policies, 277
access
commercial versus GPL licenses, 47
remote resources, 45
servers, 202
access layer (Ethernet), 92, 96-98
ARP, 101-103
broadcast messages, 99-100
hubs, 95-96
IP addresses, 101
MAC addresses, 101
messages, 80
switches, 96-98
access points. See APs
Acknowledgment (DHCP), 187
ACKs (acknowledgments), 244
activity LEDs, 311
ad-hoc networks, 240
adapter cards, 20
controller cards, 22
modems, 22
NICs, 21, 25, 52
sound, 21
video, 21

Address Resolution Protocol (ARP), 101-103
addresses
default gateway, 107-108, 188
inside global, 192
inside local, 192
IP
assigning, 184-190
broadcast, 181-182
classes, 177-179
configuring, 53, 173
decimal equivalent, 174
dotted-decimal notation, 172
dynamic assignment, 184-185
function, 172
hierarchy, 174-175
host connections, 190
IPv4, 174
local Ethernet networks, 101
multicast, 182-183
NAT, 190-193
network boundaries, 188
network connections, 52
private, 179-180
public, 179
structure, 172-174
subnet mask interaction, 175-177
unicast, 181
uniqueness, 139
logical, 91
MAC, 87
filtering, 250
hexadecimal notation, 99
local Ethernet networks, 101
tables, 96-97
physical addressing, 87-88
adware, 274
AGP (Accelerated Graphic Port), 21
American Standard Code for Information Interchange (ASCII), 12

analog frequencies, 16
antennas (WLANs), 239
anti-spam software, 280-281
anti-spyware, 282
anti-virus software, 278-280
APIPA (Automatic Private IP Addressing), 180
appliances-based firewalls, 283
application protocols
 client/server systems, 204
 DNS, 209-210
 e-mail clients/servers, 213-215
 FTP clients/servers, 212
 IM clients/servers, 215
 port numbers, 217-218
 VoIP clients/servers, 216
 web clients/servers, 211
applications. See software; utilities
applying patches, 55
approaches to troubleshooting, 298
 bottom-up, 298
 divide-and-conquer, 300
 substitution, 301
 top-down, 298
 trial-and-error, 301
APs (access points), 239
 client associations, 252
 configuring, 244
 channels, 246
 SSIDs, 245
 wireless modes, 244
 WLANs, 239, 257
ARP (Address Resolution Protocol), 101-103
ASCII (American Standard Code for Information Interchange), 12
assigning
 channels (WLANs), 242
 IP addresses, 184-190
 DHCP configuring, 186-188
 DHCP servers, 185-186
 dynamic, 184-185
 static, 184
asymmetric services, 136-137
attacks (security)
 normal operations, 271
 brute-force, 272
 Denial of Service, 271-272
 Distributed Denial of Service, 272
 risks, 266
 social engineering, 268-269
 software, 270
 signs, 279
 Trojan horses, 271
 viruses, 270
 worms, 270
 sources, 267-268
 spam, 275
types of threats, 266
user information collection, 273
 adware, 274
 cookies, 274
 pop-ups/pop-unders, 275
 spyware, 273
WLANs, 248-250
attenuation, 161
authentication
 policies, 277
 troubleshooting, 313
WLANs, 251
 EAP, 252
 open, 251
 pre-shared keys, 251
Automatic Private IP Addressing (APIPA), 180
availability of operating systems, 49

B
back-side bus (BSB), 19
backbone connections, 132
backing up configuration files, 257-258
bandwidth
 fiber-optic cables, support, 152
 WLANs, 256
baseband transmission, 85
baseline Linksys router, 120
Basic Service Sets (BSSs), 239
binary digits, 172
binary format, 12
BIOS (basic input output system), 6
bits, 12
blade servers, 8
Blu-ray disks, 23
Bluetooth, 234
bottom-up troubleshooting, 298
boundaries (network), 188
braids (coax), 151
bridges, 239
broadband, 133
broadcasts
 addresses, 181-182
 domains, 99
 Ethernet, 90
 local networks, 99-100
 messages, 82-84
 replying, 99
 sending, 99
brute-force attacks, 272
BSB (back-side bus), 19
BSD operating system, 46
BSSs (Basic Service Sets), 239
buffers (fiber-optic cables), 152
bus topologies, 72
business class ISP service, 135
businesses
 critical services, 8
 software, 6
 requirements, 325
busses, 19-21
bytes, 12

C

Cable Modem Termination System (CMTS), 142
cable modems, 135
cables
 10BASE-T, 158
 best practices, 162-164
 Category 3, 148-150
 Category 5, 150
 Category 6, 150
 Category 7, 150
certifiers, 160
 coaxial, 148, 151-152
 common, 147-148
crossover, 156
 fiber-optic, 14, 147-148
 bandwidth support, 152
 buffers, 152
 circuits, 152
 cladding, 152
 components, 152
 core, 152
 jackets, 152
 multimode, 153
 single-mode, 154
 strengthening material, 152
managing, 163
metal, 14, 147
shorts, 161
straight-through, 156
structured, 163
successful termination, 162-163
testing, 160-163
 attenuation, 161
 continuity, 161
 crosstalk, 162
 opens, 161
 reversed-pair faults, 161
 shorts, 161
 split-pair faults, 161
tools, 160-161
troubleshooting, 311-312
twisted pair, 148-151
like devices, 157-158
standards, 154-155
T568A/T568B wiring schemes, 155-156
termination, 158-159
unlike devices, 157
careers in networking, 325
Carrier Sense, Multiple Access with Collision
Avoidance (CSMA/CA), 243
Carrier Sense, Multiple Access with Collision
Detection (CSMA-CD), 86
cases (computers), 26
catastrophic failures, 28
Category 3 cables, 148-150
Category 5 cables, 148-150
Category 6 cables, 150
Category 7 cables, 150
CDMA (Code Division Multiple Access), 236
CD-Rs (CD-Recordable), 23
CD-RWs (CD-Read/Write), 23
CDs (compact discs), 23
cell modem ISPs, 134
cell phones, 12
cells (WLANs), 239
central processing units (CPUs), 8, 18-19
channels
communication, 74
wireless APs, 246
WLANs, 242-244
ACKs, 244
assigning, 242
CSMA/CA, 243
RTS/CTS, 243
choosing
operating systems, 48-49
storage devices, 24
Cisco ISR (integrated services router), 119
cladding (fiber-optic cables), 152
Class A addresses, 178
Class B addresses, 178
Class C addresses, 178
Class D addresses, 178
Class E addresses, 178
classes
computers, 7-8
IP addresses, 177-179
classless systems (IP addresses), 177
clean installs, 50
cleaning computers, 28
Clear to Send (CTS), 243
CLI (command-line interface), 43-44
client/server systems
Domain Name Service, 209-210
e-mail clients/servers, 213-215
client configuration, 214
composing messages, 213
Outlook, configuring, 215
POP3/IMAP4 charts, 214
FTP clients/servers, 212
IM clients/servers, 215
port numbers, 217-218
protocols, 204
application, 204
internetwork, 205
network access, 206
transport, 205-208
relationships, 202-203
services, 203
TCP/IP port numbers, 208
VoIP clients/servers, 216
web browser/web server example, 203
web clients/servers, 211
clients
associations with APs, 252
e-mail, 213-215
composing messages, 213
configuring, 214
Outlook, configuring, 215
POP3/IMAP4 charts, 214
FTP, 212
as hosts, 68
IM, 215
multiple, supporting, 68
server relationships, 68
VoIP, 216
web, 211
web pages, displaying, 203
wireless, configuring, 239, 246
 integrated software, 246
 standalone software, 247-248
clouds (Internet), 142
 physical/environmental requirements, 145-146
sdevic, 142-144
CMTS (Cable Modem Termination System), 142
c coaxial cables, 148, 151-152
Code Division Multiple Access (CDMA), 236
collision domains
 hubs, 95
 switches, 98
command-line interface (CLI), 43-44
commercial OS licenses, 46-47
communication
 channels, 74
 computers, 75
 destinations, 74
 Ethernet, 88-89
 human, 74
 Internet, 138-141
messages
 encapsulation, 77-78
 encoding, 76
 flow control, 80
 formatting, 77-78
 patterns, 81-84
 size, 79-80
 timing, 80-81
 physical addressing, 87-88
 protocols, 75-76
 rules, 74-76
 sources, 74
compact discs (CDs), 23

