

Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 30 2021

Digital Program Insertion Splicing API

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 2

NOTICE
The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices
(hereafter called “documents”) are intended to serve the public interest by providing specifications, test
methods and procedures that promote uniformity of product, interoperability, interchangeability, best
practices, and the long term reliability of broadband communications facilities. These documents shall not
in any way preclude any member or non-member of SCTE from manufacturing or selling products not
conforming to such documents, nor shall the existence of such standards preclude their voluntary use by
those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such
adopting party assumes all risks associated with adoption of these documents and accepts full
responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require
the use of an invention covered by patent rights. By publication of this document, no position is taken
with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent
holder has filed a statement of willingness to grant a license under these rights on reasonable and
nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may
be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which
a license may be required or for conducting inquiries into the legal validity or scope of those patents that
are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this
document have been requested to provide information about those patents and any related licensing terms
and conditions. Any such declarations made before or after publication of this document are available on
the SCTE web site at https://scte.org.

All Rights Reserved

©2021 Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 3

Document Types and Tags
Document Type: Specification

Document Tags:

☐ Test or Measurement ☐ Checklist ☒ Facility

☐ Architecture or Framework ☐ Metric ☐ Access Network

☒ Procedure, Process or Method ☐ Cloud ☐ Customer Premises

Document Release History

Release Date
SCTE 30 2001 11/6/2001
SCTE 30 2006 2/13/2006
SCTE 30 2009 4/10/2009
SCTE 30 2015 4/6/2015
SCTE 30 2017 6/13/2017

Note: Standards that are released multiple times in the same year use: a, b, c, etc. to indicate normative balloted
updates and/or r1, r2, r3, etc. to indicate editorial changes to a released document after the year.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 4

Table of Contents
Title Page Number
NOTICE ... 2

Document Types and Tags ... 3

Document Release History ... 3

Table of Contents .. 4
1. Introduction .. 7

1.1. Executive Summary ... 7
1.2. Scope ... 7
1.3. Benefits .. 7

1.3.1. Improvements in ad timing synchronization ... 7
2. Normative References .. 8

2.1. SCTE References .. 8
2.2. Standards from Other Organizations ... 8
2.3. Other Published Materials .. 8

3. Informative References ... 9
3.1. SCTE References .. 9
3.2. Standards from Other Organizations ... 9
3.3. Other Published Materials .. 9

4. Compliance Notation ... 9
5. Abbreviations and Definitions .. 9

5.1. Abbreviations.. 9
5.2. Definitions ... 10

6. Introduction .. 11
6.1. System Block Diagram ... 12
6.2. Arbitration Priorities .. 14
6.3. Abnormal Terminations .. 16
6.4. Splicing Requirements ... 16
6.5. Communication .. 16

7. API Syntax ... 17
7.1. Splicing_API_Message Syntax .. 17
7.2. Conventions and Requirements ... 19
7.3. Initialization ... 19

7.3.1. Init_Request Message ... 19
7.3.2. Init_Response Message .. 20

7.4. Embedded Cueing Messages .. 20
7.4.1. Cue_Request Message ... 21

7.5. Splice Messages .. 21
7.5.1. Splice_Request Message .. 22
7.5.2. Splice_Response Message ... 24
7.5.3. SpliceComplete_Response Message .. 25

7.6. Alive Messages .. 26
7.6.1. Alive_Request Message .. 26
7.6.2. Alive_Response Message ... 26

7.7. Extended Data Messages .. 27
7.7.1. ExtendedData_Request Message ... 27
7.7.2. ExtendedData_Response Message .. 27

7.8. Abort Messages ... 28
7.9. Abort_Request Message .. 28
7.10. Abort_Response Message ... 28
7.11. TearDownFeed_Request Message ... 28

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 5

7.12. TearDownFeed_Response Message .. 29
7.13. Requesting Configuration Settings .. 29

7.13.1. GetConfig_Request Message .. 29
7.13.2. GetConfig_Response Message ... 29

7.14. General_Response Message ... 29
8. Additional Structures ... 29

8.1. Version ... 29
8.2. Hardware_Config ... 30
8.3. splice_elementary_stream() .. 33
8.4. time() Field Definition .. 34
8.5. splice_API_descriptor() Field Definition .. 35

8.5.1. playback_descriptor() Field Definitions ... 35
8.5.2. muxpriority_descriptor() Field Definitions ... 36
8.5.3. missing_Primary_Channel_action_descriptor() Field Definitions 37
8.5.4. port_selection_descriptor() Field Definitions ... 37
8.5.5. asset_id_descriptor() Field Definitions .. 39
8.5.6. create_feed_descriptor() Field Definitions .. 40
8.5.7. source_info_descriptor() Field Definitions .. 41

9. Time Synchronization .. 42
9.1. Introduction [Informative] .. 42
9.2. Splicing Compressed Streams ... 43
9.3. NTP Time Syncronization .. 44
9.4. PTP Time synchronization ... 48

10. System Timing ... 50
10.1. DPI Splice Signal Flow ... 50
10.2. DPI Splice Initiation Timeline ... 51

 Result Codes .. 53

 Example use of Logical Multiplex Type 0x0006 and the port_selection_descriptor() 55

List of Figures

Title Page Number
Figure 1 - Single Server / Single Splicer ... 12
Figure 2 - Multiple Servers / Multiple Splicers .. 13
Figure 3 - OverridePlaying Flag Operation ... 15
Figure 4 - Normative NTP Configuration .. 45
Figure 5 - Informative NTP Configuration 1 ... 46
Figure 6 - Informative NTP Configuration 2 ... 47
Figure 7 - Normative PTP Configuration ... 49
Figure 8 - Single Event Splice ... 50
Figure 9 - Multiple Event Splice .. 51
Figure 10 - DPI Splice Initiation Timeline .. 52

List of Tables
Title Page Number
Table 1 - Splicing_API_Message .. 17
Table 2 - MessageID Values ... 18
Table 3 - Init_Request_Data ... 20

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 6

Table 4 - Init_Response_Data .. 20
Table 5 - Cue_Request_Data ... 21
Table 6 - Splice_Request_Data .. 23
Table 7 - Splice_Response_Data ... 24
Table 8 - SpliceComplete_Response_Data .. 25
Table 9 - Alive_Request_Data .. 26
Table 10 - Alive_Response_Data ... 26
Table 11 - Alive_Response Message States .. 26
Table 12 - ExtendedData_Request_Data ... 27
Table 13 - ExtendedData_Response_Data .. 27
Table 14 - Abort_Request Data .. 28
Table 15 - Abort_Request Data .. 28
Table 16 - GetConfig_Response Data .. 29
Table 17 - Version() ... 30
Table 18 - Hardware_Config() ... 30
Table 19 - Logical Multiplex Type ... 30
Table 20 - Type 0x0006 Structure .. 31
Table 21 - Type 0x0007 Structure .. 32
Table 22 - Splice_Elementary_Stream() .. 34
Table 23 - Time() .. 35
Table 24 - Splice_Api_Descriptor() .. 35
Table 25 - Playback_Descriptor() .. 36
Table 26 - BitrateRule Values ... 36
Table 27 - Muxpriority_Descriptor() ... 36
Table 28 - Missing_Primary_Channel_Action_Descriptor () .. 37
Table 29 - Pv4 Port_Selection_Descriptor () ... 38
Table 30 - IPv6 Port_Selection_Descriptor () .. 39
Table 31 - Asset_Id_Descriptor () .. 40
Table 32 - Create_Feed_Descriptor () ... 41
Table 33 - Source_Info_Descriptor () ... 42
Table 34 - Frame Rate Codes (Informative) ... 42

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 7

1. Introduction

1.1. Executive Summary

This Application Program Interface (API) creates a standardized method of communication between
Servers and Splicers for the insertion of content into any MPEG-2 Output Multiplex.

1.2. Scope

This Application Program Interface (API) creates a standardized method of communication between
Servers and Splicers for the insertion of content into any MPEG-2 Output Multiplex in the Splicer. This
API is flexible enough to support one or more Servers attached to one or more Splicers. Digital Program
Insertion includes content such as spot advertisements of various lengths, program substitution, public
service announcements or program material created by splicing portions of the program from a Server.

1.3. Benefits

1.3.1. Improvements in ad timing synchronization

This section discusses some benefits of proper ad insertion time synchronization and why it important for
a digital ad insertion system to maintain proper time synchronization.

If non cue based ad insertion (i.e. wall clock triggered) is being done, then the implementer should use
whatever methods meet the application requirements.

In cue based insertion systems many content providers and distributors have issues associated with
implementing correct ad insertion splice timing in the field. Although [SCTE 35] messages are capable of
containing frame-accurate splicing information, that information is not always present. Additionally,
splice times are usually not well monitored and must be periodically readjusted. In fact, the method
selected for time synchronization can further exacerbate insertion splice timing challenges.

Currently operators must periodically adjust local ad insertion timing for one of the following reasons:
• Network programming is clipped because local ads are switched in too early.
• Frames of underlying national ads are visible because local ads switch in too late.
• Frames of underlying national ads are visible because local ads switch back to the network too

early.
• Network programming is clipped because local ads switch back to the network too late.
• The underlying content used by the content provider is not the exact size of the signaled break

duration.

Periodic timing readjustment is not ideal as most Splicers insert into a compressed video stream which
only allows splices on certain key frames. Any adjustment made by the operator will typically not be
frame-accurate (usually +/- 2 frames), and depending on how close the splice is to a key frame,
adjustments may cause large, indeterminate jumps.

This standard requires a certain amount of synchronization between the Splicer and Server time
references where cues are described in PTS time. In doing so, the time synchronization system must be
able to keep the Splicer and Server within +/- 15 ms of each other.

The bit stream representing the primary channel is subject to various delays, which may include upstream
splicing, satellite links, and other transmission and conditioning processes. These delays may range

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 8

milliseconds to seconds. However, these delays do not affect the accuracy of a cue message embedded in
the primary channel. The cue message uses the PCR to indicate the correct time of insertion, so it retains
its original accuracy relative to the content.

The Server providing the insertion-channel content is aware of clock time (UTC) only, and the insertion
windows with which it has been programmed are relative to clock time. However, the Server depends on
the Splicer to indicate the exact moment to begin streaming the content. When the Splicer receives the
program bit stream, all delays to that stream have occurred.

2. Normative References
The following documents contain provisions which, through reference in this text, constitute provisions of
this document. The editions indicated were valid at the time of subcommittee approval. All documents are
subject to revision and, while parties to any agreement based on this document are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below, they are
reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References

[SCTE 35] ANSI/SCTE 35 2020, Digital Program Insertion Cueing Message.

[SCTE 128-1] SCTE 128-1 2020 AVC Video Systems and Transport Constraints for Cable Television

[SCTE 54] SCTE 54 2020 Digital Video Service Multiplex and Transport System Standard for Cable
Television.

2.2. Standards from Other Organizations

[13818-1] ITU-T Rec. H.222.0 / ISO/IEC 13818-1 (2021), Information Technology ---- Generic Coding
of Moving Pictures and Associated Audio Information: Systems

[13818-2] ITU-T Rec. H.262 / ISO/IEC 13818-2 (2012), Information Technology ---- Generic Coding of
Moving Pictures and Associated Audio Information: Video

[IEEE 1588] 2008 - Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems

[SMPTE ST2059-1] ST 2059-1 2021 - Profile for Use of IEEE-1588 Precision Time Protocol in
Professional Broadcast Applications

[SMPTE ST2059-2] ST 2059-2 2021 - Profile for Use of IEEE-1588 Precision Time Protocol in
Professional Broadcast Applications

[AES67] AES67-2018: AES standard for audio applications of networks - High-performance streaming
audio-over-IP interoperability

[EG 40] EG 40:2016 Conversion of Time Values Between SMPTE ST 12-1 Time Code, MPEG-2 PCR
Time Base and Absolute Time

2.3. Other Published Materials

No normative references are applicable.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 9

3. Informative References
The following documents might provide valuable information to the reader but are not required when
complying with this document.

3.1. SCTE References

[SCTE 67] ANSI/SCTE 67, Digital Program Insertion Cueing Message for Cable – Interpretation for
SCTE 35.

3.2. Standards from Other Organizations

[RFC 3810] IETF RFC3810 --- Multicast Listener Discovery Version 2 (MLDv2) for IPv6

[RFC 5905] IETF RFC5905 --- Network Time Protocol Version 4: Protocol and Algorithms Specification

3.3. Other Published Materials

M. Kar, S. Narasimhan, and R. Prodan, “Local Commercial Insertion in the Digital Headend”,
Proceedings of NCTA 2000 Conference, New Orleans, USA.