components
 coaxial cables, 151
 computers
 adapter cards, 20-22
 catastrophic failures, 28
 CPUs, 18-19
 drivers, 30
 hot-swapping, 28
 installing, 29-31
 motherboards, 17-20
 RAM, 19-20
 static electricity, 28-29
 storage devices, 22-24
 integrated routers, 118
 networks, 65-67
 hosts, 65-66
 media, 65
 networking devices, 65-66
 peripherals, 65
 WLANs, 238-240
composing e-mail messages, 213
computers
 adapter cards, 20
 controller cards, 22
 modems, 22
 NICs, 21
 sound, 21
 video, 21
 application software, 5
 cases, 26
 catastrophic failures, 28
 cleaning, 28
 communication, 75
 components, installing, 29-31
 CPUs, 18-19
 customizing, 5, 16-17
 data
 digital information, 12
 storage capacities, 13
 transmission, 14-16
 drivers, 30
dust, 28
firmware, 6
functions, 5
hardware, 5
as hosts, 68
hot-swappable components, 28
mass-produced, 16-17
motherboards, 17-20
multiple clients, supporting, 68
naming, 53-54
network configuration, 52-53
operating systems, 5
 applications and hardware communication, 43
 availability, 49
 BSD, 46
 choosing, 48-49
 CLI, 43-44
 defined, 5
 drivers, 42
 function, 42
 GUI, 44
 hardware certification, 47
 hardware resources, controlling, 44
 kernel, 43
 licensing, 46-47
 Linux, 44-46, 68
 Mac, 46
 Microsoft, 70
 multitasking, 44
 non-UNIX proprietary, 46
 NOS, 46
 patches, 55
 redirectors, 45
 requirements, 10-13, 46-48
 shell, 43
 total cost of ownership, 49
 UNIX, 46, 68
 Windows, 46
peripherals, 24-25
 functionality, 33
 installing, 31-33
 legacy, 33
power supplies
 surge suppressors, 26
 uninterruptible, 27
RAM, 19-20
safety precautions, 29
static electricity, 28-29
storage devices
 choosing, 24
 magnetic, 22-23
 optical, 23
 static memory, 24
types
 classes, 7-8
 desktops, 9
 mainframes, 8
 portable, 10-12
 servers, 8-9
 workstations, 9
work areas, 28
working inside, 28
conductors (coax), 152
configuration files, 257-258
configuring
 APs, 244
 channels, 246
 SSIDs, 245
 wireless modes, 244
computers for networks, 52-53
DHCP, 186-188
e-mail clients, 214
firewalls
 home networking devices, 286-287
 multi, 286
 single, 285
IP addresses, 53, 173
Outlook, 215
wireless clients
 integrated software, 246
 standalone software, 247-248
connections
 hosts to IP addresses, 190
 Internet backbone, 132
ISPs
- broadband, 133
- cable modems, 135
- cell modems, 134
- leased lines, 133
- speeds, 135
Linksys integrated routers, 119-120
troubleshooting, 309
- Internet, 315-316
- ipconfig, 303-304
- netstat, 307-308
- nslookup, 308-309
- physical problems, 301-302
- ping, 304-305
- software utilities, 302
- tracert, 306-307
- wired networks, 311-312
- WLANs, 312-314
content filtering (ISPs), 136
continuity tests, 161
controller cards, 22
converged networks, 64
cookies, 274
core (fiber-optic cables), 152
core layer (Ethernet), 93
costs
- CD/DVD devices, 23
- commercial versus GPL licenses, 47
- total cost of ownership, 49
- wireless devices, 235
- WLANs, 256
CPUs (central processing units), 8, 18-19
crossover cables, 156
crosstalk, 148, 162
CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance), 243
CSMA-CD (Carrier Sense, Multiple Access with Collision Detection), 86
CTS (Clear to Send), 243
customizing computers, 5, 16-17