“Cable Advertising”, white paper, March 1997, Cable Television Laboratories, Louisville, CO.

4. Compliance Notation
shall This word or the adjective “required” means that the item is an

absolute requirement of this document.
shall not This phrase means that the item is an absolute prohibition of this

document.
forbidden This word means the value specified shall never be used.
should This word or the adjective “recommended” means that there may exist

valid reasons in particular circumstances to ignore this item, but the
full implications should be understood and the case carefully weighed
before choosing a different course.

should not This phrase means that there may exist valid reasons in particular
circumstances when the listed behavior is acceptable or even useful,
but the full implications should be understood and the case carefully
weighed before implementing any behavior described with this label.

may This word or the adjective “optional” indicate a course of action
permissible within the limits of the document.

deprecated Use is permissible for legacy purposes only. Deprecated features may
be removed from future versions of this document. Implementations
should avoid use of deprecated features.

5. Abbreviations and Definitions

5.1. Abbreviations
AAL ATM adaptation layer
ADI Asset Distribution Interface

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 10

API Application Program Interface (also Application Programming
Interface)

ASCII American Standard Code for Information Interchange
ATM asynchronous transfer mode
CNN Cable News Network
CRC cyclic redundancy check
DVS Digital Video Subcommittee
DVB-ASI Digital Video Broadcast – Asynchronous Serial Interface
GPS Global Positioning System
ID Identifier
IEC International Electrotechnical Commission
IGMP Internet group management protocol
IP Internet protocol
IPv4 Internet protocol version 4
IPv6 Internet protocol version 6
ISO International Organization for Standardization
ITU International Telecommunication Union
kHz kilohertz
MAC media access control
MLD Multicast Listener Discovery
MPEG Moving Picture Experts Group
MPTS Multi-Program Transport Stream
NCTA National Cable & Telecommunications Association
NTP Network Time Protocol
PAT Program Association Table
PCR Program Clock Reference
PID Packet Identifier
PMT Program Map Table
PSI Program specific information
SAPI Source Access Point Identifier
SCTE Society of Cable Telecommunications Engineers
SPTS Single Program Transport Stream
tcimsbf twos complement integer, most significant bit first
TCP/IP Transmission Control Protocol/ Internet Protocol
UDP user datagram protocol
uimsbf unsigned integer, most significant bit first
UTC Coordinated Universal Time
VCI virtual channel identifier
VOD video on demand
VPI virtual path identifier

5.2. Definitions
Definitions of terms used in this document are provided in this section. Defined terms that have specific
meanings are capitalized. When the capitalized term is used in this document, the term has the specific
meaning as defined in this section.

API Connection A TCP/IP socket connection between a Server and a Splicer for
transferring API messages.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 11

Back-To-Back Insertion Two or more temporally contiguous Sessions without return to the
Primary Channel between Sessions.

Channel A Channel is a synonym for a “Service” in DVB terminology, or a
“Program” in MPEG terminology.

Deprecated Use is permissible for legacy purposes only. Deprecated features may
be removed from future versions of the standard. Implementations
should avoid use of deprecated features.

Insertion Channel The Insertion Multiplex Channel(s) that replace the Primary Channel
in whole or in part of the duration for a splice event.

Insertion Multiplex This is the source of the Insertion Channel. A Multiplex produced by
a Server may under some circumstances exclude PSI information, thus
it is understood that this Multiplex may be a non-compliant MPEG-2
transport stream.

Multiplex A Multiplex is a collection of one or more channel(s) that may include
the associated service information. A Multiplex is an MPEG-2
Transport Stream with the possible exception of an Insertion
Multiplex.

Output Channel The Channel that is produced at the output of the Splicer.
Output Multiplex The MPEG-2 Transport Stream produced by multiplexing one or more

Output channels.
Primary Channel The Primary Multiplex Channel that is replaced in whole or in part. A

single Primary Channel may result in multiple Output Channels.
Primary Multiplex This is the source of the Primary Channel(s).
Server The device that originates the Insertion Channel(s) to be spliced into

the Primary Channel(s). This device communicates with the Splicer
about when and what to splice.

Session A Session is the insertion of content (such as spot advertisements of
various lengths, program substitution, public service announcements,
or program material created by splicing portions of the program from a
Server). Each Session is identified by a unique SessionID.

Splice-in The splice at the start of the insertion. This happens at the time
specified in the Splice_Request message.

Splice-out The splice at the end of the insertion. The expected insertion end time
is calculated by adding the start time and the duration specified in the
Splice_Request message, however this may occur earlier due to error
conditions.

Splicer The device that splices the Insertion Channel(s) into the Primary
Channel(s). It may receive [SCTE 35] cue messages. This device also
communicates with the Server about when and what to splice.

6. Introduction
Note: This version of the standard has a Revision_Num of 2.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 12

6.1. System Block Diagram

This API may be used with many different configurations of Server(s) and Splicer(s). This API focuses
on the single Server, single Splicer configuration shown in Figure 1. However, this can be expanded to
the multiple Servers, multiple Splicers configuration as shown in Figure 2.

TCP/IP
Socket

Splicer

Insertion Multiplex

Server

Primary Multiplex
(with or without Embedded

Cue Message)
Primary
Channel

Insertion
Channel

Network
Connection

Output
MultiplexOutput

Channel

Figure 1 - Single Server / Single Splicer

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 13

Splicer1

Insertion Multiplex

Server(N)

Primary Multiplex
(with or without Embedded

Cue Message)

Network
Connection

Output
Multiplex

Primary Multiplex
(with or without Embedded

Cue Message)

Insertion Multiplex

Splicer
(K)

Output
Multiplex

Server1

Primary
Channel

Insertion
Channel

Output
Channel

Insertion
Channel

TCP/IP
Socket

Insertion Multiplex

Primary
Channel

Insertion
Channel

Output
Channel

Insertion
Channel

TCP/IP
Socket

Insertion Multiplex

Figure 2 - Multiple Servers / Multiple Splicers

The model referenced in this API has one or more Splicers with one or more Multiplex inputs. The
Splicer logically separates the Channel(s) in the Multiplex(s) and presents these Channel(s) to a switch.
This switch is capable of mapping any input to any Output Channel. The initial configuration maps
Primary Channel(s) to the Output Channel(s). The Server may then direct the Splicer to switch from a
Primary Channel to an Insertion Channel for a specified duration. It may then direct the Splicer to switch
to another Insertion Channel following the initial switch. The Splicer may then create an MPEG-2
Transport Stream produced by multiplexing one or more Output channels that shall be compliant with
[SCTE 54].

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 14

Logically, a splice involves two input Channels and one output Channel. The Splicer is responsible for
joining the various elementary streams (audio, video and data) together. The optimal splice point may
occur at slightly different times for each elementary stream, so the Splicer should perform the splice that
will supply the best quality output. Splicing may not always be performed from the Primary Channel, i.e.
programming network, to the Insertion Channel, i.e. spot advertisement, and back to the Primary Channel.
The Splicer may splice content that is stored solely on the server and arrives over a single input
Multiplex. It is possible to use this API in a situation where a server has one Multi-Program Transport
Stream (MPTS) output that contains program and interstitial material and uses the splicer to create proper
splices between the content.

This API supports all combinations of single and multiple Servers communicating with single and
multiple Splicers. A separate API Connection is associated with each Output Channel.

In some configurations, there can be either multiple Servers or multiple channels within the Insertion
Multiplex connected to a Splicer. In these cases, the Splicer will have multiple API Connections
associated with an Output Channel. When an [SCTE 35] Cueing Message is received in a Primary
Channel, the Cue_Request message must be sent to Servers over all of the API Connections that were
made for the associated Output Channel(s). It is also possible that more than one API Connection will
transport a Splice_Request message for the same insertion at the same time for an Output Channel.

6.2. Arbitration Priorities

Deprecated: There are no known implementations of arbitration.

Different levels of access are used to ensure that the correct Insertion Channel is utilized. There are ten
different levels of access, 0 through 9, with 9 being the highest priority which may override any lower
priority connection. The OverridePlaying flag in the Splice_Request message specifies whether an
insertion request is honored when the Splicer is currently queuing or performing an insertion. If the flag is
set to 1, then the higher priority insertion can interrupt the same or lower priority currently playing
insertion. If the flag is set to 0, the Splicer will not replace the insertion currently playing, even if the new
request is of a higher priority.

The Splice_Request message should be sent at least three seconds before the splice time() in order to be
valid. If the three second minimum is not met, the outcome of the Splice_Request message is not
determined by this API. If multiple Servers initiate splice requests for the same time with the same
priority, the Splicer will prioritize the requests on a first come-first served basis. All other requests will
be denied and a collision error will be sent in the Splice_Response message (unless the OverridePlaying
flag is set).

For example, during the period of time immediately preceding the initiation of an insertion, the following
is true: if a priority 5 Splice_Request is received for the same splice time as a priority 3 Splice_Request,
a collision error is returned for the priority 3 request. If a priority 7 Splice_Request is later received for
the same time, a collision error is returned for the priority 5 request and the priority 7 request is queued. If
a second priority 7 request is received with the OverridePlaying flag set to 0, then the second priority 7
request would receive a collision error. However, if the OverridePlaying flag is set to 1 on the second
priority 7 request, the original priority 7 request would receive a collision error and be overridden.

In Figure 6-3, three Splicer inputs are shown. The shaded areas indicate which input source will be
directed to the Output Channel at any given moment.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 15

Figure 3 - OverridePlaying Flag Operation

t1 - Server 1 issues a Splice_Request Message and begins its stream to the Splicer. Splicer switches this
Insertion Channel stream to the Output Channel. The Splice_Request has requested an insertion duration
from time t1 thru time t5. The Splicer shall send Server 1 a SpliceComplete_Response message with the
SpliceType flag set to Splice_in and a Result Code set to 100, “Successful Response”.

t2 - Server 2 issues a Splice_Request, with the OverridePlaying flag set to 1 and has an equal or higher
priority. At the time specified by the Splice_Request, Insertion Channel 2’s stream is switched to the
Output Channel (replacing the ongoing stream from Server 1). Server 2’s Splice_Request requests a
duration from time t2 thru time t3. The Splicer shall send Server 1 a SpliceComplete_Response message
with the SpliceType flag set to Splice_out and a Result Code set to 125, Channel Override. The Splicer
shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_in and a
Result Code set to 100, “Successful Response”. If Server 1 determines that the Channel Override is an
error, it may send an Abort_Request and terminate its stream at this time. This behavior is not shown in
Figure 6-3.

t3 - The insertion duration is completed and the Splicer returns to the material from Server 1 to direct to
the Output Channel. Note that the Splicer did not return to the Primary Channel for direction to the
Output Channel. The Splicer shall send Server 1 a SpliceComplete_Response message with the
SpliceType flag set to Splice_in and a Result Code set to 125, Channel Override. The Splicer shall send
Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_out and a Result
Code set to 100, “Successful Response”.

t4 - Server 2 issues another Splice_Request, with the OverridePlaying flag set to 1. At the time
specified by the Splice_Request, Insertion Channel 2’s stream is switched to the Output Channel
(replacing the still ongoing stream from Server 1). Server 2’s Splice_Request requests a duration from
time t4 thru time t6. The Splicer shall send Server 1 a SpliceComplete_Response message with the
SpliceType flag set to Splice_out and a Result Code set to 125, Channel Override. The Splicer shall send
Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_in and a Result
Code set to 100, “Successful Response”.

t5 - Server 1’s insertion stream ends with 2 portions of its duration having been played and 2 portions
having been overridden by Server 2’s stream.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 16

t6 - The final insertion duration is completed and the Splicer returns to the material from Primary Channel
for direction to the Output Channel. The Splicer shall send Server 2 a SpliceComplete_Response
message with the SpliceType flag set to Splice_out and a Result Code set to 100, “Successful Response”.

It is also possible that multiple Servers will need to split a Cue_Request message; a 60-second duration
splicing opportunity where one Server will use the first 30 seconds and the second Server will use the last
30 seconds, for example. Depending on the priorities and when the Splice_Request messages are
received, the Splicer shall indicate a Result Code 109 (Splice Collision) if one exists. This API does not
coordinate the ability of the two Servers to be able to perform this functionality. This can be done by
mutual agreement between the Servers or by a Server-to-Server API.

6.3. Abnormal Terminations

It is possible that an insertion will be overridden at some time during playback by a higher priority
insertion. In this case the Splicer shall return to the overridden insertion at the end of the higher priority
insertion. If the higher priority insertion is aborted by an Abort_Request message, the Splicer shall return
to the overridden insertion. If the initial Insertion Channel is no longer available, then the Splicer shall
return to the Primary Channel if possible.

If the Server requests a splice on a Primary Channel that currently has no valid input, the Splicer shall
perform the splice and report a Result Code 111 (No Primary Channel Found) in the
SpliceComplete_Response to the Server. Likewise, a splice from an Insertion Channel back to a Primary
Channel that has no valid input shall complete with Result Code 111 (No Primary Channel Found).

The Splicer vendor may consider adding software to ensure that the Splicer always returns to the Primary
Channel. It is highly desirable to have the Splicer fail-safe to the Primary Channel on any error condition
that would cause the Output Channel to stop transmitting

6.4. Splicing Requirements

The Splicer requires information about the Insertion Channel before it can be spliced into the Primary
Channel. Some of this information shall be sent in the API Connection (such as Init_Request and
Splice_Request) and some of it may be sent in the MPEG Multiplex (such as PAT and PMT). All of the
information is required before the splice.

ChannelName is used for Output Channel identification. This is a unique name assigned to each Output
Channel (e.g. CNN) in the Splicer setup and is needed by the Server to determine which Primary Channel
shall be replaced by each Insertion Channel.

The Splicer needs to know which Insertion Channel to splice into the Primary Channel. This includes the
Insertion Multiplex location (Init_Request) and which Channel in the Insertion Multiplex
(Splice_Request) to use.

6.5. Communication

The communication between the Server and the Splicer is conducted over one TCP/IP socket connection
per Output Channel. Once this API Connection is established it remains established until one of the
devices terminates it, at which time re-initialization is required to splice again.

All messages exchanged between the Splicer and Server share a common general format detailed in
Section 7.1. Only messages adhering to this format shall be used for communication between the Splicer

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 17

and Server. The format allows for a class of “User Defined” type messages that can be used as a template
for private data messages between the Server and Splicer, but is beyond the scope of this document.

All request messages require a response from either the Splicer or the Server, depending on which device
is making the request. Most of the response messages only indicate a result and do not contain any other
data, but are needed to ensure the requestor that the message was received and interpreted correctly. If
there are errors, the message might be resent. An example would be an error return with a 111 No Primary
Channel Found message and there is still time to execute the command, the ad server may resend it.

7. API Syntax

7.1. Splicing_API_Message Syntax

Messages in this API all contain a general message structure that wraps the data for the specific message
being sent. This is done so that when the message is received a common parsing routine can store the
message, determine what the structure of the data is and ensure that the message is received correctly.

Table 1 - Splicing_API_Message
Syntax Bytes Type

Splicing_API_Message {
MessageID 2 uimsbf
MessageSize 2 uimsbf
Result 2 uimsbf
Result_Extension 2 uimsbf
data()

 }

MessageID – An integer value that indicates what message is being sent. See Table 2

MessageSize – The size of the data() field being sent in bytes.

Result – The results to the requested message. See Appendix A (53) – Result Codes for details on the
result codes. On request messages, this is set to 0xFFFF.

Result_Extension – This shall be set to 0xFFFF unless used to send additional result information in a
response message.

data() – Specific data structure for the message being sent. Details on each of the messages containing
data are described below. The size of this field is equal to the MessageSize and is determined by the size
of the data being added to the message. Not all messages utilize the data() field.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 18

Table 2 - MessageID Values
MessageID Message Name Sent By Description
0x0000 General_Response Splicer or

Server
Used to convey asynchronous information
between the devices. There is no data()
associated with this message.

0x0001 Init_Request Server Initial Message to the Splicer on port 5168
0x0002 Init_Response Splicer Initial Response to the Server on the

established connection
0x0003 ExtendedData_Request Server Request for detailed playback information

from the Splicer.
0x0004 ExtendedData_Response Splicer Vendor unique response of extended

playback data from the requested playback
event.

0x0005 Alive_Request Server Sends an alive message to acquire current
status.

0x0006 Alive_Response Splicer Response to the alive message indicating
current status.

0x0007 Splice_Request Server Request to splice at a specific time.
0x0008 Splice_Response Splicer Response to indicate that the

Splice_Request was received and that the
Splicer is preparing to splice.

0x0009 SpliceComplete_Response Splicer Response at the splice in and splice out.
0x000A GetConfig_Request Server Request to get the current splice

configuration for this API Connection.
0x000B GetConfig_Response Splicer Contains all of the splice information for the

API Connection
0x000C Cue_Request Splicer Splicer sending the cue info section to the

Server.
0x000D Cue_Response Server Acknowledgment that the cue info section

was received.
0x000E Abort_Request Server Request to immediately return to the

Primary Channel or overridden Insertion
Channel.

0x000F Abort_Response Splicer Acknowledgment that the Abort_Request
message was received. A
SpliceComplete_Response shall also be
generated if necessary.

0x0010 TearDownFeed_Request Server Request to delete an output channel created
using the create_feed_descriptor()

0x0011 TearDownFeed_Response Splicer Response to indicate that the output channel
has been deleted.

0x0012 -
0x7FFF
0xFFFF

Reserved Range Reserved for future standardization.

0x8000 -
0xFFFE

User Defined Range available for user defined functions.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 19

7.2. Conventions and Requirements

1. Each message that contains data is outlined with its data fields and types below. Additional
structures are indicated as functions and are described in Section 8 of this document.

2. All string lengths have space reserved for a null terminator character and must use null terminated
strings. For example, a string that is defined as 16 characters can be at most 15 characters of data
followed by a null (0x00) character immediately after the last data character. Once a null is
encountered in scanning a string, the rest of the characters in the string are undefined. The size
defined for the string is constant and will not vary depending on the length of the string. This
specification uses ASCII characters for strings.

3. All time values are UTC.
4. This specification uses all 1s for a DON’T CARE condition. For a 4 byte field this value would

be 0xFFFFFFFF.
5. Response messages shall be sent out without unnecessary delay. The device expecting a response

should consider no response within 5 seconds to indicate a timeout. When a Server suspects a
timeout, it should send an Alive_Request message. If the Splicer does not answer as specified in
this document, the connection for this channel shall be dropped and re-established.

6. A Server receiving a response message indicating failure to parse a message (error code 123)
should send an Alive_Request message. If it does not receive the appropriate Alive_Response
message, the connection for this channel shall be dropped and re-established.

7. The Result field in the Splicing_API_Message is used to return a Result Code. Multiple response
codes may be returned by sending multiple General_Response messages at any time.

8. If the Splicer or Server cannot parse the Request message, it shall return a General_Response
with Result Code 123.

7.3. Initialization

The initial communication begins with the Splicer listening on the predefined port 5168 and a Server
opening an API Connection to the Splicer. The Server sends an Init_Request message to the Splicer. The
Server then listens for the response from the Splicer on the established API Connection. All further
communication is done on this API Connection. Either the Splicer or Server may terminate
communications by closing this API Connection. Each device is responsible for detecting and properly
handling a closed API Connection. When the Splicer initializes the TCP listener on port 5168, it should
allow for at least three times the number of Insertion Channels for API Connections to the splicer. For
example, if the Splicer controls 70 Channels of which 40 are spliceable, then it should allow 120,
(40 * 3), simultaneous API Connections.

7.3.1. Init_Request Message

The data() field for this message contains the Init_Request_Data structure outlined below.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 20

Table 3 - Init_Request_Data
Syntax Bytes Type

Init_Request_Data {
Version()
ChannelName 32 String
SplicerName 32 String
Hardware_Config()
for (i=0; i<n; i++)

 splice_API_descriptor()
}

Version() – See Section 8.1. This is the Version of the specification that will be used for communications
during this session even if the Init_Response indicates the Splicer supports a higher Version. If the Splicer
can not support this Version it shall return a result code of 102 (Invalid Version) and the Server shall
disconnect and reconnect with the appropriate Version, if supported.

ChannelName – Logical name given to the Output Channel of this connection. This is also used to verify
the correct API Connection when the Splicer responds to the Server.

SplicerName – Name of the Splicing device if the Server uses the API to communicate to a device that
controls multiple Splicers.

Hardware_Config() – See Section 8.2.

splice_API_descriptor() – A descriptor that must follow the syntax defined in Section 8.5. The
missing_Primary_Channel_action_descriptor() is a suitable descriptor for this request.

7.3.2. Init_Response Message

After the Init_Request is sent, the Splicer sends an Init_Response message on the opened API
Connection. The Server verifies that the version sent by the Splicer is supported and that it has an API
Connection to the correct Primary Channel.

The data() field for this message contains the Init_Response_Data structure outlined below.

Table 4 - Init_Response_Data
Syntax Bytes Type

Init_Response_Data {
Version()
ChannelName 32 String

}

Version() – See Section 8.1. The Splicer shall respond with the highest version number of the API that it
is capable of supporting.

ChannelName – Returned to the Server to indicate the correct connection was made.

7.4. Embedded Cueing Messages

Splicers may have the ability to receive embedded cue messages based upon the [SCTE 35] standard.
Once these cue messages are received by the Splicer, they need to be passed to the Server. The

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 21

Cue_Request message is used to pass these cue messages to the Server from the Splicer. When a Splicer
receives a cue message it sends the entire splice_info_section() along with the splice time to the Server.
The Server will acknowledge the message with a Cue_Response message. The Cue_Response message
consists of just the Splicing_API_Message and has no associated data() but may have a Return Code.
The Splicer will decrypt the splice_info_section() before sending it to the Server if it is encrypted.

If the Splicer receives a cue message that has an invalid CRC, it shall send a General_Message to the
Server with a Result Code of 117 (Invalid Cue Message). The Splicer shall not send the Cue_Request
message in this case.

It is suggested that the splicer be configurable as to which [SCTE 35] messages generate a Cue_Request
message. Configurations can include the:

1. Ability to pass messages from newer versions of [SCTE 35] that the splicer revision does not
understand.

2. Ability to not pass bandwidth reservation messages. This should be the default setting.
3. Ability to not pass Splice_Null messages unless they have descriptors attached.
4. Ability to not pass messages that cannot be decrypted.

7.4.1. Cue_Request Message

The data() field for this message contains the Cue_Request_Data structure outlined below.

Table 5 - Cue_Request_Data
Syntax Bytes Type

Cue_Request_Data {
time()
splice_info_section()

}

time() –- This time is derived from the splice_time() in the splice_info_section() of the [SCTE 35]
Cueing Message by the Splicer. If component splice mode is used in the [SCTE 35] splice_info_section,
the time() will refer to the default splice time detailed in Section 8.5.2.1 of [SCTE 35]. In the case where
the splice_info_section() does not contain a pts_time() that requires translation as in the
splice_schedule() command, then the time structure shall be filled with all 1s to denote no time specified.
It is up to the Splicer to determine how to map the PTS time to UTC for communication with the Server.
This may vary for different Splicers in order for them to properly manage their internal buffers. See
Section 8.4 for the time() structure syntax.

splice_info_section() – The details of the structure can be found in the [SCTE 35] document.

7.5. Splice Messages

After initializing and configuring the Splicer, the Server can issue the Splice_Request message to initiate
a Session. The two messages that are returned from the Splice_Request message are the
Splice_Response message and the SpliceComplete_Response message. The Server shall send a
Splice_Request message at least 3 seconds prior to the time() in the Splice_Request message. This
allows the Splicer to set up its configuration and prepare for the splice. The Insertion Channel stream for
the Session must start between 300 and 600 milliseconds before time() as measured at the splicer input.
A Program Clock Reference (PCR) must be sent on or before the first video access unit of the Insertion
Channel stream. The video stream of the insertion content shall start with a sequence header and an I-

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 22

Frame. The Splicer shall allow a minimum of 10 queued Splice_Request messages on a given API
connection. If the Splicer’s message queue is full it will respond with Result Code 114 (Splice Queue
Full).

The details of the physical connection are supplied in the Init_Request message. There are two ways to
indicate which channel in the insertion multiplex and which PIDs, to use:

• If the ServiceID is not 0xFFFF in the Splice_Request message, the ServiceID field specifies the
program number in the PAT which points to an associated PMT. The PAT and PMT must be
stable in the insertion channel at least 200 ms before the Splice_Request message is sent and
must remain stable for the duration of the Session. These must be legal MPEG tables with
revision increments as appropriate.