daemons, 68
data
digital representation, 12
loss/manipulation threats, 52, 266
storage. See also RAM
capacities, 13
choosing, 24
magnetic, 22-23
optical, 23
static memory, 24
transmission, 14
- analog frequencies, 16
- file size, 14
- interference, 149
- media, 14
- resolution, 15
- transfer time, 15
- units of measure, 15
datagrams
- forwarding, 141
- handling, 139-140
- headers, 139
- importance, 138-139
- RFCs, 138
- routing, 105
- size, 139
- tracing, 141
DDoS (Distributed Denial of Service) attacks, 272
de facto standard, 85
dedicated networks, 64
default gateways, 107-108, 188
default routes, 109
demilitarized zone (DMZ), 284
Denial of Service (DoS) attacks, 271-272
desktop computers, 9
destinations
- communication, 74
- port numbers, 208
DHCP (Dynamic Host Configuration Protocol), 184
acknowledgment, 187
configuring, 186-188
Discover message, 187
offers, 187
ranges, 187
requests, 187
servers, 185-186, 204
troubleshooting, 314
dial-up ISPs, 134
digital subscriber line (DSL), 134
digital versatile/video discs (DVDs), 23
disks
Blu-ray, 23
CDs, 23
drives, 25
DVDs, 23
floppy, 23
hard drives, 22
partitions, 50
disruption of service threats, 266
Distributed Denial of Service (DDoS) attacks, 272
distribution layers (Ethernet), 92, 103-104
default gateway, 107-108
hosts, adding, 114-115
LANs, 112
routers, 105-107
routing tables, 108-112
divide-and-conquer troubleshooting, 300
DMZ (demilitarized zone), 284
DNS (Domain Name Service), 209-210
documentation for troubleshooting, 317
domains, 209
broadcast, 99
collision
hubs, 95
switches, 98
DoS (Denial of Service) attacks, 271-272
dotted-decimal notation, 172
drivers
installing, 30
operating systems, 42
drives
disks, 25
flash, 24-25
floppy, 23
hard, 22, 51
optical, 48
tape, 23
DSL (digital subscriber line), 134
DSLAM (DSL Access Multiplexer), 142
dual-core processors, 19
dust, 28
DVD-Rs (DVD-Recordable), 23
DVD-RWs (DVD-Read/Write), 23
DVDs (digital versatile/video discs), 23
Dynamic Host Configuration Protocol. See DHCP
dynamic IP addresses, 184-185
E
EAP (Extensible Authentication Protocol), 252
echo replies, 305
echo requests, 305
electromagnetic waves, 233
electromagnetic interference (EMI), 148
electromagnetic spectrum, 233
electrostatic discharge (ESD), 28-29
e-mail
accounts, 135
clients
composing messages, 213
configuring, 214
Outlook, configuring, 215
POP3/IMAP4 charts, 214
servers, 203, 213-215
spam, 275
virus hoax, 281
EMI (electromagnetic interference), 148
capsulation, 77-78
coding messages, 76
encryption
troubleshooting, 313
WLANs, 253-254
environmental requirements, 145-146
ESD (electrostatic discharge), 28-29
ESSs (Extended Service Sets), 240

Ethernet
access layer, 92-95
ARP, 101-103
broadcast messages, 99-100
hubs, 95-96
IP addresses, 101
MAC addresses, 101
switches, 96-98
broadcasts, 90
communication, 88-89
core layer, 93
distribution layer, 92, 103-104
default gateway, 107-108
hosts, adding, 114-115
LANs, 112
routers, 105-107
routing tables, 108-112
evolution, 86-87
frames, 88-89
hierarchical design, 90-91
integrated routers, 117-119
Cisco ISR, 119
components, 118
Linksys, 119-120
IP traffic, managing, 92-93
logical addressing, 91
physical addressing, 87-88
planning, 115-116
protocol
local networks, 84-85
standardization, 85-87
prototyping, 116-117
resources, sharing, 121
shared Ethernet networks, 86
speeds, 86
switched, 86
ext2/ext3 file systems, 52
Extended Service Sets (ESSs), 240
extended star topologies, 72
Extensible Authentication Protocol (EAP), 252
Extensible HTML (XHTML), 211

Extensible Markup Language (XML), 211
external security threats, 267

F
failures, catastrophic, 28
FAT (File Allocation Table) 16/32, 51
FDDs (floppy drives), 23
FEXT (far-end crosstalk), 162
fiber-optic cables, 14, 147-148
bandwidth support, 152
buffers, 152
circuits, 152
cladding, 152
components, 152
core, 152
jackets, 152
multimode, 153
single-mode, 154
strengthening material, 152
fields (Ethernet frames), 89
File Allocation Table (FAT) 16/32, 51
file system types, 51-52
File Transfer Protocol (FTP), 204
clients, 212
servers, 204, 212
files
configuring, 257-258
size, 14
storage, 135
transfer time, 15
filtering
applications, 283
content, 136
MAC addresses, 250
packets, 283
traffic, 254
websites, 283
firewalls, 283
appliance-based, 283
application/website filtering, 283
DMZ, 284
home networking devices, 286-287
integrated, 284
intranets, 284
multi-configuration, 286
NAT, 283
overview, 283-284
packet filtering, 283
personal, 284
server-based, 284
single configuration, 285
stateful packet inspection, 283
vulnerability analysis, 287-288
FireWire, 33
firmware
 defined, 6
 updates, 258
flash drives, 24-25
floppy drives, 23
flow control (messages), 80
formatting messages, 77-78
forwarding IP packets, 141
frames (Ethernet), 78, 88-89
FSB (front-side bus), 19
FTP (File Transfer Protocol), 204
 clients, 212
 servers, 204, 212
functionality
 components, testing, 31
 computers, 5
 hubs, 95-96
 IP addresses, 172
 networks, 65
 operating systems, 42
 peripherals, 33
 routers, 105-107
 switches, 96-98
 collision domains, 98
 MAC address table, 96-97
F-UTP (shielded cables), 149

general-use software, 6
Global System for Mobile Communication (GSM), 236
GPL (GNU Public License), 46-47
graphic cards, 21
graphical user interface (GUI), 43-44
graphics resolution, 15
grounding straps, 28
GSM (Global System for Mobile Communication), 236
GUI (graphical user interface), 43-44