• If the ServiceID is 0xFFFF, use the splice_elementary_stream() structure (PCR, video, audio and
data PIDs) in the Splice_Request message.

NOTE: If this method is used then the ServiceID shall be set to 0xFFFF. The Splicer shall supply an
MPEG-2 compliant transport stream to the Output Multiplex although the Insertion Multiplex need not
include PSI.

The order in which splice messages are sent is important. The first message sent for a given sequence of
Back-To-Back Insertions shall utilize time(), while all of the other Splice_Request messages may utilize
PriorSession. The PriorSession number must reference an existing Session that has not yet completed.
In all other cases, an error 123 is returned pointing to the PriorSession or time() field.

The Server chooses the PIDs of the elementary streams within an Insertion Multiplex. The PIDs may not
be common between adjacent Sessions from the same Server via the same Insertion Multiplex. This is
because the streams of adjacent sessions will occasionally overlap slightly in time, due to requirements in
this API.

7.5.1. Splice_Request Message

The data() field for this message contains the Splice_Request_Data structure outlined below.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 23

Table 6 - Splice_Request_Data
Syntax Bytes Type

Splice_Request_Data {
SessionID 4 uimsbf
PriorSession 4 uimsbf
time()
ServiceID 2 uimsbf
if (ServiceID = 0xFFFF) {

PcrPID 2 uimsbf
PIDCount 4 uimsbf
for (j=0; j<PidCount; j++)

splice_elementary_stream()
}
Duration 4 uimsbf
SpliceEventID 4 uimsbf
PostBlack 4 uimsbf
AccessType 1 uimsbf
OverridePlaying 1 uimsbf
ReturnToPriorChannel 1 uimsbf
for (i=0; i<n; i++)

 splice_API_descriptor()
}

SessionID – Identifier for the Session. Used to distinguish this request from other requests that have been
or are going to be issued. Multiple concurrent Splice_Request messages with the same SessionID are
not permitted. If the ExtendedData_Request is used, an ExtendedData_Response must be received for
that SessionID before that SessionID is reused. This field shall not have the value of 0xFFFFFFFF. Early
versions of this standard (with Revision_Num = 0 or 1) allow the value 0xFFFFFFFF.

PriorSession – This field allows a simplified method of performing Back-To-Back Insertions. The value
of this field contains the SessionID of the Session that immediately precedes it. When the value of this
field is 0xFFFFFFFF, it indicates that this Session uses time() to initiate its insertion, rather than the
SessionID of the preceding Session. This field shall have a valid SessionID only when the immediately
preceding Session originated from the same Server. The time() field- rather than the PriorSession field-
must be used when creating Back-To-Back Insertions from multiple Servers.

time() – The splice time for the event. This field will typically be the time() field from the Cue_Request
message being echoed back to the splicer. If the event was not triggered by a Cue_Request, then this is
the time that the Server forces a splice event. This field is ignored if the PriorSession is not equal to
0xFFFFFFFF. If this value is not related to an [SCTE 35] cue message, there may be variation between
Splicers, depending on the buffer and splicing models of each, as to when the actual splice occurs. See
Section 8.4 for the time() structure syntax.

ServiceID – The program number of the Channel in the Insertion Multiplex which will be spliced in place
of the Primary Channel. If this is set to 0xFFFF the splice_elementary_stream() and PIDCount are
required.

PCR – Indicates the PCR PID.

PIDCount – The number of PIDs in the insertion channel. (not including the PCR PID.)

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 24

Duration – The number of 90 kHz clock ticks the Server is requesting the Splicer to insert. This field
may override the [SCTE 35] duration value. This can be set to 0 to indicate that the Splicer shall switch to
the Insertion Channel until a new Splice_Request or Abort_Request arrives.

SpliceEventID – This is used to relate this insertion event back to the [SCTE 35] cue message that may
have caused this splice to happen. This shall be equivalent to the splice_event_id from the splice_insert
command of the associated [SCTE 35] cue message. This should be the same for all Splice_Request
messages pertaining to the same [SCTE 35] cue message. For an event that was not initiated by a [SCTE
35] cue message, this field will be set to 0xFFFFFFFF.

PostBlack – Number of 90 kHz clock ticks of black video and muted audio to be played at the end of the
insertion content playback. The PostBlack interval follows and is not included in the length of time
specified by the Duration. If no PostBlack is requested, then this field will be set to 0. PostBlack shall
not be considered part of the currently playing insertion for the purposes of the OverridePlaying flag.

AccessType – Indicates the type of access this connection has. This is an integer from 0 to 9 with 0 being
low priority and 9 being the highest priority.

OverridePlaying – When this flag is equal to 0, this Splice_Request cannot override a currently playing
insertion. If this flag is set to 1, then this Splice_Request shall override any equal or lower priority
currently playing insertion. A currently playing insertion occurs between the Splice-in and the Splice-out
points.

ReturnToPriorChannel – When this flag is equal to 0, the splicer shall not return to the Primary
Channel or the overridden Insertion Channel at the completion of this Splice_Request. It is expected that
a new Splice_Request will be issued before this insertion completes. If a new Splice_Request is not
received, then the Splicer shall stop transmitting on this Output Channel. When this flag is equal to 1 it
shall return to the prior Channel unless a subsequent Splice_Request is received to indicate otherwise.

splice_API_descriptor() – A descriptor that must follow the syntax defined in Section 8.5. The
playback_descriptor() and muxpriority_descriptor() are appropriate descriptors for this section.

7.5.2. Splice_Response Message

The data() field for the Splice_Response message contains the Splice_Response_Data structure outlined
below. The Splice_Response_Message may contain an error code if appropriate. The Splice_Offset is
used by the Splicer to inform the Server of a time offset for the delivery of the content for this message.
This does not affect the point in the primary channel where the splice will occur.

Table 7 - Splice_Response_Data
Syntax Bytes Type

Splice_Response_Data {
Splice_Offset 2 tcimsbf

}

Splice_Offset – This shall be set to zero unless used to send delay information. The offset information is
in milliseconds. A negative value is a request for the insertion channel content to be delivered earlier; a
positive value is a request for the insertion channel content to be delivered later.

The Splice_Offset field is expected to be used by Splicing devices which achieve seamless operation by
altering the Primary Channel propagation delay through the Splicer. When such a device is commanded

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 25

to splice in the absence of [SCTE 35] cue messages, the Splicer does not have the opportunity to advance
or retard the Ad Server’s ad timing via alteration of the equation in converting pts_time to UTC time
(because there are no [SCTE 35] cue messages and hence no conversion and no Cue Request Messages).
In such a case, a Splicer may utilize the new Splice_Offset field to advance or retard the Ad Server to
match the Splicer’s output service timing following each Splice_Request message.

7.5.3. SpliceComplete_Response Message

The SpliceComplete_Response message is sent when the insertion starts and finishes. This is true for
Back-To-Back Insertions as well. For example, if two pieces of content play, four
SpliceComplete_Response messages are returned, one at the start of the first piece of content, one upon
completion of the first piece of content, one upon the start of the second piece of content and one upon
completion of the second piece of content. The result code in the header shall properly indicate the failure
reason if the splice failed so that the Server can take appropriate action. The splice-in and splice-out are
separate events and shall be treated as such. If a splice between two pieces of content fails, the splice-out
should indicate good status if the current piece of content played in its entirety. The
SpliceComplete_Response message shall be sent immediately upon failure of any splice event and shall
not wait until the expected duration of the inserted content.

The data() field for this message contains the SpliceComplete_Response_Data structure outlined below.

Table 8 - SpliceComplete_Response_Data
Syntax Bytes Type

SpliceComplete_Response_Data {
SessionID 4 uimsbf
SpliceTypeFlag 1 uimsbf
if (SpliceTypeFlag = 0) {
 time()
} else {
 Bitrate 4 uimsbf
 PlayedDuration 4 uimsbf

 }
}

SessionID – The Session ID that the Splice_Request message used.

SpliceTypeFlag - This field shall be a 0 to indicate a Splice-in (start) and a 1 to indicate a Splice-out
(end).

time() – The time that the Splicer detected the first byte of the insertion stream from the Server. The
Server may utilize this time() to adjust the arrival time, at the Splicer, of subsequent Insertion Channel
content when the delivery mechanism is known to have a time varying latency.

Bitrate – This is the average bitrate for the Session. This field is in bits-per-second (bps) including
transport packet overhead for this Channel.

PlayedDuration – This is the number of 90 kHz clock ticks actually played. This is exclusive of any post
black or transition frames.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 26

7.6. Alive Messages

Once the initialization is complete, the Server can send Alive_Request messages to ensure that the
Splicer is still up and running. Each Alive_Response message contains a status from the Splicer to the
Server. This status indicates the state of the device. If there has been no activity on the TCP/IP connection
in the preceding 60 seconds, then an Alive_Request message shall be sent.

7.6.1. Alive_Request Message

The data() field for the Alive_Request message contains the Alive_Request_Data structure outlined
below.

Table 9 - Alive_Request_Data
Syntax Bytes Type

Alive_Request_Data{
 time()
}

time() –The current UTC time clock of the sending device checked as close as possible to the sending of
the message. This is designed to be used by the Splicer and the Server to check on how well the two
systems are time synchronized. It is not expected that this will allow the systems to synchronize well
enough to allow reliable splicing to occur, but the implementers may use this as they wish. See Section
8.4 for the time() structure syntax.

7.6.2. Alive_Response Message

The data() field for the Alive_Response message contains the Alive_Response_Data structure outlined
below.

Table 10 - Alive_Response_Data
Syntax Bytes Type

Alive_Response_Data {
State 4 uimsbf
SessionID 4 uimsbf
time()

}

State – This describes the state of the Output Channel.

Table 11 - Alive_Response Message States
State Description

0x00 No output

0x01 On Primary Channel

0x02 On Insertion Channel

SessionID – The SessionID of the currently playing insertion. Valid only for State = 0x02.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 27

time() – The current UTC time clock of the sending device checked as close as possible to the sending of
the message. This is designed to be used by the Splicer and the Server to check on how well the two
systems are time synchronized. It is not expected that this will allow the systems to synchronize well
enough to allow reliable splicing to occur, but the implementers may use this as they wish. See Section
8.4 for the time() structure syntax.

7.7. Extended Data Messages

This is a Splicer defined structure to send detailed data about the playback to the Server. After the
SpliceComplete_Response has been received, then the extended data can be retrieved using the
ExtendedData_Request. The SessionID used in this message is the same as the SessionID used in
setting up this Session and in the SpliceComplete_Response. There are currently no standardized
ExtendedDataTypes defined.

7.7.1. ExtendedData_Request Message

The data() field for this message contains the ExtendedData_Request_Data structure outlined below.

Table 12 - ExtendedData_Request_Data
Syntax Bytes Type

ExtendedData_Request_Data {
SessionID 4 uimsbf
ExtendedDataType 4 uimsbf

}

SessionID – The SessionID of the completed Session.

ExtendedDataType – The requested response data type from the Splicer to the
ExtendedData_Response message. This value may be set to 0xFFFFFFFF to indicate that the default
data type is to be returned. This standard reserves 0x00000000 to 0x7FFFFFFF for future standardization.
The range 0x80000000 to 0xFFFFFFFE is for vendor unique usage.

7.7.2. ExtendedData_Response Message

The Server shall use the MessageSize field to determine the amount of data it is required to read via the
ExtendedData_Response message.

The data() field for this message contains the ExtendedData_Response_Data structure outlined below.

Table 13 - ExtendedData_Response_Data
Syntax Bytes Type

ExtendedData_Response_Data {
SessionID 4 uimsbf
for(i=0;i<n;i++)

 splice_API_descriptor()
}

SessionID – The SessionID that this data is valid for.

splice_API_descriptor() – A descriptor of the format defined in Section 8.5 that is Splicer defined.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 28

7.8. Abort Messages

The Server can send an Abort_Request at any time which will cause the Splicer to immediately revert to
the overridden Insertion Channel or Primary Channel. The Splicer shall send an Abort_Response
message to acknowledge the receipt of the Abort_Request. A SpliceComplete_Response with a Result
Code 116 (Insertion Aborted) is sent if the Abort_Request caused a Splice-out of the insertion. If no
Splice-out was needed, then no SpliceComplete_Response message shall be reported.

All pending Back-To-Back Insertions linked via the PriorSession field of the Splice_Request message to
the SessionID of an Abort_Request message shall also be aborted. An error message shall be returned
for each aborted SessionID. Consider the following example: three insertions are cued to run sequentially
within a block of time -- the first event is time based; the second event is linked to the first SessionID
using the PriorSession; the third event is linked to the second SessionID using that PriorSession. In this
example, if the first insertion event is aborted, the two subsequently cued insertion events will also be
aborted. The abort message does not abort any insertions that use a different API connection from a
Server to a Splicer. The next splice that occurs for the Primary Channel requires the PriorSession in the
splice message to be 0xFFFFFFFF.

7.9. Abort_Request Message

The data() field for this message contains the Abort_Request_Data structure outlined below.

Table 14 - Abort_Request Data
Syntax Bytes Type

Abort_Request_Data {
SessionID 4 uimsbf

}

SessionID – The SessionID and all subsequent Sessions linked through the PriorSession field that are to
be aborted.

7.10. Abort_Response Message

The Abort_Response indicates that the Abort_Request message was received.

The data() field for this message contains the Abort_Response_Data structure outlined below.

Table 15 - Abort_Request Data
Syntax Bytes Type

Abort_Response_Data {
SessionID 4 uimsbf

}

SessionID – The SessionID and all subsequent Sessions linked through the PriorSession field that were
aborted.

7.11. TearDownFeed_Request Message

The TearDownFeed_Request message contains no data and is only valid for the connection this message
is sent over. This message is used to tear down feeds created by the Init_Request message with the
create_feed_descriptor(). This message is used to tear down only those feeds.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 29

7.12. TearDownFeed_Response Message

The TearDownFeed_Response message contains no data and indicates that the
TearDownFeed_Request message was received and the action occurred. This message may contain a
result code if appropriate.

7.13. Requesting Configuration Settings

The current configuration settings for the API connection can be returned. This includes some of the
information in the Init_Request. The GetConfig_Request contains no additional data.

7.13.1. GetConfig_Request Message

The GetConfig_Request message contains no data.

7.13.2. GetConfig_Response Message

The data() field for this message contains the GetConfig_Response_Data structure outlined below.

Table 16 - GetConfig_Response Data
Syntax Bytes Type

GetConfig_Response_Data {
ChannelName 32 String
Hardware_Config()
TS_program_map_section()

}

ChannelName – Logical name given to the Output Channel of this connection.

Hardware_Config() – See Section 8.2 for the syntax of the Hardware_Config() structure.

TS_program_map_section() – This is the entire PMT section for the Output Channel as defined in
ISO/IEC [13818-1] . If the Splicer changes the PMT, it should signal this change to the Server with a
Result Code 128 in the General_Response message.

7.14. General_Response Message

The General_Response message is used to convey asynchronous information between the Server and the
Splicer. There is no data() associated with this message. Any Result Code may be sent in this message.
This message will typically be used to indicate Output Channel PMT changes or invalid Request
messages.

8. Additional Structures

8.1. Version

The Version structure is used to maintain the proper versioning within the API. It is expected that this
API will evolve over time and, to allow for this expansion, the version is specified in the Init_Request
and Init_Response messages to ensure that the Splicer supports the same version as the Server.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 30

Table 17 - Version()
Syntax Bytes Type

Version {
Revision_Num 2 uimsbf

}

Revision_Num – This field is two (2) in this version.

The Server and Splicer should set and check this field to ensure that both components are capable of
operating at the appropriate revision.

8.2. Hardware_Config

This structure describes the hardware interface between the Server and the Splicer. It is important for the
Splicer to know exactly where the Server is connected so that the Splicer knows what Multiplex is being
referenced. An example of this link would be a DVB-ASI connection from the Server to the Splicer.

Table 18 - Hardware_Config()
Syntax Bytes Type

Hardware_Config{
Length 2 uimsbf
Chassis 2 uimsbf
Card 2 uimsbf
Port 2 uimsbf
Logical_Multiplex_Type 2 uimsbf
Logical_Multiplex()

}

Length – This gives the length, in bytes, of this structure following this field.

Chassis – An integer indicating which Splicer chassis the Server’s Insertion Multiplex is connected. In
cases where the chassis is labeled alphabetically the translation is made to an integer value (i.e. A – 1; B –
2; etc).

Card – An integer indicating the Splicer card to which the Server’s insertion multiplex is connected. In
cases where the card is labeled alphabetically the translation is made to an integer value (i.e. A – 1; B – 2;
etc).

Port – The hardware port number where the Server’s insertion multiplex is connected.

Logical_Multiplex_Type – A value from the following table (Table 19).

Table 19 - Logical Multiplex Type
Type Bytes Name Description

0x0000 0 The Logical_Multiplex field is not present.
0x0001 variable User Defined The usage of the Logical_Multiplex field is not defined by

this specification and must be agreed upon between the
splicer and the server.

0x0002 6 MAC Address The Logical_Multiplex field contains the IEEE Media
Access Control address of the multiplex as a 6 byte address.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 31

0x0003 6 IPv4 Address The most significant 4 bytes of the Logical_Multiplex field
contain the Internet Protocol (IP) address of the multiplex,
and the remaining 2 bytes contain the IP port number where
the multiplex can be found.

0x0004 18 IPv6 Address The most significant 16 bytes of the Logical_Multiplex
field contain the Internet Protocol (IPv6) address of the
multiplex, and the remaining 2 bytes contain the IP port
number where the multiplex can be found.

0x0005 5 ATM Address The Logical_Multiplex field contains the coordinates of the
Asynchronous Transfer Mode (ATM) circuit over which the
multiplex is carried. The most significant 2 bytes of the
logical multiplex field contain the Virtual Path Identifier
(VPI) and the next two bytes contain the Virtual Channel
Identifier (VCI) of the circuit. The least significant byte
contains the ATM Adaptation Layer (AAL) number.

0x0006 variable IPv4 Address
with SPTS
Support

See description following this table.

0x0007 variable IPv6 Address
with SPTS
Support

See description following this table.

0x0008-
0xFFFF

variable Reserved Reserved for future standardization.

Type 0x0006 – IPv4 Address with Single Program Transport Stream (SPTS) support

Type 0x0006 is utilized by VOD and Ad Servers where remapping of PIDs is impractical or undesirable.
In these cases it is desirable to use a SPTS per UDP Port.

Table 20 - Type 0x0006 Structure
Syntax Bytes Type

Type 0x0006 structure {
 number_of_destination_ips 1 uimsbf
 for (j=0; j< number_of_destination_ips; j++) {

dest_ip_address 4 uimsbf
 }
 number_of_source_ips 1 uimsbf
 for (j=0; j< number_of_source_ips; j++) {

source_ip_address 4 uimsbf
 }
 base_port 2 uimsbf
 number_of_ports 1 uimsbf
}

number_of_destination_ips – Specifies how many dest_ip_address(s) follow. The valid range is 1 to
32.

dest_ip_address - The IPv4 address that the splicer shall use for the content associated with the splice.

number_of_source_ips – Specifies how many source_ip_address(s) follow. The valid range is 0-32.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 32

source_ip_address - The source IPv4 address(s) that the splicer may use in an IGMP V3 join for the
associated multicast dest_ip_address(s).

base_port - The initial UDP Port that the splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The number_of_ports
value may range from 1 to 4 and includes the base port. Allowed Port numbers are determined, in order,
by the base port, followed by base Port +1, followed by base Port +2, followed by base Port +3.

All Splice_Requests that use time() shall use the base IPv4 Address:Port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time(). Subsequent
sessions of the same avail that also use time() shall also use the base IPv4 Address:Port unless the
port_selection_descriptor() is used. The next and subsequent splice_requests using PriorSession instead
of time(), shall use the base IP and port+1, then port+2 and so on until the requested number of ports is
used and it shall then revert to the base port for the next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a hardware
config with Logical_Multiplex type 0x0006 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv4 Address:Port combination. The splicer shall perform
an IGMP join on a multicast IP.

Logical_Multiplex() – If the Port carries multiple Insertion Multiplexes on a single input, then this field
allows the Splicer to determine which to use when splicing from this Server. The meaning and format of
this field is defined by the Logical_Multiplex_Type field. In the event that a non-standard definition for
the Logical_Multiplex is required, the Logical_Multiplex_Type shall be set to 1 for User Defined.

Type 0x0007 – IPv6 Address with Single Program Transport Stream (SPTS) support

Type 0x0007 is utilized by VOD and Ad Servers where remapping of PIDs is impractical or undesirable.
In these cases it is desirable to use a SPTS per UDP Port.

Table 21 - Type 0x0007 Structure
Syntax Bytes Type

Type 0x0007 structure {
number_of_destination_ips 1 uimsbf
for (j=0; j< number_of_destination_ips; j++) {
 dest_ip_address 16 uimsbf
}
number_of_source_ips 1 uimsbf
for (j=0; j< number_of_source_ips; j++) {
 source_ip_address 16 uimsbf
}
base_port 2 uimsbf
number_of_ports 1 uimsbf

}

number_of_destination_ips – Specifies how many dest_ip_address(s) follow. The valid range is 1 to
32.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 33

dest_ip_address - The IPv6 address that the splicer shall use for the content associated with the splice.

number_of_source_ips – Specifies how many source_ip_address(s) follow. The valid range is 0-32.

source_ip_address - The source IPv6 address(s) that the splicer may use in an MLD V2 join for the
associated multicast dest_ip_address(s).

base_port - The initial UDP Port that the splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The number_of_ports
value may range from 1 to 4 and includes the base port. Allowed Port numbers are determined, in order,
by the base port, followed by base Port +1, followed by base Port +2, followed by base Port +3.

All Splice_Requests that use time() shall use the base IPv6 Address:Port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time(). Subsequent
sessions of the same avail that also use time() shall also use the base IPv6 Address:Port unless the
port_selection_descriptor() is used. The next and subsequent splice_requests using PriorSession instead
of time(), shall use the base IP and port+1, then port+2 and so on until the requested number of ports is
used and it shall then revert to the base port for the next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a hardware
config with Logical_Multiplex type 0x0007 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv6 Address:Port combination. The splicer shall perform
an MLD join on a multicast IP.

8.3. splice_elementary_stream()

Packet Identifiers (PIDs) are identifiers for parts of the transport stream, video, audio, data, etc. This
structure is used to describe one of the elements in the program in the MPTS. The Splice_Request
message may contain a splice_elementary_stream() structure for each of the transport stream components
(except for the PCR PID). The StreamTypes are based on the MPEG PMT table definitions.

This specification has not defined how to map multiple audio/video/data PIDs to output PIDs. It has also
not defined Splicer behavior when multiple audio tracks may be either present or missing in the Insertion
Channel compared with the Primary Channel.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 34

Table 22 - Splice_Elementary_Stream()
Syntax Bytes Type

splice_elementary_stream {
Length 1 uimsbf
PID 2 uimsbf
StreamType 2 uimsbf
AvgBitrate 4 uimsbf
MaxBitrate 4 uimsbf
MinBitrate 4 uimsbf
HResolution 2 uimsbf
VResolution 2 uimsbf
for(i=0;i<n;i++)

 descriptor()
}

The PCR PID is required.

Length – Total length in bytes of the splice_elementary_stream() structure including this field.

PID – The PID number that is being used. This is a 2 byte field (16 bit) and shall contain the 13 bit PID
right aligned as a 16 bit integer. (0x0000 to 0x1FFF)

StreamType – The type of PID (Audio, Video, etc). This number corresponds with the PMT
specification found in ISO/IEC [13818-1] .

AvgBitrate – The bitrate for this PID averaged over the entire piece of content in bits-per-second (bps).
This is set to 0xFFFFFFFF if the bitrate is not known.

MaxBitrate – The maximum bitrate for this PID. This is set to 0xFFFFFFFF if the bitrate is not known.

MinBitrate – The minimum bitrate for this PID. This is set to 0xFFFFFFFF if the bitrate is not known.

HResolution – The width in number of pixels of the video pictures using this PID. If the PID does not
contain video pictures or if the Server can not supply this value, it shall be set to 0xFFFF.

VResolution – The height in number of pixels of the video pictures using this PID. If the PID does not
contain video pictures or if the Server can not supply this value, it shall be set to 0xFFFF.

descriptor() –Any valid descriptor used in a PMT. For multiple audio PIDs the language descriptors as
defined in ISO/IEC [13818-1] are required.