H
hacks, 266
handling IP packets, 139-140
hard drives, 22, 51
hardware
 adapter cards, 20
 controller cards, 22
 modems, 22
 NICs, 21, 25, 52
 sound, 21
 video, 21
 application communication, 43
 cables, 147-148
 10BASE-T, 158
 best practices, 162-164
 Category 3, 148-150
 Category 5, 150
 Category 6, 150
 Category 7, 150
 coaxial, 148-152
 common, 147-148
 crossover, 156
 fiber-optic. See fiber-optic cables
 managing, 163
 metal, 14, 147
 shorts, 161
 straight-through, 156
 structured, 163
 successful termination, 162-163

gaming devices, 12
gateways (default), 107-108
GB (gigabytes), 13
testing, 160-163
troubleshooting, 311-312
twisted pair. See twisted pair cables
certification, 47
CPUs, 18-19
defined, 5
Internet clouds, 142-144
motherboards, 17
CPUs, 18-19
RAM, 19-20
peripheral devices, 24-25
physical/environmental requirements, 145-146
RAM, 19-20
installing, 30
requirements, 19
system, 20
resources
controlling, 44
required, 47
servers, 8
storage devices, 22
choosing, 24
magnetic, 22-23
optical, 23
static memory, 24
wireless
infrared, 233-234
radio frequency, 234-235
WLANs, installing, 256
HDDs (hard disk drives), 22, 51
headers (IP), 139, 220
help desk, 318-319
hertz, 16
hexadecimal notation, 99
hierarchy
Ethernet, 90-91
IP addresses, 174-175
protocols, 218
topologies, 72
Hoaxbusters website, 281
hoaxes, 281

home networks
Internet cloud hardware, 142-144
ISP service, 135
physical/environmental requirements, 145-146
hosts, 65-66
availability, calculating, 177
clients, 68
computers, 68
IP address connections, 190
local/remote networks, 114-115
servers, 68
hot-swapping components, 28
hotspots, 235
HTML (Hypertext Markup Language), 211
HTTP (Hypertext Transfer Protocol), 204, 211
HTTPS (secure HTTP), 211
hubs
collision domains, 95
functions, 95-96
switches, compared, 96
human communication, 74

IAB (Internet Architecture Board), 131
IANA (Internet Assigned Numbers Authority), 131
IBSS (Independent Basic Service Set), 240
ICANN (Internet Corporation for Assigned Names and Numbers), 217
IDCs (insulation displacement connectors), 159
identification policies, 277
identity thefts, 266
IEEE (Institute of Electrical and Electronic Engineer), 85
IETF (Internet Engineering Task Force), 131
IM (instant messaging), 215
IMAP (Internet Message Access Protocol), 214
IMAP4 (Internet Message Access Protocol version 4), 214
inbound NAT, 193
incident handling procedures, 277
Independent Basic Service Set (IBSS), 240
Industrial, Scientific, and Medical (ISM) bands, 234
industry software, 6
Infoplease website, 131
information thefts, 266
infrared (IR) technology, 233
Infrared Direct Access (IrDA), 233
infrastructure mode (WLANs), 240-242
input peripherals, 24
inside global addresses, 192
inside local addresses, 192
installing
 APs, 257
 components, 29-31
 drivers, 30
operating systems, 50
 clean, 50
 file system types, determining, 51-52
multi-boot, 50
pre-installation checklists, 50-51
upgrades, 50
virtualization, 50
peripherals, 31-33
 legacy, 33
 ports, 32-33
 steps, 33
RAM, 30
wireless hardware, 256
instant messaging (IM), 215
Institute of Electrical and Electronic Engineers (IEEE), 85
insulation displacement connectors (IDCs), 159
insulators (coax), 152
integrated firewalls, 284
integrated routers, 117
 Cisco ISR, 119
 components, 118
 Linksys, 119-120
 local networks, 118-119
integrated services router (ISR), 119
integrated wireless utility software, 246
interference
 data transmission, 149
 twisted-pair cables, 148
internal security threats, 267
International Organization for Standardization (ISO), 221
Internet
 backbone connections, 132
 broadband, 133
 clouds, 142-144
 connectivity, troubleshooting, 315-316
development/management websites, 131
IAB, 131
IANA, 131
IETF, 131
Internet Society (ISOC), 130-131
IP packets
 forwarding, 141
 handling, 139-140
 headers, 139
 importance, 138-139
 RFCs, 138
 size, 139
 tracing, 141
IRTF, 131
ISPs, 131
 broadband, 133
cable modems, 135
cell modems, 134
connection options, 133-135
connectivity, troubleshooting, 315-316
dial-up, 134
DSL, 134
Internet backbone connections, 132
IXPs, 132
leased lines, 133-135
levels of service, 135-137
modems, 133
POPs, 132
satellite, 135
overview, 130
physical/environmental requirements, 145-146
Internet Architecture Board (IAB), 131
Internet Assigned Numbers Authority (IANA), 131
Internet Corporation for Assigned Names and Numbers (ICANN), 217
Internet Engineering Task Force (IETF), 131
Internet Exchange Points (IXPs), 132
Internet Message Access Protocol (IMAP), 214
Internet Message Access Protocol version 4 (IMAP4), 214
Internet Protocol. See IP
Internet Research Task Force (IRTF), 131
Internet service providers. See ISPs
internetwork protocol, 205
interoperability of Wi-Fi, 238
intranet firewalls, 284
intrusion threats
 risks, 266
 social engineering, 268
 phishing, 269
 pretexting, 268
 vishing, 269
 sources, 267-268
 types, 266
IP (Internet Protocol), 52, 138, 205
 addresses. See IP addresses
 client/server systems, 205
 datagram, 105
 headers, 220
 packets
 forwarding, 141
 handling, 139-140
 headers, 139
 importance, 138-139
 RFCs, 138
 routing, 105
 size, 139
 tracing, 141
 telephone, 136
 traffic, 92-93
 version 4 (IPv4), 174
 version 6 (IPv6), 174
IP addresses
 assigning
 DHCP configuration, 186-188
 DHCP servers, 185-186
 dynamic, 184-185
 static, 184
 broadcast, 181-182
 classes, 177-179
 configuring, 53, 173
 decimal equivalent, 174
 dotted-decimal notation, 172
 function, 172
 hierarchy, 174-175
 host connections, 190
 IPv4, 174
 local Ethernet networks, 101
 multicast, 182-183
 NAT, 190-193
 back at source, 193
 destination replies, 193
 inbound, 193
 outbound NAT, 192
 overloaded, 191
 packet generation, 192
 network boundaries, 188
 network connections, 52
 private, 179-180
 public, 179
 structure, 172-174
 subnet masks interaction, 175-177
 unicast, 181
 uniqueness, 139
ipconfig utility, 303-304
IPv4 (IP version 4), 174
IPv6 (IP version 6), 174
IR (infrared) technology, 233
IrDA (Infrared Direct Access), 233
IRTF (Internet Research Task Force), 131
ISM (Industrial, Scientific, and Medical) bands, 234
ISO (International Organization for Standardization), 221
ISOC (Internet Society), 130-131
ISPs (Internet service providers), 131
 broadband, 133
cable modems, 135
 cell modems, 134
 connections
 options, 133-135
troubleshooting, 315-316
dial-up, 134
DSL, 134
 Internet backbone connections, 132
IXPs, 132
 leased lines, 133-135
levels of service, 135-137
 modems, 133
POPs, 132
satellite, 135

IXPs (Internet Exchange Points), 132

J – K

jackets (fiber-optic cables), 152

KB (kilobytes), 13
kbps (thousands of bits per second), 15
kernel, 43
keyboards, 25
kilo, 13

L

LANs (local-area networks), 112
 Ethernet, 84-85
 broadcasts, 90
 communication, 88-89
 frames, 88-89
 hierarchical designs, 90-91
 IP traffic, managing, 92-93
 layers. See layers (Ethernet)
 logical addressing, 91

physical addressing, 87-88
 standardization, 85-87
hosts, adding, 114-115
 integrated routers, 117-119
 Cisco ISR, 119
 components, 118
Links, 119-120
local Ethernet network, 112
planning, 115-116
 protocols
 importance, 84-85
 standardization, 85-87
 prototyping, 116-117
resources, sharing, 121
switches, 86
wireless
 APs, configuring, 244-246
 authentication, 251-252
 bandwidth, 256
 channels, 242-244
 clients, configuring, 246-248
 connectivity, troubleshooting, 313-314
 costs, 256
 encryption, 253-254
 MAC address filtering, 250
 planning, 255-258
 security attacks, 248-250
 traffic filtering, 254
 war driving, 249
 war walking, 249

laptops, 10
layered models
 OSI, 221-223
 protocols, 218-219
 TCP/IP, 219-221
layers (Ethernet)
 access, 92-95
 ARP, 101-103
 broadcast messages, 99-100
 hubs, 95-96
 IP addresses, 101
 MAC addresses, 101
 switches, 96-98
core, 93
distribution, 92, 103-104
default gateway, 107-108
hosts, adding, 114-115
LANs, 112
routers, 105-107
routing tables, 108-112
leased lines (ISPs), 133-135
LEDs (light-emitting diodes), 119, 310-311
legacy devices, 33
levels of service (ISPs), 135-137
licensing (operating systems), 46-47
light-emitting diodes (LEDs), 119
Linksys integrated routers, 119-120
Linux, 46
 CLI Terminal Window, 44
daemons, 68
local applications, 6-7
local-area networks. See LANs
logical addressing (Ethernet), 91
logical topologies, 71
loopback addresses, 180
losing data, 52

M
MAC (Media Access Control) addresses, 87
 filtering, 250
 hexadecimal notation, 99
 local Ethernet networks, 101
 tables, 96-97
Mac operating systems, 46
magnetic storage devices, 22-23
mainframes, 8
maintenance
 applications, 56
 operating systems, 55
managing
 cables, 163
 IP traffic, 92-93
mass-produced computer systems, 16-17
MB (megabytes), 13
Mbps (millions of bits per second), 15
McAfee Virus Hoaxes website, 281
measuring storage capacities, 13
Media Access Control. See MAC addresses
media, 65
megabytes (MB), 13
memory. See RAM
mesh topologies, 72
messages
 broadcast, 99-100
 encapsulation, 77-78
 encoding, 76
 formatting, 77-78
 patterns, 81
 broadcast, 82-84
 multicast, 82
 unicast, 81
 sending/receiving, 219-221
 size, 79-80
 timing, 80
 access method, 80
 flow control, 80
 responses, 81
metal cables, 14, 147
Microsoft
 operating systems, 70
 Outlook, configuring, 215
 Windows, 46
millions of bits per second (Mbps), 15
mobile phone networks, 63
mobility of WLANs, 235
modems, 25
 defined, 14
 ISPs, 133
 overview, 22
monitors, 25
motherboards, 17
 CPUs, 18-19
 RAM, 19-20
mounting CPUs, 19
mouse, 25
multiboot installations, 50
multicast addresses, 182-183
multicasting (communication), 82
multicore processors, 19
multi-function devices. See integrated routers
multimeters, 161
multimode fiber, 153
multiprocessor systems, 19
multitasking, 44

N

names
computers, 53-54
domains, 209
NAT (Network Address Translation), 190-192
back at source, 193
destination replies, 193
firewalls, 283
inbound, 193
IP addresses, 193
outbound NAT, 192
overloaded, 191
packet generation, 192
near-end crosstalk (NEXT), 162
netstat utility, 307-308
network access protocols, 206
Network Address Translation. See NAT
network applications, 6-7
network interface cards (NICs), 21, 25, 52
network numbers, 177
network operating system (NOS), 46
Network Operations Center (NOC), 139
networks
advantages, 65
components, 65-67
hosts, 65-66
media, 65
networking devices, 65-66
peripherals, 65
computers, configuring, 52-53
converged, 64
dedicated, 64
defined, 63
devices, 65-66
functions, 65
monitoring tools, 297
peripherals, 24
topologies, 71-73
types, 63
New Technology File System (NTFS), 51
NEXT (near-end crosstalk), 162
NICs (network interface cards), 21, 25, 52
NOC (Network Operations Center), 139
non-UNIX proprietary operating systems, 46
non-volatile storage, 22
magnetic, 22-23
optical, 23
static memory devices, 24
NOS (network operating system), 46
notebooks, 10
nslookup utility, 308-309
NTFS (New Technology File System), 51

O

ockets, 172
offers (DHCP), 187
office suites, 6
open authentication (WLANs), 251
Open System Interconnection (OSI), 221-223
opens, 161
operating systems
applications and hardware communication, 43
availability, 49
BSD, 46
choosing, 48-49
CLI, 43-44
defined, 5
drivers, 42
function, 42
GUI, 44
hardware
certification, 47
resources, controlling, 44
installing, 50
 clean, 50
 file system types, determining, 51-52
 multiboot, 50
 pre-installation checklists, 50-51
 upgrades, 50
 virtualization, 50
kernel, 43
licensing, 46-47
Linux, 44-46, 68
Mac, 46
Microsoft, 70
multitasking, 44
non-UNIX proprietary, 46
NOS, 46
patches, 55
redirectors, 45
requirements, 10-13, 46-48
shell, 43
total cost of ownership, 49
UNIX, 46, 68
Windows, 46
optical storage devices, 23, 48
OSI (Open System Interconnection), 221-223
outbound NAT, 192
Outlook, configuring, 215
output peripherals, 24
outside sources of help, 317-318
overloaded NAT, 191

packets
 broadcast, 181
echo replies, 305
echo requests, 305
filtering, 283
IP
 forwarding, 141
 handling, 139-140
 headers, 139
 importance, 138-139
 RFCs, 138
 routing, 105