8.4. time() Field Definition

The time structure is used to define various times in this specification.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 35

Table 23 - Time()
Syntax Bytes Type

time {
Seconds 4 uimsbf
MicroSeconds 4 uimsbf

}

Seconds – Elapsed seconds since 12:00 AM January 1, 1970 UTC.

MicroSeconds – Offset in microseconds of the Seconds field.

8.5. splice_API_descriptor() Field Definition

This is a template for adding descriptors in any message defined within this document. The
Splice_Request, ExtendedData_Response and Init_Request messages may use descriptors. The use of
descriptors in messages defined by this standard is optional. The following table is the general format for
descriptors used in this standard.

Table 24 - Splice_Api_Descriptor()
Syntax Bytes Type

splice_API_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_API_Identifier 4 uimsbf

 for (i=0;i<n;i++)
 Private_Byte 1 uimsbf
}

Splice_Descriptor_Tag – A value from 0x00 to 0xFF to denote the specific descriptor being used. Tag
values 0x00 to 0xFF are reserved for use by this standard. The vendor may use a vendor unique
Splice_API_Identifier to allow for a larger tag range and a more robust method of adding vendor unique
descriptors.

Descriptor_Length – This gives the length, in bytes, of the descriptor following this field. Descriptors
are limited to 256 bytes, so this value is limited to 254.

Splice_API_Identifier – An identifier of the organization that has defined this descriptor. For all
descriptors within this document, the identifier is 0x53415049 (ASCII “SAPI”). This has been chosen to
not conflict with descriptors of any other known identifier.

Private_Byte – The remainder of the descriptor is dedicated to data fields as required by the descriptor
being defined.

8.5.1. playback_descriptor() Field Definitions

The playback_descriptor() is an implementation of the splice_API_descriptor() which is intended for use
in the Splice_Request message.

The abort criteria examine the playback rate, defined as the Output Channel’s bitrate averaged over a one
second period. The sliding displacement of the averaging window is recommended to be one second or
less.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 36

Table 25 - Playback_Descriptor()
Syntax Bytes Type

playback_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_API_Identifier 4 uimsbf
BitrateRule 1 uimsbf
MinPlaybackRate 4 uimsbf

}

Splice_Descriptor_Tag – 0x01.

Descriptor_Length – 0x09.

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

BitrateRule – Flag used to indicate the rules for MinPlaybackRate.

Table 26 - BitrateRule Values
BitrateRule Description

0x00 Ignore MinPlaybackRate
0x01 Return Result Code 127 immediately using the

General_Response message if the playback rate falls
below the MinPlaybackRate but do not abort.

0x02 Abort if the playback rate falls below the
MinPlaybackRate

0x03 Cancel the Session prior to the Splice-in if the Splicer
determines that the MinPlaybackRate will not be met. The
Splicer will send a SpliceComplete_Response or
General_Response with a Result Code 127.

MinPlaybackRate – The minimum aggregate bitrate of the Output Channel averaged over one second for
the duration of the splice that it can play at before the BitrateRule is triggered. Setting this value to 0
indicates there is no minimum rate.

8.5.2. muxpriority_descriptor() Field Definitions

The muxpriority_descriptor() is an implementation of the splice_API_descriptor() which is intended for
use in the Splice_Request message.

Table 27 - Muxpriority_Descriptor()
Syntax Bytes Type

muxpriority_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_API_Identifier 4 uimsbf
MuxPriorityValue 1 uimsbf

}

Splice_Descriptor_Tag – 0x02

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 37

Descriptor_Length – 0x05

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

MuxPriorityValue – This number ranges from 1 to 10 (1 being the lowest, 5 is the average and 10 being
the highest). This number modifies the stored MuxPriorityValue of the primary channel in the Splicer. A
MuxPriorityValue of 5 will not modify the output channels priority. A MuxPriorityValue of less than 5
will subtract from the Output Channel’s priority level and a MuxPriorityValue greater than 5 will add to
the Output Channels priority.

Using the MuxPriorityValue will not ensure that the content is played with any specific level of quality.
The actual effect of the MuxPriorityValue depends on the over all spliced multiplex configuration and
how much the Splicer needs to lower the total multiplex bitrate at any given time. This will also be
dependent on how the Splicer operates and as such will be a very Splicer vendor dependent field.

8.5.3. missing_Primary_Channel_action_descriptor() Field Definitions

Deprecated: There are no known implementations of missing_Primary_Channel_action_descriptor().

The missing_Primary_Channel_action_descriptor() is an implementation of the splice_API_descriptor()
which is intended for use in the Init_Request message.

If the Primary Channel has terminated for any reason during an insertion, the result at the decoder may be
to display a freeze frame of the last inserted frame at the conclusion of the insertion. This descriptor
allows the splicer to be directed to insert black video and silent audio in order to clear the decoder's
buffer, if the Primary Channel is no longer present when it would normally become the output
audio/video source.

Table 28 - Missing_Primary_Channel_Action_Descriptor ()
Syntax Bytes Type

missing_Primary_Channel_action_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_Api_Identifier 4 uimsbf
MissingPrimaryChannelAction 1 uimsbf

}

Splice_Descriptor_Tag – 0x03

Descriptor_Length – 0x05

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

MissingPrimaryChannelAction - This parameter has three possible values, 0, 1, and 2. A value of 0
means do nothing. A value of 1 means insert one black I frame and one frame of audio silence. A value
of 2 means continue to transmit black and silence until the primary signal returns.

8.5.4. port_selection_descriptor() Field Definitions

The port_selection_descriptor() is an implementation of the splice_API_descriptor() which shall only be
used in the Splice_Request message when Logical Multiplex type 0x0006 or 0x0007 is used in the
hardware configuration. If during a sequence of insertions the server sends a port_selection_descriptor(),

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 38

the server shall continue to send the port_selection_descriptor() until the next Splice_Request based on
time occurs.

The port_selection_descriptor() may be utilized to alter the default operation of the ports or select a new
dynamically set up IPv4 or IPv6 Address:Port combination.

The splicer shall dynamically set up a destination port if the ps_ip_address was not defined in the
hardware config. If the ps_ip_address is multicast, the splicer shall issue an IGMP join or an MLD join
request within 400 milliseconds after the arrival of the Splice_Request message. Latency for setting up a
multicast group shall be less than 2 seconds, which is derived as follows:

The 3 second arrival of the Splice_Request message (Section 7.5)

Less the 600 milliseconds stream start time (Section 7.5)

Less 400 milliseconds for the splicer to issue the IGMP join or the MLD join request.

Table 29 - Pv4 Port_Selection_Descriptor ()
Syntax Bytes Type

port_selection_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_API_Identifier 4 uimsbf
ps_ip_address 4 uimsbf
ps_port 2 uimsbf
ps_number_of_source_ip 1 uimsbf
for (j=0; j< ps_number_of_source_ip; j++) {

 ps_source_ip_address 4 uimsbf
}

}

Splice_Descriptor_Tag – 0x04

Descriptor_Length – Variable The length, in bytes, of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

ps_ip_address – The IPv4 internet protocol address that the splicer shall use for the content associated
with the splice. If this address:port combination is different than the address in the Logical_Mux_Type
0x0006 table, it shall be considered a dynamic port setup request.

ps_port – The UDP Port that the splicer shall use for the content associated with the splice. This port
number shall override the automatic port selection method of the Logical_Multiplex_Type 0x0006.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(s) follow. The valid range is 0-
32

ps_source_ip_address - The source IPv4 address(s) that the splicer shall use in an IGMP V3 join for the
associated multicast ps_ip_address.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 39

Table 30 - IPv6 Port_Selection_Descriptor ()
Syntax Bytes Type

port_selection_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_API_Identifier 4 uimsbf
ps_ip_address 16 uimsbf
ps_port 2 uimsbf
ps_number_of_source_ip 1 uimsbf
for (j=0; j< ps_number_of_source_ip; j++) {

 ps_source_ip_address 16 uimsbf
}

}

Splice_Descriptor_Tag – 0x05

Descriptor_Length – Variable. The length, in bytes, of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

ps_ip_address - The IPv6 internet protocol address that the splicer shall use for the content associated
with the splice. If this address:port combination is different than the address in the Logical_Mux_Type
0x0007 table, it shall be considered a dynamic port setup request.

ps_port - The UDP Port that the splicer shall use for the content associated with the splice. This port
number shall override the automatic port selection method of the Logical_Multiplex_Type 0x0007.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(s) follow. The valid range is 0-
32

ps_source_ip_address - The source IPv6 address(s) that the splicer shall use in an IGMP V3 join or an
MLD join for the associated multicast ps_ip_address.

8.5.5. asset_id_descriptor() Field Definitions

The asset_id_descriptor() is an implementation of the splice_API_descriptor() which shall only be used
in the Splice_Request message. This descriptor is intended to be used when the asset playout is being
performed by the splicer, but can be used to identify the asset being played also. It is suggested for
advertising content that the spot id or other identifier be used rather than a fully qualified name. For long
form VOD type content, a full asset name will probably be required. How the Server and Splicer manage
the name format is not specified in this document.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 40

Table 31 - Asset_Id_Descriptor ()
Syntax Bytes Type

asset_id_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_Api_Identifier 4 uimsbf
Asset_Upid_Type 1 uimsbf
Asset_Upid_Length 1 uimsbf
Asset_Upid()

}

Splice_Descriptor_Tag – 0x06

Descriptor_Length – Variable, The length, in bytes, of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

Asset_Upid_Type – A value from the segmentation_upid_type table (Table 9-7, of [SCTE 35]. When the
Type value from [SCTE 35] Table 9-7 is 0x09 (ADI), the requirements regarding this ADI related value
in [SCTE 35] section 9.3.3.2 shall form a part of this specification.

Asset_Upid_Length – length in bytes of the Asset_Upid structure. The maximum value of this field is
245.

Asset_Upid() - Length and identification from the segmentation_upid_type table [SCTE 35] Table 9-7.
This structure’s contents and length are determined by the Asset_Upid_Type and Asset_Upid_Length
fields. An example is a type of 0x06 for ISAN and a length of 12 bytes. This field would then contain
the ISAN identifier for the content to which this descriptor refers.

8.5.6. create_feed_descriptor() Field Definitions

The create_feed_descriptor() is an implementation of the splice_API_descriptor() which shall only be
used in the Init_Request message. This descriptor will give the splicer enough information to create the
output SPTS.

The usage of this descriptor shall be as follows:

1. The ad server shall open a new TCP connection to the splicer of the to-be-created feed.
2. The ad server shall send an Init_Request message with this descriptor on the newly created TCP

connection.
3. The ChannelName field in the Init_Request message shall reflect the name of the newly-created

feed.
4. The splicer shall create the feed according to the Init_Request message. The newly-created-feed

shall be identical to the feed denoted by OriginalChannelName (see below). The identity shall
encompass all PID values, types, descriptors, PCR PID and Program number within the newly-
created feed's PMT and PAT.

5. The splicer shall send an Init_Response message only after the new feed is created.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 41

Table 32 - Create_Feed_Descriptor ()
Syntax Bytes Type

create_feed_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_Api_Identifier 4 uimsbf
OriginalChannelName 32 String
Create_Feed_Descriptor_Type 1 uimsbf
if (Create_Feed_Descriptor_Type == 0) {
 IPv4_Dest_Address 4 uimsbf
 Destination_Port 2 uimsbf
}
else if (Create_Feed_Descriptor_Type == 1) {
 IPv6_Dest_Address 16 uimsbf
 Destination_Port 2 uimsbf
}

}

Splice_Descriptor_Tag – 0x07

Descriptor_Length – Variable. The length, in bytes, of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

OriginalChannelName – The logical name of the output channel used as the template for the newly-
created-feed. This is a null-terminated string.

Create_Feed_Descriptor_Type -- This field shall be a 0 to indicate that an IPv4 address is used and
shall be a 1 to indicate that an IPv6 address is used.

IPv4_Dest_Address – The destination IP address for the created output service. This is in the IPv4
format.

IPv6_Dest_Address – The destination IP address for the created output service. This is in the IPv6
format.

Destination_Port – The destination UDP port for the created output service.