size, 139
tracing, 141
NAT
 back at source, 193
 destination replies, 193
 inbound NAT, 193
 outbound NAT, 192
 packet generation, 192
stateful inspection, 283
unicast, 181
parallel ports, 32
partitioning
disks, 50
 hard drives, 51
passphrases (WEP), 253
password policies, 277
PAT (Port Address Translation), 191
patches
 applications, 56
 operating systems, 55
 panels, 159
 security policies, 278
patterns (messages), 81
 broadcast, 82-84
 multicast, 82
 unicast, 81
PCs (personal computers), 9
PDAs (personal digital assistants), 11
PDU (protocol data units), 88
peer-to-peer networks, 69-70
peripherals, 24-25, 65
 functionality, 33
 installing, 31
 legacy, 33
 ports, 32-33
 steps, 33
personal computers (PCs), 9
personal digital assistants (PDAs), 11
personal firewalls, 284
personal home pages, 135
phishing, 269
physical addressing, 87-88
physical connectivity problems, 301-302
physical requirements, 145-146
physical topologies, 71-73
picture element (pixels), 15-16
ping of death, 272
ping utility, 141, 304-305
pixels, 15-16
planning
 local networks, 115-116
 WLANs, 255
 APs installation/security, 257
 configuration backup, 257-258
 firmware updates, 258
 hardware installations, 256
 standards, 255-256
Pocket PCs, 11
PoE (Power over Ethernet), 155
points of presence (POPs), 132
policies (security), 276
 acceptable use, 277
 anti-spam, 280-281
 anti-spyware, 282
 anti-virus software, 278-280
 goals, 277
 identification/authentication, 277
 incident handling procedures, 277
 passwords, 277
 procedures, 277
 remote access, 277
 tools/applications, 277
 updates/patches, 278
POP3 (Post Office Protocol), 214
POPs (points of presence), 132
pop-unders, 275
pop-ups, 275
Port Address Translation (PAT), 191
portable computing devices, 10
 cell phones, 12
 gaming devices, 12
 laptops, 10
 PDAs, 11
 Pocket PCs, 11
 Tablet PCs, 11
ports
 AGP, 21
 FireWire, 33
 forwarding, 287
 numbers
 client/server systems, 217-218
 TCP/IP, 208
 parallel, 32
 peripheral installations, 32-33
 private, 217
 PS/2, 32
 registered, 217
 RJ-11, 32
 RJ-45, 33
 serial, 32
 USB, 32
 VGA, 32
 well-known, 217
Post Office Protocol (POP3), 214
power LEDs, 311
power networks, 63
Power over Ethernet (PoE), 155
power supplies (computers), 26
 surge suppressors, 26
 uninterruptible, 27
pre-installation checklists, 50-51
pre-shared keys (PSKs), 251
pretexting, 268
printers, 25
private IP addresses, 179-180. See also NAT
private ports, 217
procedures (security), 277
processing cores (CPUs), 19
protocol data units (PDUs), 88
protocols
 application
 clients/servers, 204
 DNS, 209-210
 e-mail clients/servers, 213-215
 FTP clients/servers, 212
 IM clients/servers, 215
 port numbers, 217-218
VoIP clients/servers, 216
web clients/servers, 211
ARP, 101-103
client/server systems, 204
application, 204
internetwork, 205
network access, 206
transport, 205-208
communication, 75-76
DHCP, 184
Acknowledgment, 187
configuring, 186-188
Discover message, 187
offers, 187
ranges, 187
requests, 187
EAP, 252
Ethernet
broadcasts, 90
communication, 88-89
evolution, 86-87
frames, 88-89
hierarchical design, 90-91
integrated routers, 117-120
IP traffic, managing, 92-93
layers. See layers (Ethernet)
local networks, 84-85
logical addressing, 91
physical addressing, 87-88
planning, 115-116
prototyping, 116-117
resources, sharing, 121
shared Ethernet networks, 86
speeds, 86
standardization, 85-87
switched, 86
hierarchy, 218
HTTP, 204, 211
HTTPS, 211
IMAP, 214
IMAP4, 214
interaction in layered models, 218-219
IP, 52, 138, 205
addresses. See IP addresses
client/server systems, 205
datagram, 105
headers, 220
packets, 138-141
telephone, 136
traffic, 92-93
version 4 (IPv4), 174
version 6 (IPv6), 174
local networks
importance, 84-85
standardization, 85-87
OSI model, 221-223
POP3, 214
SMTP, 213
TCP, 205
client/server systems, 206-207
port numbers, 217-218
TCP/IP, 208, 219-221
UDP
client/server systems, 206-208
port numbers, 217-218
web server stack, 218
WEP, 253
WPA, 254
prototyping local networks, 116-117
PS/2 ports, 32
PSKs (pre-shared keys), 251
PSTN (public switched telephone network), 216
public IP addresses, 179
public switched telephone network (PSTN), 216