8.5.7. source_info_descriptor() Field Definitions

The source_info_descriptor() is an implementation of the splice_API_descriptor() which may be used in
the Cue_Request message. This descriptor will give the Server enough information to match an insertion
feed to the same type, resolution and frame rate as the primary channel. This descriptor shall only be used
if the primary channel has one and only one video present.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 42

Table 33 - Source_Info_Descriptor ()
Syntax Bytes Type

source_info_descriptor {
Splice_Descriptor_Tag 1 uimsbf
Descriptor_Length 1 uimsbf
Splice_Api_Identifier 4 uimsbf
StreamType 1 uimsbf
HResolution 2 uimsbf
VResolution 2 uimsbf
frame_rate_code 1 uimsbf
progressive_sequence 1 uimsbf

}

Splice_Descriptor_Tag – 0x08

Descriptor_Length – 0x0A

Splice_API_Identifier – 0x53415049, ASCII “SAPI”.

StreamType – This number corresponds with the PMT specification found in ISO/IEC [13818-1] .

HResolution – The width in number of pixels of the video pictures.

VResolution – The height in number of pixels of the video pictures.

frame_rate_code – For MPEG-2 video, this parameter shall be coded per the frame_rate_code from
Table 6-4 in ISO/IEC [13818-2] . For AVC video, this parameter shall be coded per the frame_rate_code
value from Table 6-4 in ISO/IEC [13818-2] that matches the coded frame rate listed in Table 11 of
[SCTE 128-1].

Table 34 - Frame Rate Codes (Informative)
Frame Rate (Hz) frame_rate_code AVC time_scale AVC num_units_in_tick

24/1.001 (23.976...) ‘0001’ 48000 1001
24 ‘0010’ 48 1
30/1.001 (29.97...) ‘0100’ 60000 1001
30 ‘0101’ 60 1
60/1.001 (59.94...) ‘0111’ 120000 1001
60 ‘1000’ 120 1

progressive_sequence – For MPEG-2 video, this parameter shall be coded per Section 6.3.5 in ISO/IEC
[13818-2] . For AVC video, this parameter shall be set to ‘1’ when the letter ‘P’ in Table 11 of [SCTE
128-1] is listed with the corresponding frame rate; otherwise, this parameter shall be set to ‘0’.

9. Time Synchronization

9.1. Introduction [Informative]

Time synchronization is required due to the communication of time between the Server and the Splicer.
The delay on a TCP/IP message is somewhat unpredictable and is affected by other machines on the

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 43

network. By having the machines synchronized, time can be communicated between the two machines
without concern for normal network delays keeping the splicing very accurate.

The following recommendations eliminate the variations in ad insertion timing, removing the need for
operators to perform ad insertion timing adjustments for their local ad insertion channels.

The Splicer converts a cue’s PTS time to UTC in NTP time format, as described in [EG 40] , when it
sends the cue to the Server. If the Server returns that exact time to the Splicer in the splice request
command, then the Splicer inserts the content at that exact PTS time, providing the following is true:

1) There is a proper out-point based on the compression standard. For example, in the case of
MPEG-2, a proper out-point is an I-frame or P-frame. Therefore, the broadcast encoder must
insert the proper frame at the correct PTS. Also note that any intermediate transcoders used by an
affiliate must retain that key frame in the same PTS location, or properly use the PTS adjust field.

2) The Splicer’s buffer has been preloaded with sufficient video packets to perform a seamless
switch to the inserted video stream. Time synchronization is critical at this point, for ad splicing
to work correctly. If the cue has the correct PTS time for the splice and the Server does not try
and adjust it, then this part of the communication requires no time synchronization.

The system may use the Alive_Request/Alive_Response messages to detect if the two devices have
proper synchronization and to alert the operator if synchronization is lost. On a typical closed network,
the Splicer and Server timing should only be off by the network latency. If a greater discrepancy is noted,
corrective action should be taken.

The Splicer takes the PCR and relates it to the clock time. It then sends a message to the Server that
specifies the exact UTC to begin streaming. The insertion channel from the Server arrives at the Splicer
exactly synchronized with the primary channel, and a perfect splice is achieved. Any additional delays
that occur within the Splicer are irrelevant since the input bit streams were synchronized.

Note: If UTC time is not universally adhered to, that is some areas use GPS-based time, then all splicing
system implementations should consider the conversion from GPS-based time of day to UTC to remove
the need to include the GPS to UTC offset in computing times.

9.2. Splicing Compressed Streams

As was discussed earlier, it is only possible to exit and enter a compressed video stream on certain frame
types based on the encoding standard used. The content provider should ensure that their encoders insert
the correct frame types both at the beginning and ending of the ad break. Since a key frame is usually
required to go back in to the live video, most Splicers adjust splice points in their buffers and jump
forward or backward in time to find an appropriate frame type if one doesn’t exist when required. This
can lead to very unpredictable timing when returning from the ad to network.

The content provider also needs to ensure that the underlying content is correct. If they insert an I(DR)
frame at the position of the programming material after the exact duration of a break, but the underlying
content was shorter or longer, the return to network will not be accurate either.

Utilization of timing adjustments on a Server masks the problem. It addresses a symptom rather than
curing the problem. Server adjustment settings should be set to 0 and the root cause should be fixed
typically by the content provider. If the ad timing is incorrect, the operator should contact the content
provider to have a fix made in order to ensure the proper key frames at the splicing locations.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 44

Content providers have good reasons to ensure that they are inserting [SCTE 35] messages that point to
the correct frame and to ensure that their encoders are inserting the correct frame types at those locations.
Content providers are typically running ads at the same time as well and they do not want their ads cut off
and covered, or parts of underlying content or promos bleeding through. They should also ensure that the
durations are correct and that the exit key frames exist at the proper location.

This however can be a difficult thing for content providers to determine. Content providers may insert
some black frames in front of ads. Depending on the ad QC, the number of frames can vary. Also on
leaving content there may be a variable number of black frames at the end of the content. This can make
the determination of exactly which frame is the first frame of the ad to be pure guesswork.
Content providers should look at options such as time code in VANC or inserting something recognizable
on the first frame of the ad and content. Care should be taken so that this is eventually stripped or
undetectable by consumer equipment as that may enable an ad blocker.

Note: For further information about ad timing and monitoring, refer to [SCTE 67]

9.3. NTP Time Syncronization

One possible method of time synchronization is to use Network Time Protocol (NTP) to keep the Server
and the Splicer in synchronization. It is likely that Servers already keep some time synchronization, and
thus could provide the NTP service and the Splicer could be an NTP client. A network common host
system NTP server could also be used since this also typically exists in a cable headend that has a
network infrastructure.

Typically, the buffer for the Splicer is large enough that the typical NTP synchronization if done properly
as described below, of sub 10 mS, is more than accurate enough to ensure a proper splice.

NTP has the following characteristics:

• Works on IP networks
• Deterministic
• Delivers time
• Performance
• Millisecond-class time accuracy

NTP Strata

• NTP uses a hierarchical, numbered semi-layered system of time sources
• The number represents the distance from the reference clock
• Stratum 0 These are high-precision timekeeping devices
• The upper limit for stratum is 15; stratum 16 is used to indicate that a device is unsynchronized

There is a possibility that if the Server and the Splicer performing digital ad insertion can be connected to
NTP sources that have considerable variations in timing if the stratum levels are significantly different.

The Server is usually running a time based schedule so it requires some accuracy to a low stratum NTP
server to ensure that its wall clock is correct to ensure the ad windows in the schedule are being correctly
followed. While the Splicer may be performing other functions that require an accurate wall clock, such
as a network time of day switch, for the purposes of splicing it only needs to synced to the Server.

A system utilizing NTP time synchronization shall utilize Servers that are configured as NTP clients to
the network NTP source and all Splicers shall be NTP clients of the Servers as shown in Figure 4 -

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 45

Normative NTP Configuration. This configuration guarantees that there will be minimal time difference
between the Server and the Splicer. The Server should always be configured with a local clock as a last
resort so that it always has a time to provide to the Splicer and will continue to operate correctly. Figure 5
- Informative NTP Configuration 1 and Figure 6 - Informative NTP Configuration 2 represent incorrect
NTP configurations which both can lead to major timing differences.

Figure 4 - Normative NTP Configuration

An alternative to the ideal configuration for time synchronization between a Server and the Splicer
performing digital ad insertion is Figure 5 - Informative NTP Configuration 1. It is typically better than
using two sources as one source is guaranteed to be at the same stratum, but if one of the two devices
loses the connection with the NTP source then time will drift so you have two points of failure. In Figure
4 - Normative NTP Configuration the only required connection is the one between the Splicer and the
Server.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 46

Figure 5 - Informative NTP Configuration 1

In the following example, Figure 6 - Informative NTP Configuration 2, there is a considerable difference
in stratum level between the Server and the Splicer. This configuration should be avoided.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 47

Figure 6 - Informative NTP Configuration 2

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 48

9.4. PTP Time synchronization

If both a Server and a Splicer have PTP capability, PTP shall be used for time synchronization.

Precision Time Protocol (PTP) is documented in [IEEE 1588] and based upon an international time scale
called International Atomic Time (TAI, from the French name Temps Atomique International), unlike
NTP [RFC 5905] which is based upon UTC. PTP is being used in a/v bridging and broadcast
synchronization standards, especially SMPTE ST 2059 (see [SMPTE ST2059-1] and [SMPTE ST2059-
2])and [AES67] , and is expected to be available in a studio environment. Other time sources, such as
NTP or GPS, are readily convertible to PTP format.

PTP has the following characteristics as described in [IEEE 1588] , with media system constraints
documented in [SMPTE ST2059-1] and [SMPTE ST2059-2] , along with [AES67] :

• Network-based Precision Time Protocol
• Delivers precision time to many slaves
 Spans hundreds of years
 Sub-nanosecond granularity
 Delivered over IP network
 Can be globally locked
 Can co-exist with other traffic

TAI does not have “leap” seconds like UTC. When UTC was introduced (January 1, 1972) it was
determined there should be a difference of 10 seconds between the two time scales. Since then an
additional 25 leap seconds (including one in June 2012) have been added to UTC to put the current
difference between the two timescales at 35 seconds (as of Sep 2014.). The PTP protocol communicates
the current offset between TAI and UTC to enable conversion. By default, PTP uses the same “epoch”
(i.e. origination or reference start time and date of the timescale) as UNIX time, of 00:00, January 1,
1970).

Conversion between PTP and NTP may be accomplished as shown below:

TAI_seconds is the 48-bit seconds value provided by PTP

UTC_offset is the 16-bit offset value provided by PTP

UTC seconds = TAI seconds - UTC_offset

NTP seconds = TAI seconds - UTC_offset + 2,208,988,800

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 49

Figure 7 - Normative PTP Configuration

If both ad servers and ad splicers support PTP time synchronization, that method may also be considered.

While the PTP time stamp provides a higher accuracy then the NTP time stamp, PTP is not required for
this application and there is no need to change the NTP time stamp.

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 50

10. System Timing

10.1. DPI Splice Signal Flow

The following figures convey specific details regarding the usage and ordering of the various messages
allowed by this API. The actual usage of API messages may not be limited to these examples.

Figure 8 - Single Event Splice

1) CRM

2) CRespM

Splicer Server

4) SRespM

3) SRM

6) SCM

1) The Splicer sends a Cue_Request
Message to the Server shortly after the SCTE
35 message is received by the Splicer in the
Primary Channel.

2) The Server responds with the
Cue_Response Message.

3) At least 3 seconds prior to the intended
splice time, the Server sends the
Splice_Request Message to the Splicer.

4) The Splicer responds with the
Splice_Response Message.

5) Shortly after the insertion has begun, the
Splicer sends a SpliceComplete_Response
Message.

6) The Splicer sends another
SpliceComplete_Response Message after
the insertion has completed.

In
se

rti
on

In
 P

ro
gr

es
s

-S
pl

ic
e

In
Sp

lic
e

O
ut

 -

5) SCM

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 51

Figure 9 - Multiple Event Splice

10.2. DPI Splice Initiation Timeline

The following figure gives a timing example of the events leading up to the beginning of a program (or
advertisement) insertion. Times in a real situation may vary from the timing shown in this figure. The
interval of time shown is applicable to the discussion of priority arbitration as presented in Section 6.2.
Operation in conjunction with [SCTE 35] Cueing Messages is also shown.

In the figure, bold black lines indicate the flow of MPEG information on the Primary Channel line and on
the Insertion Channel line. Thin black lines indicate that MPEG information is either not flowing at that
moment or is unimportant (i.e. not selected to appear at the Output Channel).