Q – R
quad-core processors, 19
rack-mounted servers, 8
radio frequency (RF), 234-235
radio frequency interference (RFI), 148
RADIUS (Remote Authentication Dial-in User Service), 252
RAM (random-access memory), 8, 19-20
 installing, 30
 requirements, 19
 system, 20
ranges (DHCP), 187
receiving messages, 219-221
redirectors, 45
regional Internet registry (RIR), 139
registered ports, 217
reliability (WLANs), 235
remote access policies, 277
Remote Authentication Dial-in User Service (RADIUS), 252
remote network hosts, adding, 114-115
remote resources, accessing, 45
replying, broadcast messages, 99
Request for Comments (RFCs), 138
 1918 private address space, 179
 website, 138
RFI (radio frequency interference), 148
Request to Send (RTS), 243
requests (DHCP), 187
requirements
 business, 325
 operating systems, 10-13, 46-48
 optical drives, 48
 physical/environmental, 145-146
 RAM, 19
resources
 hardware
 controlling, 44
 required, 47
 remote, 45
 sharing, 121
responses (messages), 81
restoring configuration files, 257-258
reversed-pair faults, 161
RF (radio frequency), 234-235
RFCs (Request for Comments), 138
 1918 private address space, 179
 website, 138
RFI (radio frequency interference), 148
ring topologies, 72
RIR (regional Internet registry), 139
RJ-11 ports, 32
RJ-45 ports, 33
routers, 105
 functionality, 105-107
 integrated, 117
 Cisco ISR, 119
 components, 118
 Linksys, 119-120
 local networks, 118-119
 interfaces, 112
 routing tables
 default routes, 109
 forwarding messages to remote hosts, 110
 local Ethernet network, 108-112
 sending messages to default gateway, 111
 sending messages to hosts on another network, 110
 wireless modes, 244
routing tables
 default routes, 109
 forwarding messages to remote hosts, 110
 local Ethernet network, 108-112
 sending messages
 default gateway, 111
 hosts on another network, 110
RTS (Request to Send), 243
rules of communication, 74-76
safety precautions, 29
satellite ISPs, 135
scalability (WLANs), 235
scanners, 25
ScTP (screened twisted-pair), 149
ScTP (shielded cables), 149
security
 APs, 257
 brute-force, 272
 Denial of Service, 271-272
 Distributed Denial of Service, 272
 firewalls, 283
 appliance-based, 283
 application/website filtering, 283
DMZ, 284
home networking devices, 286-287
integrated, 284
intranets, 284
multi-configuration, 286
NAT, 283
overview, 283-284
packet filtering, 283
personal, 284
server-based, 284
single configuration, 285
stateful packet inspection, 283
vulnerability analysis, 287-288
policies, 276
acceptable use, 277
anti-spam, 280-281
anti-spyware, 282
anti-virus software, 278-280
goals, 277
identification/authentication, 277
incident handling procedures, 277
passwords, 277
procedures, 277
remote access, 277
tools/applications, 277
updates/patches, 278
recommended practices, 288
software attacks, 270
signs, 279
Trojan horses, 271
viruses, 270
worms, 270
spam, 275
threats
risks, 266
social engineering, 268-269
sources, 267-268
types, 266
user information collection, 273
adware, 274
cookies, 274
pop-ups/pop-unders, 275
spyware, 273
WLANs, 236
attacks, 248-250
authentication, 251-252
encryption, 253-254
MAC address filtering, 250
traffic filtering, 254
war driving, 249
war walking, 249
segments, 207
selecting. See choosing
sending messages, 99, 219-221
serial ports, 32
server-based firewalls, 284
server-based networks, 69
servers, 8-9
accessing, 202
blade, 8
browser relationships, 203
client relationships, 68
DHCP, 204
configuring, 187
IP addresses, assigning, 185-186
troubleshooting, 314
DNS, 209-210
e-mail, 203, 213-215
FTP, 204, 212
hardware, 8
as hosts, 68
IM, 215
overview, 8
rack-mounted, 8
services, 8
spam blockers, 280
standalone, 8
Telnet, 203
VoIP, 216
web, 204, 211, 218
Service Set Identifiers. See SSIDs
service-level agreements (SLAs), 135
services
asymmetric, 136-137
business critical, 8
client/server systems, 203
ISPs, 135-137
servers, 8
symmetric, 136-137
web hosting, 135
sharing
bandwidth, 95
Ethernet networks, 86
resources, 121
shell, 43
shielded cables, 149
shorts, 161
Simple File Sharing, 121
Simple Mail Transfer Protocol (SMTP), 213
single-mode fiber, 154
site surveys (WLANs), 256
size
Ethernet frames, 89
files, 14
IP packets, 139
messages, 79-80
SLAs (service-level agreements), 135
small business networks
Internet cloud hardware, 142-144
physical/environmental requirements, 145-146
small office/home office (SOHO) networks, 65
SMTP (Simple Mail Transfer Protocol), 213
social engineering, 268
phishing, 269
pretexting, 268
vishing, 269
software. See also utilities
anti-spam, 280-281
anti-spyware, 282
anti-virus, 278-280
application, 5
attacks, 270
signs, 279
Trojan horses, 271
viruses, 270
worms, 270
business/industry, 6
connectivity, troubleshooting, 302
ipconfig, 303-304
netstat, 307-308
nslookup, 308-309
ping, 304-305
tracert, 306-307
filtering, 283
general-use, 6
hardware, communicating, 43
integrated wireless utility, 246
local, 6-7
network, 6-7
office suites, 6
patches, 56
security, 277
standalone wireless utility, 247-248
SOHO (small office/home office) networks, 65
sound cards, 21
sources
communication, 74
intrusion threats, 267-268
port numbers, 208
spam, 275, 280-281
speed
CPUs, 19
Ethernet, 86
file transfers, 15
ISPs, 135
SPI (stateful packet inspection), 283
split-pair faults, 161
spyware, 273, 282
SSIDs (Service Set Identifiers), 240
APs, configuring, 245
broadcast feature, 249
security attacks, 249
troubleshooting, 313
WLANs, 240-242
standalone servers, 8
standalone wireless utility software, 247-248
standards
protocols, 85-87
twisted pair cables, 154-155
WLANs, 237-238, 255-256
star topologies, 72
STAs, 239
stateful packet inspection (SPI), 283
static electricity, 28-29
static IP addresses, 184
static memory devices, 24
status LEDs, 311
storage
 capacities, 13
 devices, 22
 choosing, 24
 magnetic, 22-23
 optical, 23
 static memory, 24
files, 135
peripherals, 24
STP (shielded twisted-pair), 149
straight-through cables, 156
strengthening material (fiber-optic cables), 152
structure, 172-174
 cables, 163
 troubleshooting, 300
subnet masks
 8-bit masks, 176
 16-bit masks, 177
 host availability, calculating, 177
IP addresses
 classes, 177-179
 interaction, 175-177
substitution troubleshooting, 301
support
 commercial versus GPL licenses, 47
 multiple clients, 68
surge suppressors, 26
switches
 collision domains, 98
 Ethernet, 86
 functions, 96-98
 hubs, compared, 96
 LANs, 86
 MAC address table, 96-97
symmetric services, 136-137
synchronous floods, 271
systems
 custom-assembled, 16-17
 mass-produced, 16-17
 RAM, 20
 resources, 31

T
T568A/T568B wiring scheme, 155-156
tables
 ARP, 101-103
 routing
 default routes, 109
 forwarding messages to remote hosts, 110
 local Ethernet network, 108-112
 sending messages to default gateway, 111
 sending messages to hosts on another network, 110
Tablet PCs, 11
tape drives, 23
TB (terabytes), 13
TCO (total cost of ownership), 49
TCP (Transmission Control Protocol), 205
 client/server systems, 206-207
 layered model, 219-221
 port numbers, 217-218
TCP/IP (Transmission Control Protocol/Internet Protocol)
 layered model, 219-221
 port numbers, 208
technologies (wireless), 233
 benefits, 235
 infrared, 233-234
 limitations, 235-236
 radio frequency, 234-235
 security, 236
telephone networks, 64
television networks, 64
Telnet servers, 203
terabytes (TB), 13
termination of cables, 162-163
 coax, 151
 UTP, 158-159

testing
cables, 160-163
 attenuation, 161
 continuity, 161
 crosstalk, 162
 opens, 161
 reversed-pair faults, 161
 shorts, 161
 split-pair faults, 161
 tools, 160-161
components, 31
peripherals, 33

thousands of bits per second (kbps), 15

threats (security)
brute-force, 272
Denial of Service, 271-272
Distributed Denial of Service, 272
normal operations, 271
risks, 266
social engineering, 268
 phishing, 269
 pretexting, 268
 vishing, 269
software attacks, 270
 signs, 279
 Trojan horses, 271
 viruses, 270
 worms, 270
sources, 267-268
spam, 275
types, 266
user information collection, 273
 adware, 274
 cookies, 274
 pop-ups/pop-unders, 275
 spyware, 273
timing messages, 80
 access method, 80
 flow control, 80
 responses, 81
tools
cable testing, 160-161
 networking monitoring, 297
ping utility, 141
security, 277
traceroute utility, 141
top-down troubleshooting, 298
topologies, 71-73
total cost of ownership (TCO), 49
traceroute utility, 141
tracert utility, 306-307
tracing IP packets, 141
traffic
 filtering, 254
 IP, 92-93
trailers, 220
Transmission Control Protocol. See TCP
Transmission Control Protocol/Internet Protocol. See TCP/IP
transmitting data, 14, 86
 analog frequencies, 16
 file size, 14
 interference, 149
 media, 14
 resolution, 15
 transfer time, 15
 units of measure, 15
transport protocols, client/server systems, 205-208
trial-and-error troubleshooting, 301
Trojan horses, 271
troubleshooting
 approaches, 298
 bottom-up, 298
 divide-and-conquer, 300
 substitution, 301
 top-down, 298
 trial-and-error, 301
 connectivity, 309
 Internet, 315-316
 ipconfig, 303-304
 netstat, 307-308
nslookup, 308-309
physical problems, 301-302
ping, 304-305
software utilities, 302
tracert, 306-307
wired networks, 311-312
WLANs, 312-314
documentation, 317
help desk, 318-319
information, gathering, 297
LEDs, 310-311
outside sources of help, 317-318
overview, 296
steps, 296
structured, 300
twisted pair cables, 148-151
like devices, 157-158
standards, 154-155
T568A/T568B wiring schemes, 155-156
termination, 158-159
unlike devices, 157
types
busses, 19
computers
classes, 7-8
desktops, 9
mainframes, 8
servers, 8-9
workstations, 9
file systems, 51-52
intrusion threats, 266
networks, 63
wireless networks, 236

unit of measure (UOM), 13
UNIX, 46, 68
unshielded twisted-pair (UTP), 149-150
unterminated UTP cable, 156
UOM (unit of measure), 13
updates
firmware, 258
operating systems, 50
security policies, 278
UPSs (uninterruptible power supplies), 27
USB memory keys, 24
USB ports, 32
US-Cert website, 280
utilities. See also software
 connectivity, troubleshooting, 302
 ipconfig, 303-304
 netstat, 307-308
 nslookup, 308-309
 ping, 141, 304-305
 traceroute, 141
 tracert, 306-307
UTP (unshielded twisted-pair), 149-150
like devices, 157-158
T568A/T568B, 155-156
termination, 158-159
unlike devices, 157
unterminated, 156

V
VGA ports, 32
video cards, 21
video on demand, 136
virtual machines, 50
virtualization (operating systems), 50
viruses, 270
 anti-virus software, 278-280
 hoaxes, 281
 ISPs, scanning, 136
vishing, 269
VoIP (Voice over IP), 216

UDP
 client/server systems, 206-208
 port numbers, 217-218
unicast addresses, 81, 181
UNII (Unlicensed National Information Infrastructure) bands, 234
uninterruptible power supplies (UPSs), 27
wall jacks, 159
war driving, 249
war walking, 249
wavelengths, 233
web browsers, 203
web clients, 211
web hosting services (ISPs), 135
web servers, 204, 211
protocol stack, 218
web browser relationships, 203
websites
filtering, 283
Hoaxbusters, 281
IAB, 131
IANA, 131
ICANN, 217
IETF, 131
Infoplease, 131
Internet management/development, 131
IRTF, 131
ISOC, 131
McAfee Virus Hoaxes, 281
RFCs, 138
US-Cert, 280
well-known ports, 217
WEP (Wired Equivalency Protocol), 253
Wi-Fi (Wireless Fidelity), 237
Alliance, 238
Protected Access (WPA), 254
Windows
CLI, 43
Explorer GUI, 44
operating systems, 46
Simple File Sharing, 121
wire maps, 161
Wired Equivalency Protocol (WEP), 253
wired network connectivity, troubleshooting, 311-312
wireless clients, 239
Wireless Fidelity. See Wi-Fi
wireless networks
benefits, 235
LANs. See WLANs
limitations, 235-236
media, 14
security, 236
technologies
infrared, 233-234
radio frequency, 234-235
types, 236
wireless personal-area networks (WPANs), 236
wireless wide-area networks (WWANs), 236
WLANs (wireless LANs)
APs, configuring, 244
channels, 246
SSIDs, 245
wireless modes, 244
bandwidth, 256
channels, 242-244
ACKs, 244
assigning, 242
CSMA/CA, 243
RTS/CTS, 243
clients, configuring, 246
integrated software, 246
standalone software, 247-248
components, 238-240
connectivity, troubleshooting, 313-314
costs, 256
planning, 255
APs installation/security, 257
configuration backup, 257-258
firmware updates, 258
hardware installations, 256
standards, 255-256
security
attacks, 248-250
authentication, 251-252
encryption, 253-254
MAC address filtering, 250
traffic filtering, 254
war driving, 249
war walking, 249
site surveys, 256
SSIDs, 240
 ad-hoc, 240
 infrastructure mode, 240-242
standards, 237-238
work areas, 28
working inside computers, 28
workstations, 9
worms, 270
WPA (Wi-Fi Protected Access), 254
WPANs (wireless personal-area networks), 236
wrist grounding straps, 28
WWANs (wireless wide-area networks), 236

X

XHTML (Extensible HTML), 211
XML (Extensible Markup Language), 211
Notes