Splicer Server

1) CRM

2) CRespM

3a) SRespM1

3) SRM1

-S
pl

ic
e

In
Sp

lic
e

O
ut

 -

4a) SRespM2

4) SRM2

5a) SRespM3

5) SRM3

In
se

rti
on

In
 P

ro
gr

es
s

In
se

rti
on

In
 P

ro
gr

es
s

In
se

rti
on

In
 P

ro
gr

es
s

3b) SCM1 (in)

6) SCM3 (out)

-S
pl

ic
e

In
-S

pl
ic

e
In

1) The Splicer sends a Cue_Request Message to the Server shortly after
the SCTE 35 message is received by the Splicer in the Primary Channel.

2) The Server responds with the Cue_Response Message.

3) At least 3 seconds prior to the intended splice time , the Server sends the
first Splice_Request Message to the Splicer . (3a) The Splicer will respond with
the first Splice_Response Message. (3b) Once this first splice is made the
Splicer will send the server the first SpliceComplete _Response Message.

4) For the next splice, the Splicer must receive the next Splice _Request
Message anywhere from just after the first Splice_Request message up to
3 seconds prior to its designated splice . (4a) The Splicer responds with the
second Splice _Response Message. (4b) At the completion of the first splice
the Splicer will send two SpliceComplete _Response messages denoting the
end of the first splice and the beginning of the second splice .

5) For the third splice, the Splicer must receive the next Splice _Request
Message anywhere from just after the first and second Splice _Request
message up to 3 seconds prior to its designated splice . (5a) The Splicer
responds with the second Splice_Response Message. (5b) At the completion
of the first splice the Splicer will send two SpliceComplete _Response
messages denoting the end of the second splice and the beginning of the third
splice.

6) Shortly after the third splice completes , the Splicer sends another
SpliceComplete_Response Message.

5b) SCM3 (in)
5b) SCM2 (out)

4b) SCM2 (in)
4b) SCM1 (out)

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 52

Splice Request
Splice Response 0.00 Sec

0.50 Sec

0.75 Sec

1.00 Sec

1.25 Sec

1.50 Sec

1.75 Sec

2.00 Sec

2.25 Sec

2.50 Sec

2.75 Sec

3.00 Sec

3.50 Sec

0.25 Sec

3.25 Sec

-0.25 Sec

-0.50 Sec

-0.75 Sec

-1.00 Sec

Sp
lic

e
Po

in
t

in
 S

tre
am

Cue Request
Cue Response

NTP TimeNTP Time

VB
V

D
el

ay
(v

ar
ia

bl
e)D

TS

PT
S

Pr
im

ar
y

C
ha

nn
el

In
se

rt
io

n
C

ha
nn

el

TC
P/

IP
 A

PI
 T

ra
ffi

c

30
0m

s
3

Se
c

20
0m

s

30
0m s

60
0m

s

PA
T

/ P
MT

Ch
an

ge

Splice Complete Response

DVS/253 Cue
Message

0.00 Sec

0.50 Sec

0.75 Sec

1.00 Sec

1.25 Sec

1.50 Sec

1.75 Sec

2.00 Sec

2.25 Sec

2.50 Sec

2.75 Sec

3.00 Sec

3.50 Sec

0.25 Sec

3.25 Sec

-0.25 Sec

-0.50 Sec

-0.75 Sec

-1.00 Sec

Figure 10 - DPI Splice Initiation Timeline

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 53

 Result Codes
Result Result Name Description Response Message

100 Successful Response All
101 Unknown Failure All
102 Invalid Version Server and Splicer are using

different versions of this API.
Init_Response

103 Access Denied Possible license problem Init_Response
Splice_Response

104 Invalid/Unknown ChannelName Possible configuration error Init_Response
105 Invalid Physical Connection Possible configuration error Init_Response
106 No Configuration Found Splicer unable to determine the

configuration for this connection
GetConfig_Response

107 Invalid Configuration One or more of the parameters
in the configuration for this
connection is invalid

GetConfig_Response

108 Splice Failed – Unknown Failure SpliceComplete_Response
109 Splice Collision A higher or same priority is

already set to splice.
Splice_Response
SpliceComplete_Response

110 No Insertion Channel Found This error shall be returned if
the Insertion Channel is missing

SpliceComplete_Response

111 No Primary Channel Found This result shall be returned in a
General_Response message if
the Primary Channel is missing
at the Splice-in or Splice-out
times.

General_Response
Init_Response
Splice_Response

112 Splice_Request Was Too Late The Splice_Request message
was not received early enough
(3 seconds) for the Splicer to
initiate the splice.

Splice_Response

113 No Splice Point Was Found The Splicer was unable to find a
valid point to splice in to the
Primary Channel

SpliceComplete_Response

114 Splice Queue Full Too many outstanding
Splice_Request messages

Splice_Response

115 Session Playback Suspect Splicer has detected video or
audio discrepancies that may
have affected playback.

SpliceComplete_Response

116 Insertion Aborted An Abort_Request message
caused a Splice-out.

SpliceComplete_Response

117 Invalid Cue Message The Splicer or Server could not
parse the Cue message.

General_Response
Cue_Response

118 Splicing Device Does Not Exist SplicerName was not found. Init_Response
119 Init_Request Refused The Splicer refuses to allow the

Server to connect.
Init_Response

120 Unknown MessageID Use Splicing_API_Message to
send response to requester. Echo
back the unknown MessageID.

All

121 Invalid SessionID The Splicer has no knowledge
of the specified SessionID.

Splice_Response
Abort_Response

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 54

ExtendedData_Response
122 Session Did Not Complete Splicer was not able to play the

complete duration. This includes
the case where the Server did
not supply the sufficient content.

SpliceComplete_Response

123 Invalid Request Message data() Splicer or Server was not able to
parse a field in the request
message successfully. The
invalid field position is returned
in the Result_Extension field of
the Splicing_API_Message.

All

124 Descriptor Not Implemented The Splicer does not currently
understand or implement the
requested descriptor.

Responses to all messages
that allow descriptors.

125 Channel Override This Result Code is used to
indicate to the currently playing
insertion that it has been
overridden with a Splice-out
status or has been re-entered
with a Splice_in status.

SpliceComplete_Response

126 Insertion Channel Started Early This error may be issued if the
Insertion Channel started early
and the Splicer was not able to
determine the correct start of the
insertion stream.

SpliceComplete_Response

127 Playback Rate Below Threshold See playback_descriptor() for
details.

SpliceComplete_Response

128 PMT changed This is used to indicate to the
Server that the PMT for this
Primary Channel has changed.
The Server may issue a
Get_Config_Request() to
obtain the new PMT.

General_Response

129 Invalid message size The message was not the correct
length as determined by this
specification.

All

130 Invalid message syntax Fields defined by this
specification are not within the
valid range.

All

131 Port Collision Error The Splicer was not able to
utilize the specified IP:port
combination requested. The
combination is either in use or
not valid on this splicer.

Init_Response

132 Splice Failed – EAS active This error shall be returned if
the Emergency Alert System is
active.

SpliceComplete_Response
Splice_Response

133 Insertion Component Not Found One or more of the Insertion
stream components was not
found. The result extension has

SpliceComplete_Response

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 55

the stream type of the first
missing component.

 134 Resources Not Available Returned by a Splicer which
was requested to provide a
service for which it had no
resources. i.e. the
create_feed_descriptor() in an
Init_Request Message could not
be honored by the Splicer due to
the Splicer’s output B/W being
fully occupied.

Init_Response

 135 Component Mismatch This code MAY be returned by
a Splicer when the
Splice_Request fails to define
an Insertion Channel component
needed to match a Primary
Channel component.
Examples:
The Primary Channel contains
an AC-3 audio component, but
the Splice_Request defines only
an MPEG2 audio component.
The Primary Channel contains
an AVC video component, but
the Splice_Request defines only
an MPEG-2 video component.

Splice_Response

Note: All Result Codes may be used in the General_Response message

 Example use of Logical Multiplex Type 0x0006
and the port_selection_descriptor()

Informative Example 1:

The following example illustrates the use of multiple Splice_Requests in sequence and incrementing of
port numbers between the subsequent requests when port_selection_descriptors are not present. (See
Section 8.2)

All ports are statically set up on the Init_Request.

Base IP:Port = 192.168.134.9:2000

Number of ports = 4

The following events occur sequentially in time during a single avail.

1. Splice_Request with time() set, Server uses port 2000.
2. Splice_Request with PriorSession, Server uses port 2001
3. Splice_Request with PriorSession, Server uses port 2002
4. Splice_Request with PriorSession, Server uses port 2003
5. Splice_Request with PriorSession, Server uses port 2000

ANSI/SCTE 30 2021

AMERICAN NATIONAL STANDARD © 2021 SCTE 56

6. Splice_Request with PriorSession, port_selection_descriptor port = 2000, Server uses port 2000
7. Splice_Request with PriorSession, port_selection_descriptor port = 2003, Server uses port 2003

Next avail

1) Splice_Request with time() set, Server uses port 2000.

Informative Example 2:

Use of port_selection_descriptor() to dynamically set up a port. Base port is established statically in the
Init_Request message.

Base IP:Port = 192.168.134.9:3000

Number of ports = 1

The following events occur sequentially in time during a single avail.
1) Splice_Request with time() set, Server uses port 3000.
2) Splice_Request with PriorSession, port_selection_descriptor IP = 192.168.134.9 port = 2010,

Server sets up and uses 192.168.134.9:2010.
3) Splice_Request with PriorSession, port_selection_descriptor IP = 239.192.0.2 port = 2010, Server

sets up and uses 239.192.0.2:2010.

Next avail
1) Splice_Request with time() set, Server uses port 2000.

	NOTICE
	Document Types and Tags
	Document Release History
	Table of Contents
	1. Introduction
	1.1. Executive Summary
	1.2. Scope
	1.3. Benefits
	1.3.1. Improvements in ad timing synchronization

	2. Normative References
	2.1. SCTE References
	2.2. Standards from Other Organizations
	2.3. Other Published Materials

	3. Informative References
	3.1. SCTE References
	3.2. Standards from Other Organizations
	3.3. Other Published Materials

	4. Compliance Notation
	5. Abbreviations and Definitions
	5.1. Abbreviations
	5.2. Definitions

	6. Introduction
	6.1. System Block Diagram
	6.2. Arbitration Priorities
	6.3. Abnormal Terminations
	6.4. Splicing Requirements
	6.5. Communication

	7. API Syntax
	7.1. Splicing_API_Message Syntax
	7.2. Conventions and Requirements
	7.3. Initialization
	7.3.1. Init_Request Message
	7.3.2. Init_Response Message

	7.4. Embedded Cueing Messages
	7.4.1. Cue_Request Message

	7.5. Splice Messages
	7.5.1. Splice_Request Message
	7.5.2. Splice_Response Message
	7.5.3. SpliceComplete_Response Message

	7.6. Alive Messages
	7.6.1. Alive_Request Message
	7.6.2. Alive_Response Message

	7.7. Extended Data Messages
	7.7.1. ExtendedData_Request Message
	7.7.2. ExtendedData_Response Message

	7.8. Abort Messages
	7.9. Abort_Request Message
	7.10. Abort_Response Message
	7.11. TearDownFeed_Request Message
	7.12. TearDownFeed_Response Message
	7.13. Requesting Configuration Settings
	7.13.1. GetConfig_Request Message
	7.13.2. GetConfig_Response Message

	7.14. General_Response Message

	8. Additional Structures
	8.1. Version
	8.2. Hardware_Config
	8.3. splice_elementary_stream()
	8.4. time() Field Definition
	8.5. splice_API_descriptor() Field Definition
	8.5.1. playback_descriptor() Field Definitions
	8.5.2. muxpriority_descriptor() Field Definitions
	8.5.3. missing_Primary_Channel_action_descriptor() Field Definitions
	8.5.4. port_selection_descriptor() Field Definitions
	8.5.5. asset_id_descriptor() Field Definitions
	8.5.6. create_feed_descriptor() Field Definitions
	8.5.7. source_info_descriptor() Field Definitions

	9. Time Synchronization
	9.1. Introduction [Informative]
	9.2. Splicing Compressed Streams
	9.3. NTP Time Syncronization
	9.4. PTP Time synchronization

	10. System Timing
	10.1. DPI Splice Signal Flow
	10.2. DPI Splice Initiation Timeline

	Appendix A Result Codes
	Appendix B Example use of Logical Multiplex Type 0x0006 and the port_selection_descriptor()

